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Summary The use of higher-order strain-gradient models in mechanics is studied. First, ex-
isting second-gradient models from the literature are investigated analytically. In general, two
classes of second-order strain-gradient models can be distinguished: one class of models has a
direct link with the underlying microstructure, but reveals instability for deformation patterns
of a relatively short wave length, while the other class of models does not have a direct link with
the microstructure, but stability is unconditionally guaranteed. To combine the advantageous
properties of the two classes of second-gradient models, a new, fourth-order strain-gradient
model, which is unconditionally stable, is derived from a discrete microstructure. The fourth-
gradient model and the second-gradient models are compared under static and dynamic
loading conditions. A numerical approach is followed, whereby the element-free Galerkin
method is used. For the second-gradient model that has been derived from the microstructure,
it is found that the model becomes unstable for a limited number of wave lengths, while in
dynamics, instabilities are encountered for all shorter wave lengths. Contrarily, the second-
gradient model without a direct link to the microstructure behaves in a stable manner, although
physically unrealistic results are obtained in dynamics. The fourth-gradient model, with a
microstructural basis, gives stable and realistic results in statics as well as in dynamics.

Keywords Strain-gradient Models, Higher-order Continuum, Microstructure, Wave
Propagation, Stability

1
Introduction
Classical continuum theories assume that the stresses in a material point depend only on the
first-order derivative of the displacements, i.e. on the strains, and not on higher-order dis-
placement derivatives. As a consequence of this limitation on the kinematic field, a classical
continuum is not always capable of adequately describing heterogeneous phenomena. For
instance, unrealistic singularities in the stress and/or strain field may occur nearby imper-
fections. Furthermore, severe problems in the simulation of localisation phenomena with
classical continua have been encountered, such as loss of well-posedness in the mathematical
description and pathological mesh-dependence in numerical simulations (see [25] for an
overview). To avoid these types of deficiencies, it has been proposed to include higher-order
strain gradients into the constitutive equations, so that the defects of the classical continuum
may be successfully overcome, [4, 12, 17, 19, 22, 24, 25]. The second-order strain gradients that
are normally used for these purposes introduce accessory material parameters that reflect the
microstructural properties of the material. However, the second-gradient term is often postu-
lated, rather than derived from the microstructure. Hence, this class of models can be denoted
as phenomenological.
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Another class of problems in which the use of classical continua fails and in which higher-
order gradients are employed, is that where the characteristics of a discrete medium must be
approximated. As an example of this class of problems, wave propagation through a granular
medium can be considered. The dispersive properties that are predicted by a discrete material
model and that have been found in experiments, are not obtained when a classical continuum
model is used. The addition of higher-order gradients can improve the performance of
the classical continuum in the sense that the dispersive behaviour of the discrete model is
reproduced with a higher accuracy, [10, 18, 28–30]. This is a direct consequence of the
procedure that is commonly used to enhance the classical continuum with higher-order
gradients: homogenisation of the discrete medium may lead to higher-order gradients in a
direct and straightforward manner.

If regularisation of singularities or discontinuities is required, higher-order gradients are
used for smoothing the non-uniformity or singularities in the strain field. On the other hand, if
a more accurate representation of the discrete microstructure is desired, the higher-order
gradients are used to introduce a non-uniformity in the strain field. In Fig. 1, the two concepts
of using higher-order gradients are illustrated.

The higher-order gradients that result from the different motivations to enhance the classical
continuum can have opposite effects. As is detailed in Sec. 2, this can easily be substantiated
when a linear elastic one-dimensional geometry is considered for either class of higher-order
gradient models. Accordingly, it is demonstrated that the analytical solution may be either of
the exponential type (smoothing heterogeneity) or of the harmonic type (introducing hetero-
geneity). Furthermore, energy considerations reveal the stability of the models.

In Sec. 3, a second-order strain-gradient model and a fourth-order strain-gradient model will
be derived from a discrete microstructure. Also, another second-gradient model will be ex-
amined that belongs to the phenomenological class of higher-order gradient models. The
derived fourth-gradient model holds a close relation with the discrete microstructure, as is
illustrated via a dispersion analysis in Sec. 4. Moreover, the inclusion of the fourth-order
gradient term mitigates some of the cumbersome aspects of the second-order gradient term.
Finally, the two second-gradient models and the fourth-gradient model are tested in a linear
static context (Sec. 5) and in a linear dynamic context (Sec. 6).

2
Classification of second strain gradient models
The higher-order strain-gradient models that exist in the literature in virtually all cases
are concerned with second-order strain gradients; exceptions are Refs. [3, 24], where first-order
gradients are used, and Refs. [6, 11, 28], in which also fourth-order gradients are included.

