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Abstract 

Supraglacial lakes (SGLs) affect the dynamics of the Greenland ice sheet by storing runoff 

and draining episodically.  We investigate the evolution of SGLs as reported in three 

datasets, each based on automated classification of satellite imagery.  Although the datasets 

span the period 2001 to 2010, there are differences in temporal sampling, and only the years 

2005-2007 are common. By subsampling the most populous dataset, we recommend a 

sampling frequency of one image per 6.5 days, in order to minimise uncertainty associated 

with poor temporal sampling.  When compared to manual classification of satellite imagery, 

all three datasets are found to omit a sizeable (29, 48 and 41%) fraction of lakes and are 

estimated to document the average size of SGLs to within 0.78, 0.48, and 0.95 km2.  We 

combine the datasets using a hierarchical scheme, producing a single, optimised, dataset.  

This combined record reports up to 67% more lakes than a single dataset.  During 2005-

2007, the rate of SGL growth tends to follow the rate at which runoff increases in each year.  

In 2007, lakes drain earlier than in 2005 and 2006, and remain absent, despite continued 

runoff.  This suggests that lakes continue to act as open surface-bed conduits following 

drainage.  

Introduction 

Supraglacial lakes (SGLs), which form from the pooling of runoff in topographic depressions, 

are an annual feature on the Greenland ice sheet during the melt season.  SGLs locally 

decrease the surface albedo with respect to the neighbouring bare ice area, accelerating 

melting as a result (Greuell and others, 2002).  In recent years, SGLs have been the subject 

of both observational (e.g. Doyle and others, 2013; Selmes and others, 2011; Das and 

others, 2008; McMillan and others, 2007) and modelling (e.g. Banwell and others, 2012; 

Leeson and others, 2012; Luthje and others, 2006) studies due to their ability to impact ice 

sheet dynamics.  SGLs drain rapidly through hydrofracture (Krawczynski and others, 2009; 

van der Veen, 2007), and the timing of peak lake drainage has been linked to the timing of 

seasonal speed-up of the ice sheet (Bartholemew and others, 2010; Shepherd and others, 

2009).  However, it is uncertain whether an increase in either the number of, or volume of 



water from, draining SGLs would result in a net acceleration of the ice sheet (Schoof, 2010; 

Sundal and others, 2011).  SGLs continue to be studied due to their role in the supraglacial 

hydrological network.  In particular, the location of SGLs is of interest due to their potential to 

enable surface-to-bed connections, where conduits such as moulins and crevasses are rare; 

e.g. at high elevations (Bartholomew and others, 2011; Howat and others, 2012).  

Additionally, knowledge of SGL volume is desirable to constrain the amount of water 

available for hydrofracture, and subsequent rapid delivery to the base of the ice sheet 

(Leeson and others, 2012).  

Observations of lake behaviour are traditionally made in-situ or obtained remotely using 

satellite instruments such as the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER), the Moderate-resolution Imaging Spectroradiometer (MODIS) and the 

Landsat-7 Enhanced Thematic Mapper Plus (ETM+) (e.g. Tedesco and Steiner, 2011; 

Georgiou and others, 2009; Sundal and others, 2009; Box and Ski, 2007; Sneed and 

Hamilton, 2007).  SGLs are identified in satellite images obtained using these optical remote 

sensing instruments by manual interpretation, where each lake is digitised by hand (e.g. 

Georgiou and others, 2009; McMillan and others, 2007), and by semi- or fully-automated 

methods (e.g. Liang and others, 2012; Sundal and others, 2009).  ASTER and ETM+ images 

have a high spatial resolution (of the order ~10m), conducive to accurate lake area 

delineation, and MODIS imagery is much coarser (250 m).  However, the MODIS image 

record has a far higher temporal sampling (at least once a day, rather than bi-weekly), and is 

better able to resolve the evolution of lakes, i.e. the initiation, growth, shrinkage and 

disappearance of lakes as the melt season progresses.  Typically, studies of SGL evolution 

at both the annual and inter-annual timescales are investigated using MODIS (e.g. 

Johansson and others, 2013; Selmes and others, 2011), because of its relatively dense 

temporal sampling.  However, in years of abundant cloud cover, the record may contain as 

few as 12 completely cloud-free images during a single melt season (Sundal and others, 

2009).   

