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Abstract: The influence of urban morphology of low-density built-up areas on spatial noise level 
attenuation of flyover aircrafts is investigated at a mesoscale. Six urban morphological parameters, 
including Building Plan Area Fraction, Complete Aspect Ratio, Building Surface Area to Plan Area 
Ratio, Building Frontal Area Index, Height-to-Width Ratio, and Horizontal Distance of First-row 
Building to Flight Path, have been selected and developed. Effects of flight altitude and horizontal flight 
path distance to site, on spatial aircraft noise attenuation, are examined, considering open areas and 
façades. Twenty sampled sites, each of 250m*250m, are considered. The results show that within 
1000m horizontal distance of flight path to a site, urban morphology plays an important role in open 
areas, especially for the buildings with high sound absorption façades, where the variance of average 
noise level attenuation among different sites is about 4.6 dB2 at 3150 Hz. The effect of flight altitude of 
200ft-400ft on average noise level attenuation is not significant, within about 2 dB at both 630Hz 
and1600Hz in open areas. Urban morphological parameters influence the noise attenuation more in 
open areas than that on façades. Spatial noise attenuation of flyover aircrafts is mainly correlated to 
Building Frontal Area Index and Horizontal Distance of First-row Building to Flight Path. 
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1. Introduction 

The concerns on the impacts of air transport on noise, air quality, water quality and the ecology are 
increasing, especially for the higher density population European regions [1]. The annoyance of the 
population who had been living near a big European airport for at least 5 years caused by aircraft noise 
has been raised over recent years and the annoyance ratings due to aircraft noise were higher than 
predicted by the EU standard curves [2]. Aircraft noise has been an important cause for the degradation 
of soundscape in the adjacent areas of airports, especially for the regions that have strong connections 
between noise annoyance and local outdoor life [3,4].  

Conventionally, the research on aircraft noise mapping and assessment is based on the standard 
conditions of constant flight speed and flat terrain without reflecting objects [5]. At present, much 
attention is still paid to large-scale aircraft noise modelling [6,7] and mapping with an emphasis on 
aircraft flight performance, rather than the effects of built-up obstacles on noise attenuation [8-10]. 
While many prediction tools mainly focus on the noise from taking offs and landings, noise mapping 
tools for aircraft taxing have also been developed [11]. On the other hand, with the expansion of air 
transport and injection of airports and heli-pads into or close to city areas, the effects of morphology of 
urbanised areas, for instance, the effects of urban street pattern [12,13], have become a concern on 
aircraft noise distribution near airports. It is indicated through modelling that noise from an aircraft 
passing overhead in a city street is enhanced compared to that heard in an open area [14]. Kinney et al 
[13] carried out a series of field experiments which confirmed the enhancement and explained the 
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phenomenon. It has been demonstrated that relative Effective Perceived Noise Level increases with the 
ratio of building height to flying altitude, but the street width has little influence [12]. While the above 
research demonstrated the importance of considering the influence of urban morphology, there are 
further important research questions: are there any other parameters of urban morphology which 
influence aircraft noise attenuation, considering the mesoscale of urban morphology with a group of 
buildings, rather than a street?  

The aim of this study is therefore to explore whether and how urban morphology parameters influences 
noise attenuation of flyover aircrafts. Low-density residential areas are considered, because they have 
relatively low noise resistance and they are more common near airports. The study focuses on flyover 
landing aircrafts or helicopters, of which the noise is prone to be loud, lasting and annoying [12, 15-18]. 
In particular, this study aims to find out (1) the effects of horizontal distance between a site and flight 
path; (2) the effects of altitude of flight path. Given the needs for quiet rooms for people to relax, sleep 
and restore and an impact of quiet side on the aircraft noise annoyance ratings [2], besides open areas, 
the noise attenuation on façades is also considered.  