Regularising strain gradients have been used in elasticity, [4, 31–33], plasticity, [1, 12, 16, 17,
19, 25] and damage mechanics [6, 13, 21–23]. In these cases, the higher-order strain gradients
have been postulated from a phenomenological point of view, either in the energy functional,
[31], or directly in the constitutive relation, [16, 22]. For reasons of clarity, the restriction here
is made to the one-dimensional case, combined with the linear elastic material behaviour.
Following [2, 4], the enhanced constitutive relation can then be cast as

r ¼ Eðe � l2r2eÞ ; ð1Þ

Fig. 1. Two motivations for using higher-order gradients: smoothing or regularisation of heterogeneities
in the strain field (top) and the introduction of heterogeneities in the strain field (bottom)

172



where r is the (axial) stress, E is the Young’s modulus, e is the (axial) strain and l is a material
parameter with the dimension of length. The parameter l will be denoted as the internal length
scale, as it reflects the micromechanical properties of the material. It is emphasized that
micromechanical arguments can be given to incorporate higher-order strain gradients
according to Eq. (1). However, to the authors’ best knowledge, no derivation of the higher-order
terms from a micromechanical basis exists.

Alternatively, strain gradients can be used to introduce heterogeneity into the continuum. As
a result, the dispersive character of waves observed in experiments and in discrete material
models can be simulated with a higher accuracy, [10, 18, 28–30]. By homogenising a discrete
medium, a second-gradient model of the type

r ¼ Eðe þ l2r2eÞ ; ð2Þ

can be derived, see Sec. 3. In contrast to Eq. (1), the higher-order strain gradient term now
appears with a positive sign.

2.1
Analytical solutions
The sign of the higher-gradient term completely determines the character of the higher-gra-
dient model. This becomes manifest in the analytical solutions, which are obtained by com-
bining the constitutive relations (1) or (2) with the uniaxial equilibrium equation or=ox ¼ 0
(no body forces are considered) and the kinematic relation e ¼ ou=ox, with u denoting the
longitudinal displacement of the one-dimensional medium. The use of Eq. (1) leads to an
analytical solution for u of the form

u ¼ A1 þ A2x þ A3 expð�x=lÞ þ A4 expðx=lÞ ; ð3Þ

while using Eq. (2) results in

u ¼ B1 þ B2x þ B3 sinðx=lÞ þ B4 cosðx=lÞ ; ð4Þ

in which Ai and Bi are constants that have to be determined according to the boundary
conditions. In either case, the response of the classical continuum is given by the constants
A1;A2 and B1;B2, respectively. As can be seen, the sign of the second-gradient term determines
whether the analytical solution is of the exponential type or of the harmonic type. An important
difference between the two models is found when higher-order gradient activity is triggered by
a local perturbation. For boundary-value problems, a local perturbation in Eq. (3) can lead to a
local gradient activity in the strain field, while a local perturbation in Eq. (4) leads to a gradient
activity in the entire domain. This is treated in more detail in Sec. 5.

2.2
Uniqueness
Following [4], the uniqueness of the static analytical solution is investigated next. To this end, it
is assumed that two different solutions u1 and u2 exist that satisfy the equilibrium equation and
the nonhomogeneous boundary conditions. For a proof of uniqueness, the difference between
these two solutions Du ¼ u1 � u2 should vanish. This ‘difference solution’ should then satisfy
the equilibrium equation and the homogeneous boundary conditions. A specimen of length L is
considered, and the boundary conditions for the difference solution are taken as Du ¼ 0 and
oDu=ox ¼ 0 both at x ¼ 0 and at x ¼ L.

First, Eq. (3) is considered. The four boundary conditions lead to the following system of
equations:

A1 þ A3 þ A4 ¼ 0;

A1 þ A2L þ A3 expð�L=lÞ þ A4 expð�L=lÞ ¼ 0;

A2 þ
�A3 þ A4

l
¼ 0;

A2 þ
�A3 expð�L=lÞ þ A4 expðL=lÞ

l
¼ 0 :

ð5Þ
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By eliminating A1 and A2, a reduced coefficient matrix for A3 and A4 according to Eq. (1) can be
determined. For finding a nontrivial solution for Du (which corresponds to non-uniqueness)
the determinant of this reduced coefficient matrix should vanish, i.e.

Det
expð�aÞ � 1 þ a expðaÞ � 1 � a
� expð�aÞ þ 1 expðaÞ � 1

� �
¼ 0 ; ð6Þ

where a ¼ L=l. Since a > 0, this leads to

f ðaÞ ¼ ð2 � aÞ expðaÞ þ ð2 þ aÞ expð�aÞ � 4 ¼ 0 : ð7Þ

It can be verified that for a ! 0, both f ðaÞ and its first derivative vanish. Furthermore, the
second derivative of f ðaÞ equals �2a sinhðaÞ, which is negative for all a > 0. Accordingly,
f ðaÞ < 0 for all a > 0, so that Eq. (7) can never be satisfied. Therefore, uniqueness is guar-
anteed for the model of Eq. (1).

A similar procedure can be followed to investigate the uniqueness of the solution according
to Eq. (4). The determinant of the reduced coefficient matrix for B3 and B4 reads

Det
sinðaÞ � a cosðaÞ � 1
cosðaÞ � 1 � sinðaÞ

� �
¼ 0 ; ð8Þ

or

gðaÞ ¼ a sinðaÞ þ 2 cosðaÞ � 2 ¼ 0 ; ð9Þ

which is satisfied when a ¼ 2pm with m an arbitrary integer. Thus, uniqueness cannot be
guaranteed for the model of Eq. (2) in the case a ¼ L=l ¼ 2pm.

Remark 1. The same results have been obtained in [4] by a somewhat different procedure.