SGLs are predominantly found in the ablation zone of the GrIS and are particularly abundant 

in the south-west (Selmes and others, 2011).  The impact of rapid lake drainage on seasonal 

and shorter-term ice sheet dynamics in this region, particularly in the Russell Glacier 

catchment, is well documented (Palmer and others, 2011; Shepherd and others, 2009).  

Three independent observational studies of SGL evolution in the Russell Glacier region have 

been performed (Johansson and Brown, 2013; Selmes and others, 2011 and Sundal and 

others, 2009), using three different automated lake classification systems to report the 

location and size of lakes in MODIS imagery.  In these studies, the performance of these 

automated classification algorithms were evaluated by comparing a sample of automatically 

delineated lakes from a MODIS image, against a sample of lakes manually delineated from 

contemporaneous, or nearly contemporaneous, high-resolution ASTER or ETM+ imagery.  

For example, Sundal and others (2009) used 53 lakes featured in a single ASTER image, 

taken on 1st August 2001, Selmes and others (2011) used 100 lakes identified in multiple 

ASTER scenes over a three year period across two regions of the ice sheet and Johansson 

and Brown (2013) used all lakes in seven Landsat (ETM+) images acquired between one 

and six days prior to/after the acquisition of four MODIS images, over two years (276 lakes 

in total).  The relative scarcity of cloud free MODIS and ASTER or ETM+ images means few 

days exist where an in-depth evaluation may be made using data acquired on exactly the 

same day.   



In this paper, we perform an extensive inter-comparison of automatically derived SGLs using 

the datasets of Sundal and others (2009), hereafter Sundal09, Selmes and others (2011), 

hereafter Selmes11 and Johansson and Brown (2013), hereafter Johansson13.  First, we 

investigate the effect of temporal sampling on quantitative estimates of 1.) the date of first 

appearance of any lake (onset day), 2.) the maximum area covered by all lakes observed 

(maximum lake area), 3.) the elevation of the highest lake on the ice sheet (maximum 

elevation) and 4.) the total number of times any lake is observed (number of lake 

appearances).  Second, we evaluate the performance of the three automatically derived 

datasets in terms of reporting 1) the number of lakes on any given day (daily number of 

lakes) and 2) individual lake area (lake area), when compared to a dataset of lakes derived 

by manual classification of the same MODIS images.  Third, we evaluate the performance of 

Sundal09 and Johansson13 in terms of calculating lake area, when compared to manual 

classification of corresponding ASTER imagery. Finally, we combine Sundal09, Selmes11 

and Johansson13 into a single, optimised, dataset.  This new dataset includes more 

completely cloud-free days of data, and/or more lakes on each of these days than Sundal09, 

Selmes11 and Johansson13 individually.  This dataset is ultimately used to investigate the 

inter-annual variability in SGL evolution during the period 2005-2007.  This period can be 

considered climatically representative since it encompasses one high (2007), one low (2005) 

and one moderate (2006) runoff year according to simulations performed using the Regional 

Climate Model MAR (Modèle Atmosphérique Régional) (Fettweis, 2007) forced by the ERA-

Interim reanalysis. 

Data and Methods 

This study focuses on a 16,000 km2 area of the west Greenland ice sheet, ranging from the 

margin to ~1750 metres above sea level (m a.s.l.) in the region of Russell Glacier.  Sundal09 

and Johannson13 focussed on this region only, and restricted their records to data which 

was derived from MODIS images which had been manually identified as completely cloud-

free.  For each day on which a cloud-free image was identified, each dataset includes a map 

of SGLs which have been automatically delineated from a single image (a daily SGL 

distribution).  Selmes11 consists of individual lake images, documenting the evolution of 

2600 individual lakes over three years, from all regions of the Greenland ice sheet, of which 

~231 are in our study region.  These data include partially cloudy as well as cloud-free days.  

In this study, on days which we manually identify as cloud-free, we mosaic together daily 

SGL distributions from these individual lake images.  Table 1 indicates the number of daily 

SGL distributions in each dataset, for each year where observations are available.  We next 

provide a brief description of each method; the reader is referred to the appropriate 

publication for additional details.   