2. Methods 

2.1 Site selection  

To select study sites with diverse urban morphologies from low-density residential areas, Assen in the 
Netherlands was considered which has a long history of province capital since 1258. It is the fastest-
growing city in the North of Netherlands and has an increase of 5,000 residential buildings per 10 years 
since 1960 [19], resulting in a mixture of various urban morphologies generated in different historical 
periods, representing typical European sub-urban morphologies which can often be found near airports. 
According to a GIS database of 763 grids of Assen built-up areas, less than 10% grids are used for 
industry and commercial purposes, and the main function of the built-up areas is residence and mixed-
use (residential and commercial). More than 70% of the residential buildings are low-rise terraced and 
detached buildings [19]. Twenty sites, each of 250m*250m, were sampled by using Simple Random 
Sample (SRS) method from the GIS database. Figure 1 shows the figure-ground diagrams of the 
sampled sites. 
 

 
Fig. 1. Figure-ground diagrams of the 20 sampled sites, each of 250m*250m, where buildings are in 

black, and open areas are in white. 
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2.2 Set-up of calculation parameters for noise mapping 

Noise mapping techniques [20-22] were employed with the software package of Cadna/A [23] in this 
study. The accuracy in noise mapping calculation depends more on the quality of input data rather than 
specific modelling program [24]. It has been stated that the results of calculation and measurement can 
generally reach a rather good agreement [24, 25, 26]. For instance, when considering both traffic noise 
and fountain sounds in urban areas, the inaccuracy is within around 2dB [25]. The 2D polygon maps of 
the sampled sites were obtained from the web of Zoning Plan [27] and TOP10NL of Kadaster [28], 
which include the 3D information of buildings. As the aim of this study is to examine the influence of 
urban morphology, the atmospheric effect is not taken into account, and generic source conditions were 
considered. The flyover aircraft was set as a line source, considering five horizontal distances from a 
given site, namely 0m, 100m, 300m, 600m and 1000m, and two flight altitudes, namely 60.96m (200ft) 
and 121.92m (400ft), according to previous studies [12, 13]. The receiver height was set as 1.6m. The 
calculation configuration is shown in Fig. 2. Based on the research by Khardi [29], three main 
frequencies of aircraft noise, 630Hz (low), 1600Hz (medium), and 3150Hz (high), were selected for 
calculation. The absorption coefficient was assigned as 0.3 across frequencies, considering the mixture 
of windows and masonry façades, and the ground absorption was assigned as 0. The reflection order by 
buildings was set as 3, based on a previous study [24], and comparison was also made by considering 
no reflections so that the shielding effects as well as the effectiveness of absorptive building façades 
like green walls can be examined. 

 

Fig. 2. Cross-section of the calculation configuration, showing the location of flight path. 

2.3 Matlab processing 

To transform the RGB raster noise maps into the matrices of spatial noise level values, a Matlab 
program has been developed. The program can arrange all the spatial noise level values in a descending 
order to obtain the indices of spatial Ln, where for example, Lmax represents the highest value in the 
ranking, Lmin represents the lowest value, and L10 is the top 10% value [30]. In this study, L10, L90 and 
L50 were chosen to indicate the high, low and middle spatial levels, respectively. In addition, Lavg, the 
mean of all the spatial noise levels of a given site, was calculated. The sound level values on building 
façades and in open areas were separately processed.  
 
2.4 Calculation of urban morphological parameters  

A set of urban morphological parameters have been developed and employed in different domains of 
environmental studies including environmental performance, atmospheric and wind environment and 
traffic noise [31-34]. To consider various acoustic effects such as distance, barrier and street canyon, 
[24,35], in this study six parameters were selected or developed, including Building Plan Area Fraction 
(BPAF), Complete Aspect Ratio (CAR), Building Surface Area to Plan Area Ratio (BSAPAR), 
Building Frontal Area Index (BFAI), Height-to-Width Ratio (HWR) and Horizontal Distance of First-
row Building to Flight Path (HDFBFP), as listed in Table 1, where the first three parameters are 
independent from the source condition, whereas the other three are related to sound source locations. In 
this paper, they are grouped as independent and dependent parameters, respectively. Calculations of the 
20 sites show that BPAF is evenly distributed from 0.13 to 0.38, CAR from 1.17 to 1.53, BSAPAR 
from 0.36 to 0.88, BFAI from 0.04 to 0.15, and HWR from 0.09 to 0.62. When the horizontal distance 
between site and flight path is 0, HDFBFP covers a range of 3.4m to 116.2m.  
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Table 1. Calculations of the six urban morphological parameters used in this study.  