Remark 2. In the above procedure, the higher-order boundary conditions are taken
as prescribed values for the first derivative of the displacement. The use of different higher-
order boundary conditions leads to different considerations with respect to
uniqueness. Taking prescribed second-order derivatives of the displacement can also lead to
nonunique solutions with the model of Eq. (4). Although not shown here, in this case
the values of a for which nonunique solutions are obtained coincide with those obtained
via Eq. (9).

2.3
Energy considerations
The stability of the models of Eqs. (1) and (2) is studied by means of the potential energy
density U, given by

U ¼
Z
e

rde : ð10Þ

Substitution of the constitutive equations (1) and (2), integrating the higher-order terms by
parts, and carrying out the integration results in

U ¼ 1

2
E e2 þ l2 oe

ox

� �2
 !

; ð11Þ

for the model of Eq. (1) and in

U ¼ 1

2
E e2 � l2 oe

ox

� �2
 !

; ð12Þ
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for the model of Eq. (2). In the derivation procedure above, the boundary integrals are assumed
to vanish. Again, the only difference between the two models concerns with the sign of the
higher-order term. However, this has severe implications for the stability of the model: positive
terms have a stabilising effect on the overall response, while negative terms are destabilising.
Thus, the model according to Eq. (1) is unconditionally stable, while the model of Eq. (2) may
become unstable.

2.4
Comparison
The main characteristics of the two types of second-order strain-gradient models are sum-
marised below. The behaviour of the second-gradient model with the negative sign in front of
the higher-order term has better properties from the point of view of stability and uniqueness.
However, the link with the underlying microstructure is less evident for this model. This
becomes manifest in Sec. 4 when the dispersion relations of the two second-gradient models are
studied and compared to the corresponding dispersion relation of a discrete medium. Indeed,
the model with a positive sign in front of the higher-order term bears the closest relation
with the discrete model. However, the use of this model in engineering practice is limited due to
the possible emergence of nonuniqueness and instability, which may have a devastating effect
on its response, e.g. [7, 27], see also Secs. 5 and 6.

The focus in the sequel of the paper is to consider a higher-order strain-gradient model that
has the physical basis of the second-gradient model of Eq. (2), i.e. a close relationship with the
underlying discrete medium, while the stability and uniqueness properties of the model ac-
cording to Eq. (1) are also present. Thus, the aim is to consider a model that combines the
advantageous properties of both types of second-gradient models.

3
Derivation of higher-order strain-gradient models from a discrete microstructure
In this section, higher-order strain gradient models are derived by means of homogenisation of
the displacement field of a discrete model. In the discrete model, the particles are represented
by individual masses. The inter-particle contacts are modelled via springs that connect the
masses. For simplicity, it is assumed that all particles have the same spring stiffness K, particle
mass M and inter-particle distance d. This geometry is depicted in Fig. 2 for which the equation
of motion of particle n can be expressed as

M€uun þ Kð2un � unþ1 � un�1Þ ¼ 0 ; ð13Þ

where a superimposed dot denotes a time derivative. In the homogenisation procedure, it is
assumed that the continuous displacement u equals the discrete displacement un at particle n.
The displacement at the neighbouring particles is found by means of a Taylor series as

uðx � dÞ ¼ uðxÞ � d
ouðxÞ
ox

þ 1

2
d2 o

2uðxÞ
ox2

� 1

6
d3 o

3uðxÞ
ox3

þ 1

24
d4 o

4uðxÞ
ox4

þ 	 	 	 : ð14Þ

Next, the displacements of the discrete medium unþ1 and un�1 are expressed in terms of the
continuous displacement. These terms are substituted into Eq. (13). After division by the cross-
sectional area of the medium A and the inter-particle distance d it is found that

q€uu ¼ E
o2u

ox2
þ 1

12
d2 o

4u

ox4
þ 1

360
d4 o

6u

ox6
þ 	 	 	

� �
; ð15Þ

Fig. 2. Discrete medium – geometri-
cal and mechanical properties
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with the mass density q ¼ M=Ad and the Young’s modulus E ¼ Kd=A. Note that all odd
derivatives of u have cancelled.

When the kinematic relation e ¼ ou=ox is used, and the equation of motion of the con-
tinuum is expressed as q€uu ¼ or=ox, the constitutive relation can be retrieved as

r ¼ E e þ 1

12
d2 o

2e
ox2

þ 1

360
d4 o

4e
ox4

þ 	 	 	
� �

: ð16Þ

When Eq. (16) is truncated after the second-gradient term, a constitutive relation with the
format of Eq. (2) is found, i.e. the second-gradient term is preceded by a positive sign, where
d ¼ l

ffiffiffiffiffi
12

p
. Indeed, the above procedure illustrates the close relation between the discrete

microstructure and the higher-order continuum according to Eq. (16).
As an alternative, it is possible to truncate Eq. (16) after the fourth-gradient term. Thus, a

fourth-order strain-gradient model is obtained, [27, 28].
The homogenisation procedure as shown above unequivocally leads to a second-order

strain-gradient term that is preceded by a positive sign, [10, 18, 28, 29]. Indeed, the second-
gradient model with the negative sign, see Eq. (1), cannot be derived directly from a micro-
structure of discrete particles.