Sundal09 and Johansson13 delineated lakes automatically using object-oriented 

segmentation and classification methods. Sundal09 assigned objects a “lake” or “non-lake” 
status based on the degree to which they belong to the lake or non-lake class, in terms of 

reflectance.  Johansson13 extended this method of classification to include size, shape and 

brightness, in addition to reflectance.  They also allowed the threshold values of each 

parameter to evolve with season.  Selmes11 operated from an a-priori assumed lake 

distribution, considering each known lake location in turn.  At each location, pixels were 

assigned lake or non-lake status based on whether their reflectance exceeded 65% of the 

mean value in a standard reference window.  Each method used the same MODIS images in 

their classification of lakes, Sundal09 used bands 1 and 3 of these images, Selmes11 used 



band 1 only and Johansson13 used bands 2 and 4. Each method was found to exhibit 

sources of uncertainty. For example Sundal09 had difficulty resolving ice covered lakes and 

may accordingly underestimate total lake covered area by as much as 21.1% (Sundal, 

2009).  In Selmes11, any lake either not included in the a-priori distribution or smaller than 

0.125 km2 does not feature in the dataset.  And Johansson13 reported that as many as 18% 

of reported SGLs are likely to be false positives (objects which are initially categorised as 

lakes, but which may be re-assigned to the non-lake category upon further inspection after 

reference, for example, to an image with higher spatial resolution).  An example of lake 

delineation by each method is given in Figure 1. 

SGLs have been observed to disappear by draining rapidly in just a few hours (Doyle and 

others, 2013; Das and others, 2008).  However, the temporal sampling of satellite datasets is 

typically sparse by comparison (see Table 1).  To investigate the impact that temporal 

sampling has on assessments of SGL evolution, we systematically sub-sample daily SGL 

distributions from the most populous lake dataset and compute key metrics from 

successively smaller samples. For this exercise, we use the Sundal09 dataset acquired in 

2003, as this is the most densely sampled with 28 separate daily SGL distributions.  For 

each sub-sample size (5-27), we randomly select 1000 sub-samples of this size, from the 28 

day record.  For example, considering a sample size of 5, 1000 separate sets of 5 different 

daily distributions, randomly chosen from all available (28) daily distributions, are selected.  

The mean, standard deviation and range of values of four key SGL characteristics among 

each set of 1000 sub-samples are then calculated and compared. The SGL characteristics 

selected for this analysis are the maximum lake area (km2), the onset day, the maximum 

elevation (m a.s.l.), and the number of lake appearances. 

Supraglacial lake identification algorithms exhibit differences in performance.  To assess this 

difference, we compare the size and daily number of SGLs reported in each automatically 

derived dataset to estimates derived from manual classifications.  The manual classifications 

are developed from MODIS data acquired in each year of overlap between the three 

automatically derived datasets (2005, 2006 and 2007).  First, the areas of 10 lakes, 

exhibiting a range of size and shape, are delineated by three different people using satellite 

images acquired on two different days, in each year.  These particular lakes were chosen as 

they were the only lakes reported in two or more daily distributions, in all three years, by all 

three datasets.  Pixels reported to be lakes in two or more of the manual delineations, for 

any given day, are identified as SGLs.  Next, maps of SGL distribution are created by three 

people, each on the same 9 separate days corresponding to early, mid and late melt season 

in each of the three years. Features reported as lakes in two or more of these manual 

distributions are identified as SGLs (78% of all features identified).  Finally, we quantify the 

performance of each automatically derived dataset in reporting SGLs as a linear sum of their 

skill in reporting lake area and daily number of lakes as compared to the manual datasets. 

Skill is characterised by the relative performance, P , of each automatically derived dataset, 

j , calculated using the Root Mean Squared Deviation (RMSD) from the manually derived 

data and using Equation 1:   
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Because MODIS imagery has a coarse spatial resolution (250 m), we assess the relative 

performance of our method of manually classifying MODIS imagery, and the automated 

methods employed by Sundal09 and Johansson13, by comparison with ASTER data.  In 

order to perform this analysis, a sample of 45 lakes is manually delineated, using the method 

described above, from ASTER imagery acquired on the 1st August 2001.  The same 45 lakes 

are also manually delineated from a contemporaneous MODIS image.  The 1st August 2001 

is the only day for which both MODIS and ASTER data were available, and which features in 

two or more of the automatically derived datasets; Selmes11 is not included in this analysis 

because this dataset does not include data for this day.  No ASTER data is available for 

common days between all three datasets.  