Parameter Definition  Formula Notes 

Building Plan Area 
Fraction (BPAF) 

The ratio of the plan area of 
buildings to the total surface area 
of the study region 

ܨܣܲܤ =
்ܣܣ  

 

Ap is the plan area of buildings 
at ground level and AT is the 
total plan area of the region of 
interest.  

Complete Aspect 
Ratio (CAR) 

The summed area of roughness 
elements and exposed ground 
divided by the total surface area of 
the study region [36] 

ܴܣܥ =
்ܣܣ

=
ௐܣ + ܣ + ்ܣீܣ  

 

AC is the combined surface 
area of the buildings and 
exposed ground, AW is the wall 
surface area, Ar is the roof 
area, AG is the area of exposed 
ground [37]. 

Building Surface 
Area to Plan Area 
Ratio (BSAPAR) 

The sum of building surface area 
divided by the total surface area of 
the study region 

ܴܣܲܣܵܤ
=
ܣ + ்ܣௐܣ  

 

Ar is the plan area of rooftops, 
AW is the total area of non-
horizontal roughness element 
surfaces (e.g. walls) [37]. 

Building Frontal 
Area Index (BFAI) 

The total area of the façade areas 
parallel with the flight direction 
(Apara) divided by the total surface 
area of the study region 

(ߠ)ܫܣܨܤ =
்ܣܣ  

 
ș is the flight path direction. 

Height-to-Width 
Ratio (HWR) 

The average of the building 
heights (Havg) is divided by the 
average of the horizontal distances 
between two adjacent buildings on 
the direction vertical to the flight 
direction (Savg)  

(ߠ)ܴܹܪ =
௩ܵ௩ܪ  

 
ș is the flight path direction. 

Horizontal 
Distance of First-
row Building to 
Flight Path 
(HDFBFP) 

The mean of the horizontal 
distances from the frontal façades 
of the first-row buildings to the 
flight path 

ܴܤܨܦ =
1݊݀
ୀଵ  

n is the total number of first-
row buildings, and di is the 
distance from the first-row 
building to the flight path. 

 

 
3. Results 

3.1 Effects of the horizontal distance between site and flight path 

Figure 3 shows the maximum, minimum, and mean aircraft noise attenuation (re. source power level) 
among the 20 sampled sites, in terms of Lavg at 630, 1600 and 3150Hz, with a range of horizontal 
distance between site and flight path, when the flight altitude is 200ft. In the figure the noise attenuation 
of each site is also shown. It can be seen that the difference between the maximum and minimum values 
among the 20 sites in open areas generally increases with horizontal distance between site and flight 
path,  and reaches 7.9dB at 1000m, at 3150Hz (see Fig. 1-c). It is also interesting to note that from 
300m to 600m, namely when the horizontal distance between site and flight path is doubled, the mean 
Lavg difference among the 20 sites in open areas reduces by 6.9dB at 630Hz, 7.5dB at 1600Hz, and 
16.1dB at 3150Hz, as shown in Fig. 3a, 3b and 3c, respectively, demonstrating the significant influence 
of urban morphology. 

In general, the sound level variations among the 20 sites are larger in open areas than those on façades. 
For example, by comparing Fig. 3b and 3e, it can be seen that at 1600Hz at 1000m, the difference 
between the maximum and minimum values is 7.7dB in open areas and 4.5dB on façades. However, the 
façades have higher noise attenuation than that in open areas, in terms of the mean Lavg of the 20 sites. 

http://dx.doi.org/10.1016/j.landurbplan.2015.01.006�
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For example, by comparing Fig. 3a and 3d, it can be seen that at 630Hz at 1000m, the value is 54.0dB 
on façades and 49.2dB in open areas. 

