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Abstract

Decomposition-based methods are often cited as the solution to multi-objective nonconvex optimization problems withan increased
number of objectives. These methods employ a scalarizing function to reduce the multi-objective problem into a set of single
objective problems, which upon solution yield a good approximation of the set of optimal solutions. This set is commonlyreferred
to as Pareto front. In this work we explore the implications of using decomposition-based methods over Pareto-based methods
on algorithm convergence from a probabilistic point of view. Namely, we investigate whether there is an advantage of using a
decomposition-based method, for example using the Chebyshev scalarizing function, over Pareto-based methods. We findthat,
under mild conditions on the objective function, the Chebyshev scalarizing function has an almost identical effect to Pareto-
dominance relations when we consider the probability of finding superior solutions for algorithms that follow abalanced trajectory.
We propose the hypothesis that this seemingly contradicting result compared with currently available empirical evidence, signals
that the disparity in performance between Pareto-based anddecomposition-based methods is due to the inability of the former class
of algorithms to follow a balanced trajectory. We also link generalized decomposition to the results in this work and show how to
obtainoptimalscalarizing functions for a given problem, subject to priorassumptions on the Pareto front geometry.

c© 2014 Copyright Line
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1. Introduction

When considering nonconvex problems, guarantees about theobtained solution can only be given when an ex-
haustive search is performed. That is, only if the entire domain of definition of the objective function is explored.
Naturally, such a task can very easily become unmanageable.However once the fact that a problem is nonconvex is
established, there are several metaheuristics that can be employed to obtain a solution. Some examples of metaheuris-
tics, often referred to as evolutionary algorithms (EAs) inthe literature are, genetic algorithms (GAs) [17, 14, 26],
evolution strategies (ES) [36], differential evolution (DE) [40] particle swarm optimisation (PSO) [8, 31, 43] and
others [7, 1, 18, 33, 13].

Although a solution produced by any of the aforementioned methods will most likely be suboptimal, metaheuris-
tics performwell in practice. Thus, compared to the alternative of using random search [30, 39], which has the
property of asymptotic convergence [46], EAs in practice, convergefasterto the neighbourhood of optimal solutions
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for a number of problems [50, 48]. Of course, this does not imply that EAs are superior to random search for all
problems. The implication is that ifdomain knowledgeis exploited then EAs can be very effective [35], especially in
light of the fact that even convex problems become nonconvexat the slightestprovocation, see [5] for example.

In this work our focus is on multi-objective nonconvex problems. An issue with multi-objective problems is that
a complete ordering is not uniquely defined and instead of a single optimal solution there is a set of optimal solutions
[44, pp. 113],[34, pp. 61]. In the field of evolutionary multi-objective optimization, there are two main approaches
employed to resolve this issue: Pareto-based and decomposition-based methods. In both methodologies and assuming,
thea posterioripreference articulation paradigm [34, pp. 63] is employed,the relative importance of the objectives is
unknown. In the case that preference information is given bythe decision maker (DM), then using a decomposition
method to combine the scalar objective functions can be used, see Section 4. An alternative is to distill the preference
information given by the decision maker into a utility function, however this requires extensive knowledge of the
problem structure and does not guarantee that its solutionswill be Pareto optimal [44, pp. 62]. Pareto-based methods
use the Pareto-dominance relations [34] to induce partial ordering in the objective space.

Multi-objective problems that have more than 3 objectives are common in real-world applications. Some exam-
ples are control and aerospace, see for instance [9]. However, for increasing number of dimensions the number of
incomparable solutions dominates the population, hence the selection pressure is massively reduced which leads to
poor convergence rate to the Pareto front [24]. Another problem that Pareto-based methods face for multi-objective
problems with more than 3 objectives is that it is unclear howto preserve diversity in the solutions.

Some authors allege that the solution is to use decomposition-based algorithms since they scale well for large
population sizes and seem to have a better convergence rate compared with Pareto-based algorithms [23], a view that
seems to be gaining support [16, 20] and as illustrated by thenumber of publications based on the MOEA/D algorithm
introduced in [47]. However if relative performance is to beconsidered, the difference between decomposition-
based algorithms and Pareto-based algorithms is not impressive. Namely the performance of decomposition-based
algorithms is often of the same order of magnitude, in the selected metrics, as Pareto-based algorithms, see for
instance [47, 32]. Additionally, decomposition-based methods have their fair share of difficulties. For instance, a
straightforward method to distribute the solutions on the Pareto front seems elusive to obtain for decomposition-based
methods. This deficiency stems from the fact that it is not straightforward to select the weighting vectors and the
scalarizing function as most results available in the literature apply only to convex optimization problems [44, 34].
However recent results show that there is a way for these problems to be resolved under certain assumptions [11, 12].
Another issue with decomposition-based methods is that notall scalarizing functions can guarantee that all Pareto
optimal solutions will be obtainable [34, pp. 99]. An exception to this is the Chebyshev scalarizing function, that can
be used for convex or nonconvex problems whilst guaranteeing to produce solutions that are at least weakly Pareto
optimal1. Furthermore, there is a theorem that applies to the Chebyshev scalarizing function, that states that all Pareto
optimal solutions can be obtained for some weighting vector[34, pp. 99]. Perhaps this is the reason for the increased
use of this scalarizing function in the literature, see for example [47, 42].