We combine results of the three automatically derived SGL datasets, using a hierarchical 

scheme based on their relative performance in reporting lake area and daily number of 

lakes, to form a single SGL index for the period 2005-2007.  In this hierarchical dataset, 

lakes are mapped on each date when two or more observations were available.  Firstly, 

lakes from the dataset with the highest performance are incorporated.  Next, all lakes from 

the dataset with the second highest performance, and which do not feature in the dataset 

with the highest performance, are included. Finally, lakes from the dataset with the lowest 

overall performance are similarly incorporated into the combined record. Because automatic 

methods of identifying SGLs in satellite imagery are known to produce false positives 

(Johansson and Brown, 2013), we also estimate the frequency of false positives in each 

dataset by comparison to a sample of manually classified SGLs. 

Results 

 

Impact of temporal sampling on reported lake evolution 

Sub-sampling of the satellite imagery shows that sparsely sampled datasets can fail to 

capture key aspects of SGL evolution (Figure 2).  If the sample size is limited to 10 days (the 

smallest sample size featured in the automatically derived datasets), the estimated onset 

date can be delayed by up to 41 days, the estimated maximum area can be underestimated 

by up to 287%, the maximum elevation can be underestimated by as much as 180 m a.s.l., 

and the total number of lake appearances can be underestimated by as much as 60% (Fig. 

3).  These extreme deviations from ‘true’ values arise as a result of clustering around a few 

dates within a sample.  On average, a sample size of 10 days underestimates the maximum 

lake area, onset date, maximum elevation and the number of lake appearances by 16%, 4 

days, 3 m a.s.l. and 23%, respectively (Table 2).   

Lake area derived from MODIS vs. lake area derived from ASTER 

The area of lakes manually delineated from MODIS images are found to have an RMSD of 

0.24 km2 from lake area manually delineated from contemporaneous ASTER data.  By 

comparison, the RMSD between lake area reported by Sundal09 and Johansson13, and 

lake area manually delineated from ASTER data is found to be 0.39 km2 and 1.47 km2.  No 

observations of SGLs, contemporaneous with the ASTER data, are available using the 

Selmes11 method, and so an assessment of this algorithm’s performance against ASTER is 

not possible.   

Inter-comparison of supraglacial lake evolution as reported in three datasets based on 

MODIS imagery 



Each of the three automatic classification methods leads to slightly different SGL 

distributions (e.g. Figure 1).  For example, no single method reports all of the lakes identified 

manually; tracking ice covered lakes is a problem for all three methods, and each dataset 

includes false positives.  We calculate the total number of lakes reported in each year using 

combinations of the individual datasets (Figure 4).  Combining datasets leads to an increase 

in the number of lakes reported, for example, when combined, Johansson13 and Selmes11 

include up to 70% more lakes than Selmes11 (the dataset reporting the least number of 

lakes) alone.   

Sundal09, Selmes11 and Johansson13 report 796, 566 and 934 lake appearances in 9 

separate MODIS images across the three year period.  However, when compared to SGL 

distributions derived manually from the same data, each dataset is found to feature false 

positives; 61 (9 %), 27 (5%) and 322 (33 %), respectively.  When false-positives are 

excluded, the Sundal09, Selmes11, and Johansson13 datasets report 71%, 52%, and 59% 

of the manually identified lakes.  The RMSD between the daily number of positively identified 

lakes in the automatically- and manually-derived datasets are found to be 40 lakes, 64 lakes 

and 61 lakes, respectively. 

We compare lake area, as reported in Sundal09, Selmes11 and Johansson13, with a 

sample of 60 individual lake images manually delineated from original MODIS data, and find 

mean biases of -27%, -4% and +55%.  However, the variability in all cases is high and 

neither Sundal09 nor Selmes11 consistently report lake area 1 standard deviation away from 

values reported in the manually delineated sample (Figure 5).  The RMSD between the area 

of automatically- and manually- delineated lakes is found to be 0.78 km2, 0.48 km2, and 0.95 

km2 for Sundal09, Selmes11 and Johansson13.The relative performance of the Sundal09, 

Selmes11 and Johansson13 datasets overall is found to be 0.72, 0.75 and 0.53 respectively, 

where a higher score indicates a better performance (Table 3).   