4
Dispersion analysis
As a first exploration of the performance of the various models, an analysis of dispersive waves
is carried out. Dispersive behaviour of a medium is characterised by its ability to change the
shape of propagating waves. In a mathematical context, this implies that the wave velocity must
depend on the wave number.

To investigate the dispersive character of the discrete model of Eq. (13), the harmonic
solution

un ¼ ûu expðikðct � xnÞÞ

is substituted, in which ûu is the amplitude, k is the wave number, c is the phase velocity, t is
time and xn is the coordinate of particle n. The wave number is related to the wave length k via
kk ¼ 2p. Using xn ¼ nd; xnþ1 ¼ ðn þ 1Þd and xn�1 ¼ ðn � 1Þd, it is found that

Mk2c2

K
¼ 4 sin2 kd

2

� �
: ð17Þ

The angular frequency x is defined as x ¼ ck and the elastic bar velocity is ce ¼
ffiffiffiffiffiffiffiffi
E=q

p
¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Kd2=M
p

. Consequently, the dispersion relation of the discrete medium can be expressed as

x
ce

¼ 2

d
sin

kd

2

� �








 : ð18Þ

A similar procedure is followed for the continuum models. Starting point is the one-dimen-
sional equation of motion q€uu ¼ or=ox, in which the various constitutive equations and the
kinematic relation are substituted. In the resulting expression on the harmonic solution
u ¼ ûu expðikðct � xÞÞ is substituted. For the second-gradient model with the negative sign, see
Eq. (1), this results in

x
ce

¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 1

12
k2d2

r
; ð19Þ

with d ¼ l
ffiffiffiffiffi
12

p
. Since the second-order gradient model with a negative sign has not been

derived from the discrete medium, the factor 1/12 is arbitrary. However, for a consistent
comparison with the other models this factor has been adopted in the remainder of this
study.

The dispersion relation for the second-gradient model with the positive sign (that is, the
second-gradient truncation of Eq. (16)) reads
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x
ce

¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 1

12
k2d2

r
; ð20Þ

and the dispersion relation for the fourth-gradient model taken from Eq. (16) can be elaborated
as

x
ce

¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 1

12
k2d2 þ 1

360
k4d4

r
: ð21Þ

In Fig. 3, the dispersion curves for the various models are plotted, taking ce ¼ 1 mm/s and
d ¼ 1 mm. For comparison also the dispersion relation of the classical continuum is plotted.
While the classical continuum is nondispersive (the phase velocity c ¼ x=k is constant), the
discrete medium and the higher-order strain gradient continua are dispersive. It can be seen
that the second-gradient model with the positive sign and the fourth-gradient model give
improved approximations of the discrete model, as compared to the classical continuum. On
the other hand, the agreement between the second-gradient model with the negative sign and
the discrete medium is poor.

However, the instability of the second-gradient model with the positive sign also becomes
manifest in Fig. 3: for wave numbers larger than

ffiffiffiffiffi
12

p
=d the angular frequency and the

phase velocity become imaginary, cf. Eq. (20). This means that waves with larger wave
numbers (or, equivalently, with smaller wave lengths) cannot propagate through this
medium. Instead, the imaginary frequency and velocity imply that the response occurs
everywhere in the medium instantaneously. This is physically unrealistic. Therefore, these
smaller wave lengths should not be considered. Filtering shorter waves occurs automatically
in a discrete medium, where wave lengths smaller than two times the particle size cannot be
monitored. However, in a continuous medium, all wave lengths can in principle be present.
Especially when shock waves are investigated, all wave lengths are triggered by the loading.
The imaginary angular frequency (or phase velocity) of these high-frequent waves prohibits
a proper wave propagation simulation with this model, as will be illustrated in Sec. 6. The
cut-off value for the wave number, i.e. the wave number for which the angular frequency is
zero, dominates the static response of the second-gradient model with a positive sign. This
cut-off value emerges at k ¼

ffiffiffiffiffi
12

p
=d, cf. Fig. 3.

It must be emphasized that for the second-gradient model with the negative sign, as well
as for the fourth-gradient model, a range of wave numbers exists for which the phase
velocity is larger than the bar velocity of the classical continuum, for which a physical
motivation is lacking. For the second-gradient model with the negative sign, this covers
the complete range of wave numbers, while for the fourth-gradient model it only concerns
the higher wave numbers, see Fig. 3. However, in the response of the fourth-gradient model
the effect of these high-frequency waves are of minor importance, as will be demonstrated
in Sec. 6.

Fig. 3. Angular frequency versus wave number (left) and phase velocity versus wave number (right)
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5
Linear static analysis
The higher-order gradient models are tested in a one-dimensional boundary value problem of
which the geometry and the loading conditions are given in Fig. 4. An imperfection is placed in
the centre of the bar to trigger higher-order gradient activity. Due to the presence of higher-
order terms in the governing equations, additional boundary conditions are required.
Following the literature, we impose zero values for the first-order spatial derivative of the strain
at the boundaries in the second-gradient model, [6, 19, 22, 25]. Moreover, zero values for the
third-order spatial derivative of the strain are imposed at the boundaries in the fourth-gradient
model, [6]. The bar of Fig. 4 is subjected to an imposed displacement of 0.01 mm at its right end
which corresponds to an average strain level of 0.001. The Young’s modulus is taken as
E ¼ 1000 MPa.