To date, there is no theoretical evidence to support the above-mentioned view, namely, that decomposition-based
methods are superior to Pareto-based methods for problems with more than 3 objectives. Some studies have appeared
in the literature, for example [38, 41] but the assumption isthat the objective function is unimodal, i.e. convex or
quasi-convex. This assumption limits the scope of these works since evolutionary algorithms (EAs) are applied to
nonconvex problems. In this work we attempt to reveal a fundamental reason why Pareto-based EAs seem to be ill
suited for problems that have an increased number of objectives, as opposed to decomposition-based optimization
algorithms. Additionally, our prior assumptions about theproblem structure are much more relaxed and realistic
compared with [38].

The main contributions of this work can be summarised as follows:

• The effect of Pareto dominance methods is studied from a theoretical perspective and an explanation of the
difficulties experienced by several Pareto-based algorithms ispresented.

• Decomposition-based methods are also studied and their relation to dominance methods is clarified. A major
result is that methods based on the Chebyshev scalarizing function are equivalent to methods based on Pareto-
dominance under certain assumptions that are usually trivially met in decomposition-based algorithms.

1See Section 2 for definition.
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• Lastly, given some prior information about the Pareto frontgeometry theoptimalscalarizing function is iden-
tified. Optimal in the sense that with this scalarizing function the probability of finding a better solution, given
a starting pointzc, will have a slower rate of decrease compared to other scalarizing functions and at the same
time similar guarantees provided by the Chebyshev scalarizing functions can be given.

The remainder of this paper is structured as follows. In Section 2 a definition of multi-objective optimization
problems is given. In Section 3 we discuss Pareto-based methods and explore the effect of dominance relations for
this type of problems. Furthermore, in Section 4 we perform asimilar analysis to the one conducted for Pareto-
based methods, for a popular class of decomposition methodsbased on the weighted metrics scalarizing functions. In
Section 5 we show that similar assurances to the ones provided by the Chebyshev scalarizing function can be given
for anℓp-norm based decomposition function withp < ∞. Furthermore, in Section 6 we reflect on the consequences
of the presented results in this work and present contexts inwhich our results can be used constructively to improve
algorithms tackling problems with a large number of objectives. Lastly in Section 7, this work is summarised and
concluded.

2. Problem Definition

A multi-objective optimisation problem is defined as:

min
x

F(x) = ( f1(x), f2(x), . . . , fk(x))

subject tox ∈ S,
(1)

wherek is the number of scalar objective functions andx is the decision vector with a domain of definitionS ⊆ Rn,
while Z is the objective space and is the forward image2 of S under the mappingF. When the number of objectives,
k, is more than 3 then the problem defined by (1) is referred to asmany-objective in the evolutionary multi-objective
optimization community. This distinction in terms is due tothe fact that for nonconvex multi-objective problems an
increase in number of objectives can have a profound effect on the algorithm’s ability to find solutions near the Pareto
front, while for convex problems this is not usually an issue. However, to avoid confusion, in this work we simply
refer to such problems as multi-objective. For further details on multi-objective optimization the reader is referredto
[44, 34].

3. Pareto Methods

3.1. Overview
In mathematical programming, the Pareto dominance relations are mainly used for theoretical purposes. However,

in evolutionary computation they are heavily used in fitnessassignment. Fitness assignment has a similar function to
the negative gradient in gradient search - it indicates a promising direction of search. Therefore, if such a direction
is unavailable to the EA, then continuation of the search becomes increasingly more difficult as there is no indication
thatbettersolutions are being generated.

Specifically, in a minimisation context, a decision vectorx̃ ∈ S is said to bePareto optimal if there is no other
decision vectorx ∈ S such thatfi(x) ≤ fi(x̃), for all i, and, fi(x) < fi(x̃) for at least onei = 1, . . . , k. Namely there
exists no other decision vector that maps to a clearly superior objective vector. Similarly, a decision vectorx̃ ∈ S is
said to beweakly Pareto optimal if there is no other decision vectorx ∈ S such thatfi(x) < fi(x̃) for all i = 1, . . . , k.
Lastly, the ordering induced by the binary relations≺,� is calledpartial because of the following possibility:x, y ∈ Z
butx � y andy � x, in which case the vectorsx, y are said to beincomparable.

Most multi-objective problem solvers attempt to identify aset of Pareto optimal solutions. This set is a subset of
thePareto optimal set(PS) which is also referred to asPareto front. The Pareto optimal set is defined as follows:
P = {z : z̃ � z, z̃ ∈ Z}, namely, it is the set of objective vectors that are not dominated by any objective vector in
the feasible objective space. The decision vectors whose forward image under the objective function is the set,P, are
also referred to as the Pareto set and are denoted asD, namelyF : D → P. That is, the decision space is implicitly
ordered according to the partial ordering applied to the objective space.

2Namely,F : S→ Z.
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3.2. Bias in the Objective Function

In the following sections of this work we assume that the objective function is notbiasedtowards the Pareto
front. This term is related to what the authors of the WFG3 toolkit [19] refer to asbias in the objective function.
An objective function is considered to beunbiasedwhen for decision vectors that are uniformly distributed inS
the resulting distribution in objective space is also uniform, or close to uniform [19]. In this work we employ the
same notion ofbias, however we also provide a definition which should clarify the underlying assumptions of the
statements: “an objective function has no bias”, or “an objective function is biased toward the Pareto front” etc. In
this work we consider objective functions of the following form:

∫

B
h(z1, . . . , zk)dz1 . . .dzk Ri PU(z ∈ B),

B = {z : inf{‖z− zp‖} ≤ r, zp ∈ P, z ∈ Z},
(2)

whereh, is the probability density function in the objective spaceandB is the set of all feasible objective vectors with
distancer or less from the Pareto front andRi is an element ofR = {<, >,=}. Also,PU(z ∈ B) is the probability that
the objective vector,z, lies in the setB when sampling the decision space under the uniform distribution,U. In the
first two cases, namelyR1 andR2, and for somer > 0 we say that the objective function is biased towards, and away
from, the Pareto-front, respectively. When the relationR3 holds for allr > 0 the objective function has no bias.