A combined dataset of supraglacial lake evolution 

When the three automatically derived SGL datasets are combined, on average, 67 % more 

lakes are reported on each day than are reported by the dataset which contains the lowest 

number of lakes (Selmes11) (Fig 6). The combined dataset also includes more daily SGL 

distributions than the dataset which features the lowest number of days overall (Sundal09). 

For example, in 2005, 2006, and 2007, the combined dataset includes 15, 19 and 17 days, 

as compared to 12, 12, and 12 days in Sundal09.  Onset day is delayed, on average, by 4 

days using a sample size of 12 (Figure 3).  For a sample size of 19, this delay is reduced by 

half to 2 days.  The mean underestimate of maximum elevation is reduced from 3 m a.s.l 

(which, on average, encompasses an area of 30.42 km2 in this study region), when a sample 

size of 12 is used, to 0.5 m a.s.l. (4.95 km2), with a sample size of 19.  Maximum lake area is 

underestimated by 16% and 5% on average, and number of lake appearances is 

underestimated by 23% and 15% on average, when sample sizes of 12 and 19 are used, 

respectively. 

There is considerable inter-annual variability in spatially integrated SGL characteristics in the 

combined (optimised) SGL dataset during the three years under consideration (Fig. 6).  For 

example, maximum lake area is found to be 166 km2, 214 km2 and 132 km2 in 2005, 2006 

and 2007.  The rate of lake area growth in all three years (6 km2 per day, 5 km2 per day and 

10 km2 per day) approximately follows the rate of change of runoff production.  For example, 

at the beginning of the melt season in 2007, runoff production accelerates quickly and we 



see a corresponding rapid growth in total lake area.  In 2007, the widespread disappearance 

of lakes occurs sooner than in 2005 and 2006 (day 181, day 189 and day 170 for 2005, 

2006 and 2007 respectively).  Lake covered area remains small in 2007 following this 

widespread drainage, despite continued runoff production.  In addition, lake onset and 

progression inland/up the ice sheet occurs earlier in 2007 than in either 2005 or 2006 (Fig. 

7).   

Discussion 

Impact of temporal sampling on reported lake evolution 

Satellite imagery allows large areas of the ice sheet to be studied simultaneously, which 

enables insight into regional patterns of SGL evolution (e.g. Sundal and others, 2009).  

However, we find that in a dataset derived solely from MODIS data, uncertainty due to 

temporal sampling of the satellite imagery is inversely proportional to the number of images 

used to compile an annual record of SGL evolution.  This is not surprising, because rapid 

lake drainage can occur over timescales of the order of hours (e.g. Selmes and others, 

2013) and in this region of the GrIS approximately half of all lakes have a lifespan of less 

than 10 days (Johansson and others, 2013).  We also find that uncertainty dramatically 

increases when there is clustering within a sample, presumably because lakes which are 

likely to have grown and drained on days outside the cluster are not included in the record.   

Entirely cloud free MODIS images can be scarce, particularly prior to 2008 (Table 1), and 

tend to be clustered.  However, lakes can also be observed using Synthetic Aperture Radar 

(SAR), which can penetrate cloud (Johansson and others, 2010).  Although the temporal 

resolution of the SAR image record can be coarse relative to MODIS (e.g. TerraSAR-X has a 

repeat time of 11 days), these data could be used to supplement the optical record, during 

periods of persistent cloud cover.  In order to reduce the mean under/overestimate of all four 

lake characteristics considered to within 5% of the value calculated using a 28 day record, at 

least 20 images in total are required (Figure 3).  These images ought to be uniformly 

distributed throughout the year to minimise the risk of increased uncertainty due to 

clustering.  For a melt season of length 130 days, this enables the date of initiation and 

demise of individual lakes to be reported to within 6.5 days of the true value.  

Selmes11, and Liang and others (2012), track individual lakes rather than large areas, which 

allows partially cloudy images to be exploited and generally, more lake initiation/drainage 

events to be captured at a temporal resolution which is finer than that available using entirely 

cloud-free images.  Even so, because of the possibility of cloud cover, the evolution of 

specific lakes cannot always be captured at a useful resolution using this method.  Field-

based monitoring allows sufficiently dense temporal sampling of lake evolution to report the 

beginning of rapid drainage to within a few seconds (e.g. Doyle and others, 2013; Das and 

others, 2008). As a result, where particular lakes are of interest, for example because of the 

risk of downstream effects of rapid drainage, remote sensing data can be considered 

complementary to field-based monitoring, rather than as a replacement for in-situ 

measurements. 