Analytical solutions are available for the one-dimensional linear elastic case. However, in
multi-dimensional cases numerical solution techniques are necessary. Therefore, the perfor-
mance of the models is tested numerically. The problem has been solved by means of the
element-free Galerkin (EFG) method, [8, 9]. This is a meshless discretisation method in which
the shape functions can be formulated with an arbitrary order of continuity, which is advan-
tageous when higher-order gradient models are investigated, [5, 6, 15, 20]. Discretisation
aspects are treated in Appendix A. The bar of Fig. 4 has been discretised with 81 equally-spaced
nodes and 400 equally-spaced integration points.

5.1
Second-gradient model with positive sign
The second-gradient model with the positive sign has been used, see Eq. (2), with d ¼ l

ffiffiffiffiffi
12

p
. For

this model, the solution has a harmonic character, see Eq. (4). The number of wave lengths
along the bar is n ¼ L=k, with L denoting the bar length and k the wave length. The wave length
is related to the wave number k via k ¼ 2p=k, while the critical wave number of the static case
can be retrieved from the dispersion relation by requiring that the angular frequency (or the
phase velocity) equals zero. This wave number equals k ¼

ffiffiffiffiffi
12

p
=d, see Fig. 3. Thus, the number

of wave lengths along the bar is given by

n ¼ L
ffiffiffiffiffi
12

p

2pd
: ð22Þ

When this equation is compared to Eq. (9), and it is realised that d ¼ l
ffiffiffiffiffi
12

p
for the current

model, it can be seen that uniqueness fails in the case n from Eq. (22) equals the integer m. In
Fig. 5, relation (22) is plotted for the problem in Fig. 4 where L ¼ 10 mm. In this figure,
especially these values of d are denoted for which n equals the integer m and, thus, for which
uniqueness fails.

Remark 3. Note the difference between the wave number k and the number of wave lengths
along the bar n. The wave number k denotes the number of wave lengths that fit into 2p, while n
denotes the number of wave lengths that fit into the bar length L. More generally, k is geometry-
independent, while n depends on the geometry under consideration.

Analyses have been carried out for values of d where n is an integer and for values of d where
n is not an integer. In Fig. 6, results of both types have been plotted; taking d ¼ 0:8 mm or
d ¼ 0:7 mm leads to a noninteger value of n, while taking d ¼ 0:778 mm and d ¼ 0:689 mm
leads to n ¼ 7 and n ¼ 8, respectively. It can be verified that the number of wave lengths along
the bar as given by the numerically obtained strain profiles corresponds perfectly to the value of
n as given by Eq. (22) or Fig. 5. For the two analyses where n is not an integer (Fig. 6, left

Fig. 4. Bar: problem statement for
static analysis
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column), uniqueness is guaranteed; as such, moderate oscillations in the strain profile are
obtained. In contrast, when n is an integer (Fig. 6, right column) the solution is nonunique,
which becomes manifest by the extreme oscillations in the strain profile. In fact, the analytical
solution for the cases that n is an integer is undetermined, causing the numerical solution to be
arbitrarily dependent on round-off errors and discretisation aspects. In short, the static analysis
shows that the results should be distrusted for a limited number of values for the internal length
scale d. However, it remains an undesirable feature of this model that a local perturbation, as
given by the imperfection in Fig. 4, leads to strain oscillations in the complete domain.

Fig. 6. Bar: static response of the second-gradient model with positive sign, strain profiles for d ¼ 0:8 mm
(top left), d ¼ 0:788 mm (top right), d ¼ 0:7 mm (bottom left) and d ¼ 0:689 mm (bottom right)

Fig. 5. Relation between the number
of wave lengths along the bar n and
the internal length scale d of the
second-gradient model for the bar
problem with L ¼ 10 mm
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5.2
Second-gradient model with negative sign
Next, the second-gradient model with the negative sign, Eq. (1), is used to analyse the problem
of Fig. 4. As has been mentioned in Sec. 2, the analytical solution has an exponential character.
No instabilities are to be expected, and uniqueness is guaranteed. Fig. 7 shows the response of
this model for values of the internal length scale d ¼ 0:5 mm and d ¼ 1 mm. Although the
cross-sectional area is discontinuous over the bar length, the strain profile along the bar is
smooth due to the higher-order strain gradients that are present in the constitutive relation.
This smoothing effect becomes more pronounced for larger values of the internal length scale
d. Furthermore, local perturbations remain local. Thus, the second-gradient model with the
negative sign yields physically realistic results.

5.3
Fourth-gradient model
Finally, the performance of the fourth-gradient model is tested for the bar problem of Fig. 4. A
general analytical expression for the displacement field in the bar can be derived as (see
Appendix B)

u ¼ C1 þ C2x þ exp
�s1x

d

� 
C3 cos

s2x

d

� 
þ C4 sin

s2x

d

� h i
þ exp

s1x

d

� 
C5 cos

s2x

d

� 
þ C6 sin

s2x

d

� h i
;

ð23Þ

where Ci are constants that have to be determined according to the boundary conditions.