3.3. Pareto Dominance for Multi-Objective Problems

In [24] Ishibuchi et al. provide empirical results in an attempt to explain the reason for thepoor performance of
Pareto dominance-based algorithms applied to multi-objective problems. The main argument is that the ratio of non-
dominated (incomparable) individuals to the size of the population is approaching 1, meaning that almost the entire
population is non-dominated, therefore the algorithms’ selection mechanism is provided with no useful information.
In what follows we elaborate further on this argument and prove that this behaviour is to be expected in multi-objective
problems and we reveal, to an extent, the underlying cause for such difficulties.

Consider the simplest multi-objective case, namely a 2-objective problem. Every point in objective space defines
4 regions, (i) a region that contains solutions that are clearly better denoted asS, (ii) a region that contains solutions
that are clearly worse,I, and (iii, iv) two regions where the solutions are incomparable to the point in question,D.
In the general case, fork-dimensional problems, there is always 1 region with clearly better solutions, 1 region with
clearly worse solutions and 2k − 2 regions containing incomparable solutions. Furthermore, assuming that there is
no bias towards any of these regions in the problem (objective function), the probability that a solution is generated
in any one of these regions by a stochastic process (algorithm) is proportional to the volume of these regions divided
by the volume of the entire feasible set in objective space4, Z. However, as the number of dimensions increases, the
likelihood that a solution will be generated within the regionS, is reduced significantly for any point in the objective
space.

Although the assumption that the problem has no bias seems tolimit the generality of the above argument, this is
not entirely true. To illustrate this let us consider the relativedirectionsof bias in the objective function in the context
of optimization. This bias can be: (i) towards the Pareto front, namely it is easier to obtain solutions near the PF
than in any other region, (ii) towards the region containingclearly worse solutions, and (iii) towards any region or
regions containing incomparable solutions. Only in case (i) the solution of the optimisation problem becomeseasier
compared with the unbiased version. However this favourable scenario is seldom encountered in practice. So by
assuming no bias in the objective function, all the probabilities that we calculate are in the worst case upper bounds
on the probabilities of obtaining solutions in the setS. In other words, the probabilities reported in this work represent
thebestattainable probability with respect to the location of an objective vector. We elaborate further on this point in
Section 6.

To better appreciate and understand the reasons for the apparent difficulties that multi-objective optimization
algorithms face with such problems, we frame the aforementioned example on a more concrete basis. Assume that

3Walking Fish Group. The WFG toolkit can be used to create scalable test problems in objective and decision space.
4We assume that the feasible objective set is bounded.
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Figure 1. Trajectory for the experiment described in Section 3.4 comparing decomposition and Pareto-based methods.MP is the upper bound of
the feasible objective space whileLP is the Pareto front and the lower bound of the feasible objective space. AlsoVF is thevolumebelow the
Pareto front andVZ is the volume of the feasible objective space, whileVP is the volume of the region containing superior solutions tothe current
solutionzc. Lastly,zs andze are the starting and target objective vectors, withze being Pareto optimal. Theleft figure illustrates the aforementioned
quantities forzc = zs and theright figure illustrates how the above quantities change aszc moves towardsze along the (ze − zs) direction. The
results can be seen in Fig. (2).

the objective space,Z, is bounded from above by a hyperplane as shown in Fig. (1), specifically the upper bound
is the set of pointsMP = {z :

∑k
i=1 zi = M, zi ≥ 0}. The reasons for selecting a feasible objective region withthis

particular geometry will become clear in what follows. Also, let the Pareto front be a (k− 1)-simplex, namely Pareto
optimal objective vectors are part of the setLP = {z :

∑k
i=1 zi = L, zi ≥ 0}, obviously we have to selectL < M for

minimization problems asL > M would imply Z = {∅}. If we also assume that the problem has no bias, then for a
given objective vector,zc ∈ Z, it would be possible to calculate the probability of obtaining a better solution for any
point in the objective space. This information can be usefulin many ways, we elaborate on those in Section 6.

Now, given a point in objective space,zc where the subscript is an abbreviation forcurrent point, we can calculate
the probability of obtaining a better solution using the following relation,

P(z ∈ S | zc) =
VS(zc)
VZ

, (3)

where,VS(zc) = VP(zc), for Pareto-based methods,VZ is thevolumeof the feasible objective space which is equal
to the volume of the slab in betweenMP, LP and the positive orthantRk

+, see Fig. (1). Additionally,P(z ∈ S | zc), is the
probability of finding a better objective vector,zn, given the objective vectorzc. The expression in (3) is valid only for
problems whose objective function would produce objectivevectors uniformly distributed, or nearly so, given a set
of uniformly distributed decision vectors. For biased problems knowledge of the exact probability density function in
objective space would be necessary so that we canweighthe integrals. However, as we mentioned above, in all but
the most trivial problems the bias will be towards the Paretofront, otherwise it will be away from it, and so (3) will
still describe a useful quantity, namely the upper bound of the probability of finding a better solution, assuming that
there is no bias towards the Pareto front.