Manual delineation of lake area vs. automated delineation of lake area. 

When compared to lakes manually delineated from ASTER imagery, manual delineation of 

MODIS imagery is found to report lake area more accurately than the automated methods of 



Sundal09 and Johansson13.  However, on average, lake area manually delineated from 

MODIS imagery can deviate by as much as 0.24 km2 from values calculated using ASTER.  

This can be attributed to the difference in spatial resolution between the MODIS and ASTER 

instruments (250 m and 15 m, respectively), and suggests that ASTER imagery ought to be 

used preferentially, when compiling a multi-spectral record of SGL evolution.   

Although manual delineation of lake area is more accurate, automated classification is 

significantly less time consuming.  Using the method described here, it takes approximately 

4 man hours to manually delineate all lakes in a single MODIS image.  By contrast, the 

Selmes11 method is able to automatically delineate all the SGLs in a single MODIS image 

on a timescale of the order of minutes.  As a result, manual delineation is most useful for 

evaluating automated methods and for augmenting field observations which typically 

consider small numbers of lakes on short timescales.  

Inter-comparison of supraglacial lake evolution as reported in three datasets based on 

MODIS imagery 

The performance of three independent SGL datasets derived from MODIS imagery is 

assessed when compared to manually delineated data.  Of the three datasets, Selmes11 is 

found to report lake area most accurately, with respect to manually derived lake area.  This 

suggests that the Selmes11 method of lake delineation, i.e. considering each pixel in turn at 

a known lake location and assigning it lake/non-lake status based on a threshold reflectance 

value, is best able, of the three techniques, to report lake area.  That said, the Selmes11 

method was also found to report the smallest number of lakes identified manually (52 %).  A 

possible explanation for this under-reporting is the fact that the Selmes11 procedure 

excludes lakes that are small and that do not feature in a pre-defined target distribution.  The 

Sundal09 dataset is found to report the highest number of lakes identified manually on each 

day, which suggests that the Sundal09 approach to identifying lake locations, i.e. by object-

oriented segmentation and classification, is best able to map the distribution of lakes in each 

MODIS image.   

Each of the three automatically derived datasets is also shown to include false-positives, 

ranging from 5% to 33% for Selmes11 and Johansson13 respectively.  For comparison, 

Johansson13 estimate that their dataset contains up to 18 % false positives.  Possible 

explanations for the approximately twofold increased rate of false-positives reported here 

include the relatively coarse temporal separation of the evaluation data used by 

Johansson13, and the relatively coarse spatial resolution of the evaluation data used here.  

Johansson13 is found to perform least well in terms of reporting lake area, overestimating by 

55% on average.  A possible explanation for this overestimate is the fact that their procedure 

employs optical data acquired in the wavelength range 545-565 nm (MODIS band 4), which 

is known to be overly sensitive to shallow water (Sneed and Hamilton, 2007).   

Based on these findings, we recommend that future studies utilising automated classification 

of SGLs adopt the Sundal09 approach to identifying lakes in band 1 and 3 MODIS imagery, 

prior to delineating lake area using the Selmes11 method.  By doing this, future studies can 

expect to report the size of 71% of lakes which can be identified manually to within 0.48 km2 

of manually-delineated lake area.   

A combined dataset of supraglacial lake evolution 



By combining the three datasets of Sundal09, Selmes11 and Johansson13, we achieve an 

increase in sampling of up to 58% more days in each year and up to 67% more lakes on 

each day.  As a consequence of including more lakes, estimates of spatially integrated SGL 

characteristics, for example daily lake covered area, using the combined (optimised) dataset, 

may be considered more robust than those made using a single dataset.  In addition, 

including more days of data offers a reduction in uncertainty due to sample size in terms of 

onset day, maximum elevation, maximum lake area and number of lake appearances (Table 

2).   

Using the combined (optimised) dataset, we find that in 2007, a particularly high runoff year, 

lake onset begins sooner, lake filling rate is more rapid and progression up the ice 

sheet/inland occurs earlier in the year than in the low and moderate runoff years of 2005 and 

2006.  Johansson and others (2013) calculated that a threshold value of melting has to be 

exceeded for lakes to form; these data suggest that this threshold was exceeded sooner in 

2007 than in 2005 and 2006.  Here, there is no apparent correlation between annual runoff 

amount and observed maximum lake area, despite the suggestion by Sundal and others 

(2009) that in a higher runoff year, one might expect to observe a greater maximum lake 

area.  Our findings support those of Liang and others (2012) who found no statistically 

significant correlation between melt intensity and maximum lake area in ten years of data, 

including the 2005-2007 period.   