Furthermore, s1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

90
p

� 15=2
q

and s2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

90
p

þ 15=2
q

are model-specific coefficients,

which follow from the factors 1/12 and 1/360 that precede the second-gradient and fourth-
gradient terms in the constitutive relation Eq. (16). From Eq. (23), it can be seen that the
harmonic terms of the solution are multiplied with exponential terms. This implies that local
perturbations of the strain field can remain local, which is in contrast to the response of the
second-gradient model with the positive sign.

The coefficient of the harmonic terms in Eq. (23) equals s2=d. In the second-gradient model
with the positive sign, the wave number has been found as k ¼

ffiffiffiffiffi
12

p
=d in the argument of the

harmonic terms of the analytical solutions. With these considerations, for the fourth-gradient
model, the number of wave lengths along the bar can be found by replacing the factor

ffiffiffiffiffi
12

p
in

Eq. (22) by the factor s2. Thus,

n ¼
L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

90
p

þ 15
2

q
2pd

: ð24Þ

Again, d can be selected such that n equals an integer. However, in contrast to the second-
gradient model, no anomalies are expected from the point of view of uniqueness, energy
considerations or dispersion analysis when n is an integer.

Fig. 7. Bar: static response of the second-gradient model with negative sign, strain profiles for
d ¼ 0:5 mm (left) and d ¼ 1 mm (right)
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Four numerical analyses have been carried out, two with a value for the internal length scale
d where n is an integer, and two with a value for d where n is not an integer. In Fig. 8, the strain
profiles plotted for the cases d ¼ 0:8 mm, d ¼ 0:729 mm (which corresponds to n ¼ 9), d ¼ 0:7
mm and d ¼ 0:656 mm (which corresponds to n ¼ 10). The four results show very little
differences. Indeed, instabilities are absent in the fourth-gradient model. Another important
observation is that local perturbations of the strain field remain local and do not extend over
the entire domain, which is physically realistic.

6
Linear dynamic analysis
The problem statement for the dynamic analysis is given in Fig. 9. A Heaviside loading function
is applied so that a shock wave propagates through the bar. The force amplitude is F0 ¼ 5 N,
the Young’s modulus is taken as E ¼ 1000 MPa, and the mass density is q ¼ 1000 N s2=mm4.
For the spatial discretisation, the EFG method is used. Again, 81 equally-spaced nodes and 400
equally-spaced integration points have been used. For the time discretisation, the implicit
Newmark scheme is used, [14, 25], with the time step Dt ¼ 0:2 s and the Newmark parameters
c ¼ 0:5 and b ¼ 0:25 (average acceleration method), unless mentioned otherwise. Although not
shown here, similar results have been found for smaller time steps.

6.1
Second-gradient model with positive sign
Firstly, the second-gradient model with the positive sign is taken to model the problem of Fig.
9. In the problem under consideration, in which a shock wave is generated, all harmonics are
present in the response. As can be seen from Fig. 3, this implies that wave numbers with real
frequencies (lower wave numbers) as well as wave numbers with imaginary frequencies (higher
wave numbers) are triggered by the loading conditions. While real angular frequencies rep-
resent waves with a finite propagation speed, imaginary angular frequencies denote waves that
propagate instantaneously everywhere in the domain. This is illustrated in Fig. 10, in which the

Fig. 8. Bar: static response of the fourth-gradient model, strain profiles for d ¼ 0:8 mm (top left),
d ¼ 0:729 mm (top right), d ¼ 0:7 mm (bottom left) and d ¼ 0:656 mm (bottom right)
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dynamic response of the second-gradient model is plotted for the problem of Fig. 9. The
internal length scale is d ¼ 2 mm. Only the strain profiles corresponding to the first two time
increments are plotted. It can be seen that after the first time increment the influence of the
shock wave is present in the entire bar, which is unrealistic. After the second time increment,
the amplitude of the strain profile increases in an unphysical manner to unrealistically large
values. In the classical continuum, the strain profile would have propagated only marginally,
while the amplitude would have remained bounded.

As such, the second-gradient model with a positive sign is unsuitable for numerical dynamic
analyses. While the model instabilities in statics are restricted to specific choices for n (Eq.
(22)), the use of this model in dynamics leads to anomalies for any loading condition that
triggers wave numbers larger than the critical value

ffiffiffiffiffi
12

p
=d.

6.2
Second-gradient model with negative sign
Next, the second-gradient model with the negative sign has been used to simulate the problem
of Fig. 9. As has been noted in Fig. 3, in this model no imaginary angular frequencies occur.
However, all wave lengths are associated with phase velocities that are higher than that of the
classical continuum.