Fig. 4 and 5 show the variances of the aircraft noise attenuation Lavg among the 20 sites, in open areas 
and on façades, respectively. It can be seen in Fig. 4 that generally speaking, with the increase of 
distance, the variances at all the frequencies go up. Corresponding to Fig. 3, the variances at 1000m are 
the largest, where at 3150Hz and altitude of 200ft the variance is 4.6dB2, higher than that at 1600Hz and 
630Hz (see Fig. 4a, 4b and 4c). By comparing Figs. 4 and 5, it can be seen that the variances of noise 
attenuation on façades, mostly below 2dB2, are lower than those in open areas.  

In Fig. 4 and 5 two conditions, with a reflection order of 0 and 3, are considered. Compared with the 
condition without reflections, the variances with 3 reflections are lower at almost all the distances, 
which means that sound reflections by buildings reduce the influence of morphology on the noise 
resistance. At a large horizontal distance between site and flight path, say 1000m, the differences in 
variances between reflection order of 0 and 3 can be neglected, in open areas and also on façades. 

The variances in terms of L10, L50 and L90 are shown in Table 2. It can be seen that the variances of L50 
and L90 are generally higher than those of L10, and the variances in open areas are higher than those on 
façades, suggesting that urban morphology may have more influence on the noise attenuation at the 
middle level and the quiet level in open areas. The highest variance occurs for L50 at 1600Hz at 1000m, 
which is 19.7dB2.  

Table 2. Variances of the aircraft noise attenuation among the 20 sites in terms of L10, L50 and L90, both 

in open areas and on façades. 

Frequency(Hz) 

L 10 L 50 L 90 

630 1600 3150 630 1600 3150 630 1600 3150 

 
Distance(m) 

         

Open 
Areas 

0 1.4 2.6 0.0 0.6 1.2 3.8 1.8 1.0 5.7 

100 0.8 1.4 2.0 4.6 5.2 8.1 0.0 3.4 1.2 

300 3.0 0.5 3.0 3.6 7.6 3.8 2.2 0.9 3.3 

600 6.8 2.1 5.8 2.1 5.3 1.6 1.0 1.6 2.2 

1000 0.0 0.8 1.2 8.6 19.7 8.9 1.8 6.2 3.2 

Façades 0 0.4 0.9 0.4 0.2 0.8 1.2 1.7 6.0 6.4 

100 1.2 0.5 1.0 0.6 1.0 0.6 7.4 9.0 4.2 

300 1.0 0.4 0.8 4.6 0.8 1.0 5.0 3.3 3.6 

600 3.3 0.4 0.4 1.0 1.6 2.0 2.2 6.1 8.5 

1000 1.0 1.6 2.4 1.0 1.2 4.6 3.7 0.9 0.8 
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                         (a) 630Hz, open areas                                            (d) 630Hz, façades 

  

                        (b) 1600Hz, open areas                                            (e) 1600Hz, façades 

  

                        (c) 3150Hz, open areas                                             (f) 3150Hz, façades                        

Fig. 3. The maximum, minimum, and mean aircraft noise attenuation (re. source power level) among 
the 20 sampled sites, in terms of Lavg at 630, 1600 and 3150Hz, with horizontal distances between site 
and flight path of 0m, 100m, 300m, 600m and 1000m, where the flight altitude is 200ft. In the figure 

the noise attenuation of each site is also shown, although individual sites are not identified. 
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                                   (a) 630Hz                                                                  (b) 1600Hz 

 

                                    (c) 3150Hz                                                (d) Average of 3 frequencies             

Fig. 4. Variances of the aircraft noise attenuation Lavg in open areas among the 20 sites, with increasing 
horizontal distance between site and flight path of 0m, 100m, 300m, 600m and 1000m. 

 

 

                                  (a) 630Hz                                                                   (b) 1600Hz 
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                                 (c) 3150Hz                                                (d) Average of 3 frequencies                
 

Fig. 5. Variances of the aircraft noise attenuation Lavg on façades among the 20 sites, with increasing 
horizontal distance between site and flight path of 0m, 100m, 300m, 600m and 1000m. 