It is likely that the high volume of runoff produced early in the melt season (Figure 6), 

triggered the onset of widespread rapid drainage earlier in 2007 than in 2005 and 2006 

(Liang and others, 2012).  In 2007, following the onset of widespread drainage, lake covered 

area remains small despite continued runoff production.  This suggests that conduits linking 

the ice sheet surface and base were established by hydrofracture during this time, and then 

remained open for the remainder of the melt season, inhibiting further lake formation and 

growth.  This phenomenon has been previously observed in field studies of individual lakes 

(e.g. Doyle and others, 2013; Das and others, 2009), and the data presented here implies 

that it also has an impact on lake covered area at the regional scale.  This behaviour is less 

apparent in 2005 and 2006, which may be attributed to the smaller proportion of lakes which 

disappeared through rapid drainage in these years compared to 2007 (Selmes and others, 

2013). It is also possible that in lower melt years, insufficient meltwater is produced to keep 

surface-bed conduits open.   

This study supports the findings of previous investigations (e.g. Liang and others, 2012; 

Selmes and others 2013), in that we observe inter-annual variability in SGL characteristics at 

the regional scale, particularly with respect to the impact of drainage processes.  However, 

the findings discussed here are based on just three years of satellite data covering a 

relatively small region and would benefit from investigation using a more extensive record, 

both in space and time.  Alternatively, it may be appropriate to use a model of SGL evolution 

(e.g. Leeson and others, 2012), in conjunction with spatially and temporally sparse 

observations, in order to investigate longer-term variability in SGL evolution, particularly in 

response to changes in climate. 

Conclusions 

We have investigated SGL evolution within three datasets, derived using automated 

classifications of satellite imagery, over a common three year period.  Our results reveal a 

strong dependence of reported values of maximum lake area, onset date, maximum 



elevation and number of lake appearances, on the number of satellite images used to 

compile an annual record of SGL evolution.   

Manual delineation of lakes in MODIS imagery is found to be more accurate than automatic 

delineation when compared to contemporaneous ASTER imagery.  Of the three datasets 

considered here, Selmes11 is found to report lake area most accurately (RMSD = 0.48 km2) 

and Sundal09 is found to report the number of lakes on each day most accurately (RMSD = 

40 lakes), when compared to lakes manually delineated from MODIS imagery.   

Base on our findings we recommend to future studies firstly, that one image per 6.5 days is 

required, in order to minimise uncertainties associated with poor temporal sampling.  

Secondly, we recommend that where possible, records of SGL evolution are generated 

using ASTER, or other imagery with similarly high spatial resolution (e.g. Landsat ETM+), 

since these data offer a significant improvement in spatial resolution over MODIS (15 m 

compared to 250 m).  Finally, we recommend that where MODIS imagery is used, lakes are 

automatically derived from band 1 or band 3 of these images, using a combination of the 

methods of Sundal09 and Selmes11. 

In the absence of a dataset which is densely sampled in time, we show that by combining all 

three datasets, more lakes which are identified manually, are reported each day and 

uncertainty due to sample size is significantly reduced.  In this combined (optimised) dataset, 

we note differences in spatially integrated SGL characteristics between years, such as the 

lake covered area growth rate and the onset of drainage, which can be attributed to 

differences in runoff availability.  However, this study considers three years of data only.  

More years of densely-sampled observations or a long-time series of SGL evolution 

simulated using a model would lead to improved confidence in this assessment. 
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Figure 1: Comparison of manually and automatically derived lake distributions on 14th June 

2005 (day 165), in a small sub-section of the study region.  Background is the original 

MODIS image.  In A, circles surround SGLs identified manually.  Squares in B and D 

illustrate lakes reported in a single dataset.  In C, the triangle indicates an ice covered lake, 

and the semi-circle indicates an ice-free lake, neither of which is identified by any of the 

three automatic lake detection algorithms.  Diamond in D indicates a reported lake that has 

been identified as a false positive.   