The volume of the region containing clearly better solutions,VP(zc), for Pareto dominance or cone dominance
using an ordering coneK = Rk

+ is,

VP(z) =
k

∏

i=1

zi −VF , (4)

whereVF is the volume of the non-dominated region beneath the Paretofront, which is the volume beneath the
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simplex,LP. The (k− 1)-simplex corresponds to a Pareto front with affine geometry andVF is calculated as,

VL =
det

[

v1 · · · vk

]

Γ(k+ 1)
. (5)

Here,vi , are the vertices that the Pareto front intersects with the axes andΓ(·) is the gamma function [2]. The vectors,
vi for the Pareto front are equal tovi = L · ei , whereei is a vector of zeros and itsith element is equal to one.
Furthermore, the volume beneath the hyperplaneMP,VM, is calculated using (5) andvi = M · ei . OnceVM andVL

have been evaluated, the volume of the entire feasible objective space is calculated as,

VZ = VM −VL. (6)

Also the volume of the non-dominated region forε-dominance is simply,

VPε (z) =
k

∏

i=1

(zi − ε) −VF , (7)

assuming that the sameε value is used for every objective. If different values forε are used it is trivial to modify
(7). The volume of the non-dominated region for coneε-dominance [4] is much more involved to calculate exactly,
however, given that its defining set is the intersection of a proper cone and the setRk + ε it stands to reason that its
volume,VKε , will be within,

VPε ≤ VKε ≤ VP, (8)

depending on the selected acute cone.

3.4. Experiment

The question that we seek to answer is the following: Do decomposition-based optimization algorithms possess
some inherent advantage over Pareto-based algorithms thatcan be attributed to the way partial ordering is induced
in objective space? To answer this question we remove the implementation details of algorithms belonging to these
families and study the effect of the fitness assignment on the likelihood that a superior solution is found as a function of
the distance of the current best approximate solution to a solution on the Pareto front. To do this we select the shortest
path in objective space from an initial pointzs to a point on the Pareto front,ze, as shown in Fig. (1). Next we calculate
the probability of finding a better solution for points progressively closer toze. This will inform us whether there is
some advantage in using decomposition-based methods over Pareto-based methods. However, there is an inherent
assumption that approximate solutions in these algorithm families will tend to follow this particular trajectory. This
means that we assume that if an algorithm starts from the point zs, intermediate solutions will tend to be close to the
trajectory shown in Fig. (1) and that upon convergence we will obtain the solutionze. Therefore we have to justify
two points, (i) why it would be reasonable to assume an algorithm would tend to follow this trajectory and (ii) why
it should converge to that particular point,ze, and not any other point on the Pareto front. For decomposition-based
methods this is trivial as this is the direction in which the scalarization function monotonically decreases and the
target point,ze, can be selected by appropriate selection of the weighting vector,w as shown in [12, 11]. And it is
conceivable that the pointze is part of a set of points that are targeted by the algorithm. For Pareto-based methods
however, even if we assume that a solution is admissible onlywhen it dominates the current solution,zc, the end
point need not necessarily beze. Nevertheless, this would be true only if we ignore the part of a Pareto-based method
that preserves diversity of solutions in objective space. Pareto-based algorithms as mentioned in the introduction will
attempt to lead a set of solutions towards the Pareto front and simultaneously cover the entire Pareto front. This means
that there is some mechanism to force solutions that are veryclose to each other in objective space to either move
in unexplored regions of objective space or be eliminated. Indeed Pareto-based algorithms actively seek to preserve
diversity and the employed measures are variations of the mean nearest neighbour distance in objective space [49].
This, in effect, allows an approximate solution to move only within acorridor in objective space. Given an adequate
number ofindividualsin the EA thiscorridor can be approximated by a single trajectory as in Fig. (1) and the final
solution will be withinε distance fromze, whereε a small constant that can be made arbitrarily small by increasing
the number of individuals in the population of the algorithm. If in fact a Pareto-based algorithm is unable follow
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Figure 2. Probability of finding a better solution tozc, P(z ∈ S | zc), as a function of the Euclidean distance of the solutionzc to ze, denoted by
dist(ze, zc), for different number of objectives (see Fig. (1)). Here{�, ◦, ⋄,×, •} correspond tok = {2, 5, 10, 15, 20} objectives respectively.

the trajectory in Fig. (1), then this will only serve to decrease the probability of finding a superior solution to the
current point, as we have shown that algorithms whose solutions tend to wander in objective space tend, in the mean,
to obtain inferior solutions [10]. Hence the obtained probabilities will still be an upper bound for the probability of
finding a superior solution to the current solution,zc. This could be one reasons for the reported inferior performance
of Pareto-based algorithms.

Therefore, using (3)-(5) and a trajectory in objective space we can explore the change in the probability to obtain
a solution inS from a current point,zc. Assuming we start from a point that is on the upper bound of the objective
space,zs ∈ MP, and a target point on the Pareto frontze, the question is how likely is to find abettersolution with
respect to any point on the trajectory with directionze − zs, see Fig. (1). This information for Pareto dominance
methods will give us a basis for comparison with other methods for inducing a partial order in the objective space and
should illuminate any differences. The steps involved, for Pareto-based and decomposition-based methods described
in Section 4, can be summarised as follows:

7
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• Setzc = zs. Subsequently we divide the line segment fromzs to ze into N − 1 segments, thus from start to end
there areN pointszc[i] = zs + (ze− zs) i

N andi = 0, . . . ,N − 1, see Fig. (1).