3.2 Effects of flight altitude  

Fig. 6 compares the mean values of aircraft noise attenuation (re. source power level) of the 20 sites 
between the flight altitude of 200ft and 400ft, in terms of Lavg, L10 and L90. It is interesting to note that 
the increase to 400ft from 200ft in flight altitude generally does not benefit the noise attenuation. This is 
perhaps because although the increase in flight altitude results in larger source-receiver distances, it also 
decreases the shielding effects of buildings. It was shown in a previous study that the enhancement of 
sound level by streets relative to that in the open field decreases with the increase of flight altitude, from 
5.0dBA at 200ft to 2.0dBA at 400ft [13]. In Fig. 6 it can be seen that at 1000m, there is almost no 
difference in noise attenuation between the two altitudes. 

In Figs. 4 and 5 comparisons of variances of spatial noise attenuation between the two flight altitudes 
are also shown. It can be seen that the increase of altitude does not significantly diminish the variances. 
In other words, the effect in the change of altitude on the influence of urban morphology on noise 
resistance is rather small, less than 1dB mostly. 

Compared with façades, the influence of altitude on noise attenuation in open areas is more significant 
in terms of L90, as can be seen by comparing Figs. 6c and 6f, but surprisingly, the noise attenuation is 
generally higher at the altitude of 200ft than 400ft, which means that in certain situations, the increase 
of altitude does not decrease, but increase the sound levels in relatively quiet areas, of which the reason 
might be that the shielding effect that plays a key role in quiet area protection decreases with the 
increase of flight altitude. 

 

  

                        (a) Lavg in open areas                                                        (d) Lavg on façades  
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                          (b) L10 in open areas                                                       (e) L10 on façades 

                        

                           (c) L90 in open areas                                                       (f) L90 on façades                                                    

Fig. 6. The mean values of aircraft noise attenuation (re. source power level) of the 20 sites between the 
flight altitude of 200ft and 400ft, in terms of Lavg, L10 and L90, with increasing horizontal distance 

between site and flight path of 0m, 100m, 300m, 600m and 1000m. 

3.3 The relations between aircraft noise attenuation and independent urban morphological parameters 

Relationships between aircraft noise attenuation and independent morphological parameters have been 
examined with the flight altitude of 200ft, since the variances are higher than those of 400ft. Three 
typical horizontal distances between site and flight path are considered, which are 0m, 300m, and 
1000m. 

Among the three independent urban morphological parameters, namely Building Plan Area Fraction 
(BPAF), Complete Aspect Ratio (CAR), and Building Surface Area to Plan Area Ratio (BSAPAR), at 
the distances of 0m, 300m and 1000m, BPAF is not significantly correlated to any of the acoustic 
indices, namely spatial Ln and Lavg, which suggests that building coverage has little influence on aircraft 
noise resistance, while CAR and BSAPAR have more significant correlations (p < 0.05) with the 
indices, as shown in Tables 3 and 4, respectively. 
 
It can be seen in Table 3 that CAR is more correlated to the indices in open areas, mostly in terms of L90, 
which means that the total surface area of building and ground may significantly influence the noise 
level in quiet areas. Fig. 7 further illustrates the tendencies of L90 at 630Hz (R2=0.567) and 3150Hz 
(R2=0.586) with a change of CAR, as examples. When CAR increases the regression line of either L90 
of 630Hz or 3150Hz in open areas goes up and then becomes stable after CAR is higher than 
approximately 1.4. In other words, the importance of CAR on noise attenuation in open areas becomes 
less when CAR is higher than 1.4. The correlations also exist between CAR and the acoustic indices on 
façades, but they are not at a significant level statistically. 
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From Table 4 it can be seen that BSAPAR also tends to have high correlations with the acoustic indices, 
especially L90 in open areas. The tendencies of L90 in open areas at 630Hz (R2=0.592) and 3150Hz 
(R2=0.500) with a change of BSAPAR are further illustrated in Fig. 8. It can be seen in Fig. 8 that the 
noise attenuation in open areas at L90 increases before BSAPAR is about 0.7 and then decreases, both at 
630Hz and 3150Hz, of which the reason might be that the increase of building surface area induces 
more sound reflections between buildings, so that further increases noise levels.  
 