Fig. 9. Bar: problem statement for
dynamic analysis, geometry and load-
ing conditions (top) and load-time
diagram (bottom)

Fig. 10. Bar: dynamic response of the
second-gradient model with positive
sign, strain profiles for first two time
steps
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In Fig. 11, the strain profiles at time t ¼ 4 s, t ¼ 8 s, t ¼ 12 s and t ¼ 16 s are plotted. A
range of values for the internal length scale d has been taken, including the case of the classical
continuum d ¼ 0 mm. For d > 0, it can be seen that the shape of the front changes with
increasing time, which illustrates the dispersive character of the medium. This dispersive effect
is the result of the inclusion of higher-order gradients; in a classical continuum (the case with
d ¼ 0 mm in Fig. 11) the shape of the front remains unaltered in time (neglecting numerical
dispersion effects). For larger values of d, the dispersion becomes more significant. Another
observation is that, for finite values of d, the front of the wave propagates faster than for the
case d ¼ 0, which is consistent with the dispersion analysis in Sec 4. This unrealistically fast
propagation speed of the wave front is a disadvantage of this model.

6.3
Fourth-gradient model
Finally, the fourth-gradient model is used for modelling the problem in Fig. 9. In contrast to the
second-gradient model with a positive sign, no wave numbers with imaginary angular fre-
quencies exist, as can be verified from Fig. 3. Thus, the numerical deficiencies as they have
appeared for the second-gradient model with a positive sign are not to be expected for the
fourth-gradient model.

In Fig. 12, the propagation of the strain profile is plotted for a range of internal length scales
d, and at time t ¼ 4 s, t ¼ 8 s, t ¼ 12 s and t ¼ 16 s. In comparison with the response of the
second-gradient model with the positive sign, in the fourth-gradient model the strain profile
propagates in a realistic manner for all values of d. The propagation speed is finite, and the
amplitude of the strain profile remains bounded. It can be seen that, depending on the value of
d, the front of the wave changes in shape during the propagation. For higher values of d, the
dispersive character of the model becomes more pronounced.

A peculiar phenomenon that occurs in all analyses with d > 0 is the appearance of high-
frequent waves that propagate ahead of the actual front of the strain profile. The existence of
these high-frequent waves can be understood from the fact that (i) all frequencies are triggered

Fig. 11. Bar: dynamic response of the second-gradient model with negative sign, propagation of the strain
profile for d ¼ 0 mm (top left), d ¼ 0:5 mm (top right), d ¼ 2 mm (bottom left) and d ¼ 5 mm
(bottom right)
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by the current shock-wave loading conditions, and (ii) in the present fourth-gradient model,
the higher wave numbers are associated with phase velocities that are larger than the bar
velocity

ffiffiffiffiffiffiffiffi
E=q

p
(see Fig. 3). In contrast, in the response of the second-gradient model with the

negative sign, all wave numbers have a phase velocity larger than the bar velocity, causing the
propagation speed of the complete wave front to be unrealistically high.

Damping of the artificial high-frequency fast-propagating waves can be attained in various
ways. For instance, the Newmark parameter c can be increased, [14, 26]. In Fig. 13, the
propagating strain profile is plotted again for the case d ¼ 2 mm, but now with c ¼ 0:7 and
b ¼ ðc þ 1=2Þ2=4 ¼ 0:36. Indeed, numerical damping of the high frequencies is obtained,
although a high-frequency wave propagating faster than the wave front still appears. Alter-
natively, the combination of an implicit time integration scheme with a lumped mass matrix
may be considered to increase numerical damping, [26], although this option is not considered
here. In any case, the magnitude of this artificial high-frequency wave decreases for increasing

Fig. 12. Bar: dynamic response of the fourth-gradient model, propagation of the strain profile for
d ¼ 0 mm (top left), d ¼ 0:5 mm (top right), d ¼ 2 mm (bottom left) and d ¼ 5 mm (bottom right)

Fig. 13. Bar: dynamic response of the fourth-gradient model with d ¼ 2 mm; influence of Newmark
parameters: c ¼ 0:5 and b ¼ 0:25 (left), c ¼ 0:7 and b ¼ 0:36 (right)
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time, so that eventually its influence will become negligible. Furthermore, it must be realised
that the discretisation sets an upper bound to the wave numbers that can be transmitted; the
infinitely high wave numbers that would travel with an infinitely high velocity can never be
captured by a finite discretisation fineness.

7
Conclusions
In this paper, several types of strain-gradient models are studied. A distinction is made
between two motivations for the incorporation of higher-order strain gradients into a
classical continuum: firstly, regularisation or smoothing of singularities or discontinuities in
the strain field, and, secondly, the introduction of heterogeneity. In both cases, an internal
length scale related to the size of the microstructure enters the model. A typical second-
order strain-gradient model of either case is studied analytically, where it has been found
that the sign of the second-order gradient term drives the uniqueness and the stability of
the model. A second-gradient model with a negative sign, as is classically used to regularise
singularities, guarantees uniqueness and stability, but lacks a direct link with the underlying
microstructure. On the other hand, a second-gradient model with positive sign can be
derived directly from a discrete medium, but the model can become unstable and
uniqueness is not guaranteed.

To combine the advantageous properties of the two types of second-gradient models, a
fourth-order strain-gradient model is derived from a discrete medium. It is demonstrated that
this fourth-gradient model is unconditionally stable, while the link with the underlying
microstructure is evident.

Linear static and dynamic numerical analyses have been carried out to assess the perfor-
mance of the higher-order gradient models. The element-free Galerkin method has been used,
since this method facilitates the incorporation of higher-order strain gradients.