• For everyzc[i] we calculate (3). This procedure is illustrated in Fig. (1)and the results are shown in Fig. (2)-(a)
for Pareto-dominance methods.

4. Decomposition Methods

Figure 3. Thecurvesin this figure represent the boundary of solutions that will be perceived as clearly better with respect to the corresponding
p-norm.

4.1. Overview

An alternative for defining a partial order in objective space can be found in decomposition methods. As mentioned
in Section 1, these methods employ a scalarizing function toaggregate all the objectives into a single scalar objective
function. To obtain different Pareto optimal points, a set of weighting vectors can be used which would result in a set
of single objectivesubproblems. This is the reason why such methods are calleddecomposition-based. It is because
the employed strategy is to decompose a complex problem intoa set ofsimplerones. Simpler in this context does not
necessarily mean easier to solve, it means that it is straightforward to apply standard EAs to the resulting subproblems.

The family of scalarizing functions that we focus our attention in this work, is the weighted metrics method [34,
pp. 97] defined as:

min
x

















k
∑

i=1

wi | fi(x) − z⋆i |
p

















1
p

, (9)

where,wi are the weighting coefficients,wi ≥ 0 for all i = 1, . . . , k, and
∑k

i=1 wi = 1, alsop ∈ (0,∞). The vector
z⋆ = (z1, . . . , zk), is called theideal vectorand is defined asz⋆ = (inf

x
{ f1(x)}, . . . , inf

x
{ fk(x)}). For the purpose of this

work we will assume thatz⋆ = (0, . . . , 0), which means that (9) can be rewritten as,

min
x

















k
∑

i=1

wi fi(x)p

















1
p

. (10)

Notice that we are allowed to remove the absolute value whilemaintaining the equivalency relation between (9) and
(10), since,z⋆ = (0, . . . , 0), implies thatz ∈ Rk

+. The formulation shown in (10) obviates the relationship ofthe
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weighted metrics scalarizing function with the weighting method and the Chebyshev decomposition. Namely, for
p = 1 we obtain the weighting method [34, pp. 78],

min
x

k
∑

i=1

wi fi(x), (11)

while for p = ∞ we obtain the Chebyshev scalarizing function,

min
x

(max{w1 f1(x), . . . ,wk fk(x)}) . (12)

It should be noted that the assumption that the ideal vector is equal to the zero vector also implies that the objective
function is bounded from below. In extension, if the ideal vector is known and is nonzero, a change ofvariablesin
the objective function would be sufficient to meet our assumption.

Although all norms areequivalent, in the sense that for every norm in a finite dimensional spacemultiplicative
constants can be found relating two norms [6, pp. 636], theireffect in an optimization problem can be significantly
different, depending on the intricacies of the problem. For example, for p = ∞, namely the Chebyshev scalarizing
function, there exist theoretical results stating that thesolutions of (12) will be at least weakly Pareto optimal for any
weighting vectorw ∈ Rk

+ and that any Pareto optimal solution can obtained for some weighting vector [34, pp. 99].
The interest of the MOEA community with respect to this particular norm is that the previous statement holds for
nonconvex problems as well. Note that this does not imply that there is a guarantee that the algorithm will be able
to find a Pareto optimal solution for a nonconvex problem, rather the statement refers to the equivalency of the two
problems. In other words, assuming that the selected algorithm is able to solve the problem defined in (12) then the
solution will be at least a weakly Pareto optimal, and that all the Pareto optimal solutions can be obtained for some
weighting vector. Such a result does not exist forp < ∞. In Section 5 we show that, given some prior information,
it is possible to find a norm other than infinity with the same properties mentioned above. Namely, the ability of the
a scalarized problem to converge to a weakly Pareto optimal solution for every weighting vectorw ≻ 0 and that all
Pareto optimal solutions can be reached.

However, it is not obvious as to why a norm, other than theℓ∞-norm that is employed in the Chebyshev scalarizing
function, would be more useful for decomposing a multi-objective problem. For this reason we extend the experiment
conducted for Pareto-based methods to decomposition-based methods that employ (10) as the scalarizing function to
decompose a multi-objective problem and study the effects that different values ofp have on the resulting subproblems,
see Section 4.2.

4.2. Decomposition Methods for Multi-Objective Problems

The difference between scalarizing functions and the various formsof dominance relations discussed in Section 3,
is that the former define a complete ordering in the objectivespace. Namely, regions containing incomparable solu-
tions are eliminated, and depending on theℓp-norm used in (10), parts of theD regions are absorbed by the region
containing inferior solutions,I, and the region containing clearly better solutions,S. This phenomenon has the poten-
tial to reduce the rate of decrease of the probability that a better solution is generated as the current solution approaches
the optimal point, see Fig. (2)-(b-d). A better solution in this context is a solution that yieldsa lower value for the se-
lected scalarizing function. In turn, this can reduce algorithm stagnation caused by a large number of non-dominated
solutions, a phenomenon observed in Pareto-based methods [24]. Consider a scenario in which the weighted sum
method is used. In this scenario the weighting vector represents the normal of a hyperplane that divides the feasible
objective space in two partitions. One, a region containingbetter solutions,Sℓ1, and one with worse solutions,Iℓ1,
shown in Fig. (3). Solutions above the hyperplane are considered to beworsewhile solutions below the hyperplane
are taken to be better with respect to the particular subproblem. Therefore, since the volume of theS region is larger
comparatively to dominance-based methods, it would be easier for the algorithm to identify solutions that are some-
what closer to the front with respect to the currently best objective vector. However we have made a concession here,
as the new solution may not Pareto-dominate the previous best solution. We will return to this issue in Section 5 and
Section 6.