Table 3. Significances of the correlations between acoustic indices and Complete Aspect Ratio in terms 
of p values, where * indicates p<0.05 level (2-tailed), and ** indicates p<0.01 level (2-tailed) in 
Bivariate Correlation. 
 

Distance(m) 
Frequency(Hz) 

0 300 1000 

630 1600 3150 630 1600 3150 630 1600 3150 

Open 
Areas 

L10 .721 .084 - 0.59 .148 .805 - .449 .377 

L50 .402 .371 .917 .272 .614 .199 .363 .627 .180 

L90 .005** .151 .001** .082 .170 .477 .008** .005** .037* 

Lavg .070 .060 .536 .036* .169 .261 .100 .130 .222 

 Façades  L10 .712 .121 .712 .072 .712 .072 .250 .060 .919 

L50 .325 .757 .499 .061 .523 .061 .040* .081 .147 

L90 .681 .779 .800 .741 .820 .741 .429 .029* .597 

Lavg .150 .553 .565 .284 .806 .284 .044* .067 .168 

 
Table 4. Significances of the correlations between acoustic indices and Building Surface Area to Plan 
Area Ratio in terms of p values, where * indicates p<0.05 level (2-tailed), and ** indicates p<0.01 level 
(2-tailed) in Bivariate Correlation. 
 

Distance(m) 
Frequency(Hz) 

0 300 1000 

630 1600 3150 630 1600 3150 630 1600 3150 

Open 
Areas 

L10 .379 .140 - .019* .143 .264 - .373 .499 

L50 .466 .470 .810 .453 .192 .322 .150 .520 .083 

L90 .021* .297 .022* .173 .158 .966 .027* .018* .088 

Lavg .050* .064 .883 .151 .101 .157 .064 .089 .264 

Façades L10 .379 .108 .379 .051 .379 .051 .512 .050* .773 

L50 .177 .854 .578 .115 .584 .155 .039* .106 .352 

L90 .665 .695 .941 .691 .916 .691 .239 .010** .735 

Lavg .260 .718 .758 .315 .504 .315 .071 .097 .319 
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                                   (a) 630Hz                                                                   (b) 3150Hz 

Fig. 7. Relationships between L90 in open areas and the Complete Aspect Ratio. 

 
3.4 The relations between aircraft noise attenuation and sound source dependent urban morphological 
parameters 

Three sound source dependent parameters, including Building Frontal Area Index (BFAI), Height-to-
Width Ratio (HWR) and Horizontal Distance of First-row Building to Flight Path (HDFBFP), have 
been also investigated. It has been shown that there is no significant correlation between HWR and the 
acoustic indices. This corresponds to a study by Ismail and Oldham on the effects of street canyon on 
noise from low flying aircraft [12], which shows that street width, which is indicated by HWR in the 
current study, hardly plays a role in the noise attenuation. The correlations between acoustic indices and 
BFAI and HDFBFP are shown in Tables 5 and 6, respectively. By comparing Tables 3&4 and 5&6, it 
can be seen that generally speaking, the sound source dependent parameters are more correlated to the 
acoustic indices than the independent ones. 
 
From Table 5 it can be seen that BFAI generally has more correlations with the acoustic indices than 
the independent parameters when the distance is 1000m (see Table 3, 4 and 5), suggesting that for 
aircraft noise attenuation, the barrier effect of urban morphology may play a more crucial role than the 
other effects when the distance is relatively large. However, when the horizontal distance between site 
and flight path becomes smaller, such as 300m, there is less correlation between acoustic indices and 
BFAI, since the barrier effects by building façades plays a less significant role. 
 