 

Figure 2:  Impact of temporal sampling on reported SGL evolution in 2003. Seasonal 

variability in lake covered area is reported using sample sizes of 5, 10, 15, 20, 25 daily lake 

distributions and the full data record of 28 days.  Shaded regions indicate the spread of 

values associated with each sample size as achieved using 1000 random samples.  Shaded 

squares indicate the latest possible onset day using that sample.  Point data is connected by 

linear interpolation. 

 

Figure 3: Detailed impact of temporal sampling on reported SGL evolution in 2003. A: 

Range of maximum lake area reported by taking 1000 samples each of sizes 5-27 daily SGL 

distributions, with respect to that reported using a sample of 28 days.  Mean value is 

indicated using an ‘x’; error bars on this value refer to 1  on reported values and are 

truncated by the value calculated using the full 28 day sample (dotted horizontal line).  The 

minimum value reported using a given sample size is marked with a ‘+’.  B: as A but for 
onset day; this value is overestimated when calculated using a smaller sample, with 

reference to a 28 day record.  C: as A but for maximum elevation.  D: as A but for number of 

lake appearances reported.   

 

Figure 4:  Number of lakes reported in each year, using combinations of datasets. 

 

Figure 5: Comparison between automatically derived area and manually delineated area of 

60 separate lake images, acquired during 2005-2007.  Shaded regions relate to a linear fit 

+/- 1 ı. Hatched region indicates a one-to-one fit, +/- the 1 ı uncertainty in the manually 
delineated sample. 

 

Figure 6: Inter-annual variability of SGL evolution using a new SGL index for 2005-2007.  

Rows are time series of A: mean lake area, B: total lake covered area and C: daily number 

of lakes, for 2005, 2006 and 2007.  Sundal09 is indicated by diamonds, Selmes11 with 

squares, Johansson13 with triangles and the combined dataset with filled circles.  The 

shaded region delineates a linear (mean area) or gaussian (total area and daily number of 

lakes) fit to the combined dataset, including the 1 ı uncertainty on this fit.  Also shown (black 
line) is the total daily runoff (km3d-1) integrated over the study region, as simulated by the 

MAR model (Fettweis, 2007).   

 

Figure 7: Variation of onset day with distance from margin in 2005, 2006 and 2007.  

Symbols indicate dataset; Sundal09 is indicated by diamonds, Selmes 11 with squares and 

Johansson13 with triangles.  The combined dataset is given by a solid line.  Here, error bars 

indicate uncertainty due to temporal sampling. 

 

  



Table 1: Number of days used to compile automatic datasets of supraglacial lake evolution.  

Where a number is absent, no observations are available in that dataset in that year. In 

column 1, the abbreviations refer to observations derived using the methods of Sundal and 

others (2009), Selmes and others (2011) and Johansson and Brown (2013). 

 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 

Sundal09   28  12 12 12    
Selmes11     22 27 22    
Johansson13 14 9 12 10 10 13 14 20 19 23 
 



Table 2: Mean and standard deviation, associated with sample size, of reported maximum 

lake area, onset day, maximum elevation and number of lake appearances in 2003.  Sample 

size refers to the number of daily SGL distributions in that sample.   

Sample 
size 

Maximum lake 
area (km2) 

Onset day 
Maximum 
elevation 
(m a.s.l.) 

Number of lake 
appearances 

x
   

x
   

x
   

x
   

5 109 16 160 9 1675 24 302 48 
10 121 11 155 4 1685 7 390 41 
15 123 6 153 3 1687 1 431 34 
20 127 4 152 2 1688 0 447 12 
25 128 2 151 1 1688 0 485 15 
28 129 - 151 - 1688 - 509 - 
.



Table 3: Inter-comparison of automatically delineated SGLs with manually delineated SGLs, 

both from MODIS data acquired in 2005-2007.  RMSD values are transformed into a relative 

performance score for each dataset, with respect to each parameter.  An overall 

performance score is calculated for each dataset as the linear sum of these scores.    

 

 

 

 

 

 

 Sundal09 Selmes11 Johansson13 

 RMSD P RMSD P RMSD P 

Area (km2) 0.78 0.29 0.48 0.47 0.95 0.24 

Daily number of 
lakes 

40.23 0.44 64.03 0.27 60.53 0.29 

OVERALL SCORE  0.72  0.75  0.53 
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