To explore how decomposition-based methods relate to Pareto-based methods, we must be able to calculate (3)
for every p = (0,∞]. The volume of the feasible objective space is calculated in the same way as in (6), while the
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volume of theS region forp = (0,∞) is calculated as:

VSℓp
(z) =

(

Γ
(

1+ 1
p

))k

Γ
(

k
p + 1

) ·

k
∏

i=1

αi(z) − VF , (13)

which is essentially the volume of the positive orthant of a hyperellipsoid calculated as seen in [45]. The factorsai(z)
represent the distance of the ideal vector from the intersection of the ellipsoid with the positive axis of theith objective,
shown in Fig. (3) and are calculated as,

αi(z) =













∑k
m=1 wmzp

m

wi













1
p

, (14)

see [45]. Since for the special case thatp = ∞,

lim
p→∞

(

Γ
(

1+ 1
p

))k

Γ
(

k
p + 1

) = 1, (15)

the volume of theS region becomes,
VSℓ∞

(z) = α1(z) . . . αk(z) −VF , (16)

and,

αi(z) =
max{w1z1, . . . ,wkzk}

wi
. (17)

Furthermore, to replicate the selected trajectory described in Section 3.3 and shown in Fig. (1), the weighting vector
is set tow = 1

k · (1, . . . , 1) ascribing equal importance to all objectives so the resulting subproblem will tend to follow
this trajectory and converge to the pointze. For this particular weighting vector (16) becomes,

max{w1z1, . . . ,wkzk} = wmzm,

VSℓ∞
(z) =

( 1
k )kzk

m

( 1
k )k
− VF = zk

m −VF .
(18)

However, as can be seen in Fig. (1), all points in the trajectory from zs to ze havez1 = z2 = · · · = zk, hencezm = zi for
all i = 1, . . . , k, thus (18) can be calculated for any point on the trajectory.

As seen in Fig. (2)-(a-d), the probability of finding a better solution aszc approaches the optimal solutionze de-
creases more rapidly for the Chebyshev scalarizing function and Pareto-based methods when compared to scalarizing
functions employing theℓ1-, ℓ2-norm. However, the results for the Chebyshev scalarizing function are remarkably
similar to the Pareto-based method. In fact, for this trajectory, the two are identical, see (4) and (18). This interesting
result means that Pareto-based methods and decomposition-based methods using the Chebyshev scalarizing function
are identical in the sense that,

VSℓ∞
=VP. (19)

This result is quite intriguing given the increased number of reports showing decomposition-based algorithms out-
performing their Pareto-based counterparts for multi-objective problems [22, 23, 37, 20, 42]. However, we have only
shown that the above equality holds for one particular trajectory and not necessarily for every possible trajectory
towards any point on the Pareto front. We claim that (19) holds for an entire family of trajectories and that these
particular trajectories are the ones that both decomposition and dominance-based algorithms attempt to follow in their
approach towards the PF.

Consider a subproblem defined by the following weighting vector,

w =
(c1

s
, . . . ,

ck

s

)

,

s=
k

∑

i=1

ci , ci ∈ R+
(20)
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and the trajectory defined by,

zc = C ·

















(

s
c1

)
1
p

, . . . ,

(

s
ck

)
1
p

















,

s=
k

∑

i=1

ci , ci ∈ R+,C ∈ [L,M].

(21)

The starting point,zs is defined forC = M and the end point,ze (Pareto optimal point), forC = L. For this trajectory,

VP(zc) =
∏

i=1

kzc,i −VF =
(Cs)k

∏k
i=1 ci

−VF , (22)

and

VSℓ∞
(zc) =

(max{w1zc,1, . . . ,wkzc,k})k

∏k
i=1 wi

−VF

=
(Cs)k

∏k
i=1 ci

−VF .

(23)

At this point we need to justify the assumption that a solution will attempt to follow the trajectory (21) defined
by a weighting vector (20), since it appears to be artificial.For this we refer to the work by Ballestero [3] where the
author refers to this trajectory aswell-balanced basketsdue to the relation,

w1z1 = w2z2 = · · · = wkzk, (24)

for a solutionz ∈ Z. This essentially describes theactionof the scalarizing function on the objective vector, which
is to minimize the largest deviation in the givenℓp-norm. This is most easily observed in theℓ∞-norm used by the
Chebyshev decomposition whereby only the largest deviation is taken into account thus reeling the solution toward
the balancedtrajectory. By this reasoning, when theℓ∞-norm is used in a minimization problem, thefocusof the
algorithm will be to maintain the Hadamard productw ◦ z as close as possible to the vectorC · 1 while attempting
to minimize‖C · 1‖. By changing the weighting vector, thisequilibrium that the Chebyshev scalarizing function is
attempting to maintain, changes, so a different trajectory is followed, which of course converges to adifferent Pareto
optimal point if the optimization algorithm is successful.That trajectory can be identified by finding the objective
vector thatsendsthe weighting vectorw to the unit vector. This means that whenever the objective vectors are
allowed to follow the balanced trajectory,VP(zc) = VSℓ∞

(zc).
It follows that for objective vectors following a balanced trajectory,

VSℓ1
> VSℓ2

> · · · > VSℓ∞ = VP. (25)

Therefore, it follows that,
Pℓ1(z ∈ Sℓ1 | zc) > Pℓ2(z ∈ Sℓ2 | zc) > . . .