HDFBFP has the most correlations among the six parameters, especially with the acoustic indices in 
open areas, as can be seen in Table 6. Unlike CAR, BSAPAR and BFAI, which have fewer correlations 
in terms of Lavg and L50 (see Table 3, 4 &5), HDFBFP is highly correlated to Lavg (e.g. p=0.000, at 
1600Hz at 0m) and L50 (e.g. p=0.000, at 630Hz at 1000m) in open areas, although on façades it is 
almost not correlated with the acoustic indices, as shown in Table 6.  
 
Figure 9 further illustrates the relationships between acoustic indices in open areas and HDFBFP. It can 
be seen in Fig. 9a that at 0m, the mean Lavg at 1600Hz decreases slowly with the increase of HDFBFP, 
which means if a given low-density site has a row of buildings that are close to the flyover aircraft 
horizontally, the average noise level in open areas might be considerably reduced, due to barrier effect. 
At 1000m, the noise attenuations in terms of L50 at 630Hz and 3150Hz both decrease constantly when 
HDFBFP increases, and the difference between the maximum and minimum level is rather high, at 
about 10dB, as can be seen in Fig. 9b and 9c. In other words, the distance between the first row 
buildings to flight path might play a rather significant role in the protection of quiet open areas in terms 
of Lavg and L50. 
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Table 5. Significances of the correlations between acoustic indices and Building Frontal Area Index 
 in terms of p values, where * indicates p<0.05 level (2-tailed), and ** indicates p<0.01 level (2-tailed) 
in Bivariate Correlation. 
 

Distance(m) 
Frequency(Hz) 

0 300 1000 

630 1600 3150 630 1600 3150 630 1600 3150 

Open 
Areas 

L10 .640 .027* - .160 .238 .583 - .390 .265 

L50 .258 .401 .778 .544 .221 .321 .065 .156 .013 

L90 .159 .060 .022* .065 .239 .533 .002** .002** .002* 

Lavg .149 .049* .323 .110 .078 .328 .018* .032* .029* 

Façades L10 .640 .016* .640 .174 .640 .174 .181 .060 .421 

L50 .601 .842 .918 .303 .158 .303 .002** .020* .067 

L90 .839 .635 .868 .913 .399 .913 .662 .798 .187 

Lavg .244 .638 .555 .551 .847 .551 .029* .033* .064 

 
 
Table 6. Significances of the correlations between acoustic indices and Horizontal Distance of Building 
to Flight line in terms of p values, where * indicates p<0.05 level (2-tailed), and ** indicates p<0.01 
level (2-tailed) in Bivariate Correlation. 
 

Distance(m) 
Frequency(Hz) 

0 300 1000 

630 1600 3150 630 1600 3150 630 1600 3150 

Open 
Areas 

L10 .481 .050* - .768 .110 .147 - .909 .088 

L50 .194 .062 .450 .650 .003** .010** .000** .010** .002** 

L90 .687 .513 .355 .334 .032* .861 .132 .091 .034* 

Lavg .021* .000** .774 .712 .001** .007** .001** .002** .003** 

Façades L10 .481 .936 .481 .033* .481 .033* .165 .253 .309 

L50 .570 .360 .297 .991 .194 .991 .330 .401 .728 

L90 .657 .643 .661 .994 .844 .994 .337 .833 .750 

Lavg .530 .202 .321 .894 .797 .894 .922 .830 .583 
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                                     (a) 630Hz                                                                  (b) 3150Hz 

Fig. 8. Relationships between L90 in open areas and the Building Surface Area to Plan Area Ratio. 

 

                           (a) Lavg at 1600Hz                                                        (b) L50 at 630Hz 

 

                            (c) L50 at 3150Hz                                                                             

Fig. 9. Relationships between acoustic indices in open areas and the Horizontal Distance of First-row 
Building to Flight Path. 
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To overview the above results about the correlations between urban morphological parameters and 
acoustic indices, Table 7 shows the number of correlations according to the acoustic indices, and Table 
8 gives the number of correlations according to the horizontal distances between site and flight path. It 
can be seen from Table 7 that L90 (15) and Lavg (13) in open areas are more correlated to urban 
morphological parameters than L10, which indicates that control of urban morphological parameters can 
benefit aircraft noise attenuation for the relatively quiet areas and the whole area of a given site. Table 8 
shows that when the distance is 1000m, urban morphology has greater influence on aircraft noise 
attenuation, both on façades and in open areas. Overall, two parameters, BFAI (14) and HDFBFP (17) 
have more correlations than the others. 
 
Table 7. The number of correlations between urban morphological parameters and acoustic indices, 
according to the acoustic indices L10, L50, L90 and Lavg, both on façades and in open areas. 
 

Urban  
Morphological  
Parameters 

Open areas Façades  
Total L10 L50 L90 Lavg L10 L50 L90 Lavg 

BPAF 0 0 0 0 0 0 0 0 0 

CAR 0 0 5 1 0 1 1 1 9 

BSAPAR 1 0 4 1 1 1 1 0 9 

BFAI 1 0 4 4 1 2 0 2 14 

HWR 0 0 0 0 0 0 0 0 0 

HDFBFP 1 5 2 7 2 0 0 0 17 

Total 3 5 15 13 4 4 2 3 49 

 
Table 8. The number of correlations between urban morphological parameters and acoustic indices, 
according to the horizontal distance between site and flight path, at 0m, 300m and 1000m, both on 
façades and in open areas. 
 

Urban  
Morphological  
Parameters 

Open areas Façades 
Total 0m 300m 1000m 0m 300m 1000m 

BPAF 0 0 0 0 0 0 0 

CAR 2 1 3 0 0 3 9 

BSAPAR 3 1 2 0 0 3 9 

BFAI 3 0 6 1 0 4 14 

HWR 0 0 0 0 0 0 0 

HDFBFP 3 5 7 0 2 0 17 

Total 11 7 18 1 2 10 49 
 
4. Conclusions 
 
This study aims to explore whether and how mesoscale urban morphology of low-density built-up areas 
influence the spatial noise level attenuation of flyover aircrafts. Six urban morphological parameters 
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have been selected and developed in the study. The effects of horizontal flight path distance to site and 
flight altitude on aircraft noise attenuation are both considered.  
 
The largest difference and variance of aircraft noise level attenuation are at 1000m, among the five 
horizontal flight path distances to site, i.e. 0m, 100m, 300m, 600m and 1000m. Sound reflections by 
buildings reduce the influence of urban morphology on noise attenuation. Compared with the distances 
of 0m and 300m, the acoustic indices have more correlations with the urban morphological parameters 
at 1000m. The increase from 200ft to 400ft in flight altitude generally does not benefit the noise 
attenuation significantly.  
 
The façades have higher noise attenuation than open areas, but the variances of the acoustic indices on 
façades, including L10, L50, L90 and Lavg, are lower, and their correlations with the urban morphological 
parameters are less. In other words, urban morphology plays a more important role on aircraft noise 
attenuation for open areas than for façades. Moreover, the control of urban morphological parameters 
can benefit aircraft noise level attenuation more in quiet open areas and the whole area, rather than 
noisy open areas. 
 
The urban morphological parameters tend to have considerable correlations with flyover aircraft noise 
attenuation in this study. Compared with the sound source location independent morphological 
parameters, the sound source dependent parameters may have greater influence. The general tendency is 
that the Building Frontal Area Index (BFAI) and Horizontal Distance of First-row Building to Flight 
Path (HDFBFP) correlate with noise attenuation most, while Building Plan Area Fraction (BPAF) and 
Height-to-Width Ratio (HWR) hardly influence the noise attenuation. The noise level attenuation in 
terms of L90 in open areas tends to increase with the increase of Complete Aspect Ratio (CAR) and then 
stays stable after CAR reaches approximately 1.4. The noise level attenuation in terms of L90 in open 
areas has a tendency to increase when the Building Surface Area to Plan Area Ratio (BSAPAR) 
increase before approximately 0.7 and it then decreases. The noise attenuation in terms of L50 and Lavg 
shows a constant upward tendency when HDFBFP decreases.  
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