> Pℓ∞ (z ∈ Sℓ∞ | zc) = PP(z ∈ S | zc),
(26)

wherez ∈ Z andSℓp is the region containingbetter solutions according to theℓp-norm version of the scalarizing
function andPℓp(z ∈ Sℓp) is the probability of finding a better solution inSℓp given that the current best solution iszc.
The result in (26) can be read directly from Fig. (3). It is noteworthy that in the case where a Pareto-based algorithm
is unable to follow aballancedtrajectory, it follows that it is likely, in the mean, to havea slower convergence rate
compared with a decomposition-based algorithm [10]. However, as the probabilities in (26) are upper bounds for the
probability of obtaining a better solution from a current solution, zc, this equation still holds.

5. Scalarization and Stability of the Equivalent Problem

The results in the previous section must be interpreted withcare since (26) does not imply in any way that by
using a scalarizing function based on a norm withp < ∞, all the Pareto optimal solutions will bereachable. However

11



I. Giagkiozis and P.J. Fleming/ Information Sciences 293 (2015) 1–16 12

Figure 4. Stable and unstable scalarizing functions.VPF is the volume bounded by the ideal vector,z⋆, and the Pareto front.

it does imply that by using a scalarizing function withp small, there is a better chance in finding better solutions with
respect to that norm. Nevertheless, we require Pareto optimal solutions and not just any solutions that are closer to
the front in someℓp-norm, which means that if we cannot ensure that the subproblems are able to converge to Pareto
optimal solutions and that all Pareto optimal solutions will be obtainable, the importance of (26) would be limited to
the fact that Pareto-dominance methods areequivalentto decomposition-based methods that employ the Chebyshev
scalarizing function. Equivalent in the sense that for an objective vector following a well balanced trajectory the
probability to obtain a solution dominating the current solution is the same in both methods.

To understand the tradeoff between using a dominance-based method versus a decomposition-based method let
us consider the effect of a scalarizing function on the objective space. A scalarizing function projects the entire
objective space onto a line5, therefore some regions that contain incomparable solutions in the Pareto sense, now
become solutions that are either better or worse for the particular subproblem. Therefore, a major difference between
decomposition-based and Pareto-based algorithms is that the former provide unambiguous information about the
quality of the produced solutions at every iteration while the latter cannot always guarantee such information because
the likelihood of generating incomparable solutions is high for problems with a large number of objectives [24].
However it is easy to reduce the above argument into adeadlockbetween Pareto-based methods and decomposition-
based methods. This is accomplished by the simple observation that theclearly betterregions in the Chebyshev
scalarizing function (p = ∞ in Fig. (3)) are identical to the regions generated by Paretodominance based methods,
while the incomparable and clearly worse regions in Pareto-based methods are mapped toclearly worseregions by
the Chebyshev scalarizing function. Namely, if we require adecomposition method that can guarantee the generation
of Pareto optimal solutions, then, we have to use the Chebyshev scalarizing function, but in so doing we give up the
favourable convergence rates6 achieved when using, for example the weighted sum method, and vice versa. In general
there are two competing trends:

• As p→ 0, the probability of finding a better solution with respect to theℓp-norm increases, hence it is less likely
that the algorithm stagnates due to its inability to find direction of search. Additionally, it becomes increasingly
more difficult to obtain all Pareto optimal solutions.

• However, asp → ∞, we can obtain more Pareto optimal solutions on the Pareto front, but the probability
of finding a better solution with respect to the norm defined byp is also decreasing. In the limit, namely
for p = ∞, we obtain the Chebyshev scalarizing function that guarantees that we will be able to find all Pareto

5In this work a segment of a ray, since the objective space is bounded.
6Or more correctly the potential for favourable convergencerates.
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optimal solutions for some weighting vectorw but this scalarizing function is equivalent with Pareto-dominance
methods.

So the question is: is there a way that a scalarizing functioncan be used withp relatively small while preserving
the guarantees that the Chebyshev function provides? The answer is affirmative for multi-objective problems whose
Pareto front geometry is continuous (see Section 2) and can be described by the following parametrization,

f p1

1 + f p2

2 + · · · + f pk

k = C, (27)

wherepi > 0 for all i andC is a positive constant. This parametrization for the Paretofront is often used in the
literature, see for example [29, 28, 15]. For simplicity we assume thatfi ≥ 0. We claim that if the weighted metrics
scalarizing function is used withp = max{p1, . . . , pk}, then this scalarization will have the same guarantees as the
Chebyshev function, given that our estimate of max{p1, . . . , pk} is correct and that the objective function is continuous.
The reason for this is illustrated in Fig. (4). To see this, consider that whenzc reachesze in Fig. (4), the volume of the
regionSℓ1 is still positive, meaning that according to theℓ1-norm there are still better solutions to the current solution.
Continuing on the same line of reasoning, the solutionzc will either converge tozA or zB since at these two locations
there is no way that theℓ1-norm to be improved. This result follows directly from (25)and the results in [45] for
calculating the volume in (27), it follows that,

lim
zc→ze

(

VPF −Vℓp

)

≤ 0, (28)

when p > max{pi}, in which case we say that the scalarization isstablewhile if p < max{pi} the scalarization is
unstableand we have,

lim
zc→ze

(

Vℓp − VPF
)

> 0. (29)

where,VPF , is the volume of the region enclosed by the Pareto-front andthe ideal vectorz⋆ as shown in Fig. (4).
Stability in terms of sclarizations is taken to mean the following:

• A subproblem of a multi-objective problem is astable scalarizationif for a given weighting vectorw ≻ 0, it is
able to converge to a Pareto optimal solutionze = (z1, . . . , zk), with zi > 0 for everyi = 1, . . . , k.

• Conversely, a subproblem is anunstable scalarizationif for a given weighting vectorw ≻ 0, it converges to a
Pareto optimal solutionze with zi = 0 for at least onei ∈ {1, . . . , k}.

Therefore, if the Pareto front geometry is known and it can beexpressed in terms of (27), then we can select the
ℓp-norm that will have the maximum probability to produce better solutions while preserving the guarantee that the
final population will be (weakly) Pareto optimal and that allthe Pareto optimal solutions will be obtainable for some
weighting vector.

6. Discussion

By calculating the probability to find a better solution, we have essentially turned the problem of extending a
multi-objective optimization algorithm into a functionaloptimization problem. Namely, the question that can now
be posed is: “what is theoptimalℓp-norm for the scalarization and trajectory for an objectivevector?”. By optimal
trajectory we mean the trajectory in objective space that will present the leastresistanceto our optimization algorithm
while simultaneously moving towards a Pareto optimal solutions as fast as possible. This question, although very
interesting, it either has a trivial answer: the straight line connecting the current solutionzc to the target solution, or
for biased problems knowledge of the probability density function in the objective space is required, something which,
in general, is unknown even for test problems. Therefore, weuse a balanced trajectory, since this is in accord with
the scalarizing functions, in the sense that this is the paththat they tend to follow. Using this we investigated how the
probability to obtain better solutions varies as a functionof the distance of the current best solution and the sought for
Pareto optimal solution. We found that this probability is largest the smaller theℓp-norm is, with respect top. This
information can be used to produce better algorithms for multi-objective problems.

13



I. Giagkiozis and P.J. Fleming/ Information Sciences 293 (2015) 1–16 14

However, we cannot simply use the smallest norm that is numerically feasible since with decreasingp the ability
of a scalarizing function to converge to a particular point of the Pareto front is also reduced, hence, a concession must
be made. Although, if the Pareto front is continuous and can be described in a parametric way (see (27)), an optimal
value, p⋆, can be obtained for which the decrease of the probability offinding a better solution is minimal while
the ability of the scalarizing function of finding every Pareto optimal solution is retained. The optimal value ofp,
separates the family of scalarizing functions into two subclasses. First, values ofp < p⋆ produceunstablescalarizing
functions andp > p⋆ result in stablescalarizing functions. Here stability refers to the ability of the scalarizing
function to converge to any point on the Pareto front, while instability refers to the opposite.

7. Conclusion

Based on the results in Section 3 and Section 4 we have seen that under mild conditions the Chebyshev function
is identical to Pareto-dominance methods. Identical in thesense that, for a solution following a balanced trajectory,
the reduction of probability to find a better solution is identical for both methods. This curious fact suggests that
the decomposition-based methods using the Chebyshev scalarizing function are actually notbettercompared with
Pareto-based methods. But if that is so, how can the results observed by several researchers for multi-objective
problems be justified? Given the fact that the reported results are onlyslightly better in [16, 20] our hypothesis
is that the difference is simply due to the ease with which a constant direction of search in objective space can be
maintained in decomposition-based methods, while the sameis very difficult to achieve with Pareto-based methods.
This argument is further supported by the results in [10], where we show that varying weighting vectors can have
significant impact on algorithm convergence. A good exampleof this behaviour is seen in a variation of MOGLS7

[27], initially introduced by [21, 25], when compared with MOEA/D in [47]. In the aforementioned work MOGLS
was outperformed by MOEA/D, and as the authors note, one reason was that MOGLS generated different weighting
vectors on every iteration. This amounts to an attempt to identify the entire Pareto front, but also means that the
direction of search in objective space is not constant as is the case for MOEA/D. The same problem is present in
Pareto-based methods, however there is no clear way for thissituation to be remedied. Another potential cause for
the apparent disparity in performance between Pareto-based methods and Decomposition-based methods is that the
aforementioned equivalence depends on the degree to which Pareto-based methods are able to follow a balanced
trajectory, and, in higher dimensions this would potentially be more challenging due to the relative lower density of
solutions.

The results in this work show that:

• Pareto-dominance methods and the Chebyshev scalarizing function are equivalent, in the sense that neither
method in itself, has better probability to findsuperiorsolutions. In fact the aforementioned probabilities are
the same.

• Given some prior information about the problem, namely the geometry of the Pareto front, we can find the
optimalscalarizing function. Optimal in this context means that using the above scalarizing function all Pareto
optimal solutions will be obtainable for some weighting vector, and that, the probability of obtaining a bet-
ter solution, with respect to the particular scalarizing function, decreases moreslowly compared to all other
scalarizing functions (and Pareto-dominance methods) that can provide the same guarantee of finding all Pareto
optimal solutions.

• Using generalized decomposition (gD) [11, 12] in conjunction with the results in this work, the required weight-
ing vectors for obtaining Pareto optimal solutions in specific locations on the Pareto front, can be identified for
anyℓp-norm.

Some of the mentioned benefits apply only when we are able to identify the Pareto front geometry prior to obtaining
Pareto optimal solutions.

7Multi-Objective Genetic Local Search.
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