The static response of the second-gradient model with a positive sign is found to be unstable
for a selected number of values of the internal length scale. In other cases, a stable response is
found, although local perturbations lead to oscillations in the entire domain. The responses of
the second-gradient model with a negative sign and of the fourth-gradient model in statics are
physically realistic and mathematically sound: no instabilities are found, and local perturba-
tions remain local.

In dynamics, the differences between the models become more pronounced. The second-
gradient model with positive sign fails completely due to imaginary propagation velocities of
the higher wave numbers. These higher wave numbers are especially dominant when shock
waves are generated. Thus, this second-gradient model is not suitable to study practical dy-
namic problems. The second-gradient model with negative sign gives stable results, but all
waves propagate with a velocity that is unrealistically high (i.e. higher than the bar velocity of
the classical continuum). On the other hand, in the fourth-gradient model, all propagation
velocities are real, and realistic responses are found. The model shows a dispersive character,
and the intensity of the dispersion depends on the internal length scale parameter. However,
waves are found that propagate with an unrealistically high velocity, but this only concerns the
higher wave numbers, and their influence on the global response appears to be limited in the
presented analysis.

Appendix A
Discretisation aspects
Below, the discretised system of equations will be derived that has been used to perform the
EFG analysis with the higher-order gradient continua in Secs. 5 and 6. Starting point is the weak
format of the one-dimensional equation of the motion, i.e.

ZL

0

duq€uudx ¼
ZL

0

du
or
ox

dx ; ð25Þ

in which body forces are left out of consideration. The general constitutive equation is written
as

r ¼ Eðe þ c1r2e þ c2r4eÞ ; ð26Þ
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where ðc1; c2Þ ¼ ð 1
12 d2; 0Þ for the second-gradient model with a positive sign,

ðc1; c2Þ ¼ ð� 1
12 d2; 0Þ for the second-gradient model with negative sign, and

ðc1; c2Þ ¼ ð 1
12 d2; 1

360 d4Þ for the fourth-gradient model. Equation (26) is substituted into Eq. (25),
the kinematic relation e ¼ ou=ox is used, and the higher-order terms are integrated by parts.
Thus,

ZL

0

duq€uudx þ
Z L

0

odu

ox
E
ou

ox
dx �

ZL

0

o2du

ox2
Ec1

o2u

ox2
dx

þ
ZL

0

o3du

ox3
Ec2

o3u

ox3
dx ¼ duEðe þ c1r2e þ c2r4eÞ

� �L

0
� odu

ox
Ec2

o4u

ox4

� �L

0

: ð27Þ

The first boundary term in the right-hand-side of Eq. (27) can be identified as the conventional
traction boundary term. The second boundary term cancels by assuming vanishing fourth-
order derivatives of the displacement, [6]. The first two domain integrals in the left-hand-side
of Eq. (27) concern with the conventional mass matrix and stiffness matrix, respectively. The
third and fourth domain integral represent the higher-order contributions of the models. After
discretisation, a global system of equations is obtained as

M€uu þ ½K0 þ K1 þ K2�u ¼ f ; ð28Þ

where u contains the discretised displacements. Furthermore,

M ¼
ZL

0

q/u/
T
u dx ; ð29Þ

K0 ¼
ZL

0

E
o/u

ox

o/T
u

ox
dx ; ð30Þ

K1 ¼ �
ZL

0

Ec1
o2/u

ox2

o2/T
u

ox2
dx ; ð31Þ

K2 ¼
ZL

0

Ec2
o3/u

ox3

o3/T
u

ox3
dx ; ð32Þ

f ¼ ½/ut̂t�Cn
; ð33Þ

where t̂t are the prescribed tractions on the boundary Cn.

Remark 4. Each subsequent derivative of an EFG shape function has a more oscillatory
character than the previous one. To avoid zero-energy modes, the order of integration should
be increased in correspondence with the highest derivative of the shape functions that appears
in the formulation.

Appendix B
Displacement field of fourth-order model
To determine the displacement field of the fourth-order model, a general expression for the
displacement u ¼ expðikxÞ is substituted in the homogeneous equilibrium equation

o2uðxÞ
ox2

þ 1

12
d2 o

2uðxÞ
ox4

þ 1

360
d4 o

6uðxÞ
ox6

¼ 0 : ð34Þ
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This leads to

k2 ¼ 0
_ 1

360
ðdkÞ4 � 1

12
ðdkÞ2 þ 1 ¼ 0 : ð35Þ

The case k2 ¼ 0 leads to the displacement field of the classical continuum. The higher-order
contribution is given through four values for dk as

dk ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15 � i3

ffiffiffiffiffi
15

pq
: ð36Þ

The square root of a general complex number a þ ib is rewritten via

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a þ ib

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b24

p
exp

i arctanðb=aÞ
2

� �
: ð37Þ

Furthermore, the following goniometric relations are used.

cos
arctanðb=aÞ

2

� �
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ cosðarctanðb=aÞÞ

2

r
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
þ a

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
s

; ð38Þ

sin
arctanðb=aÞ

2

� �
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � cosðarctanðb=aÞÞ

2

r
¼ �
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1

2
� a

2
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p
s

; ð39Þ

With these substitutions, Eq. (36) is rewritten as

dk ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
90

p
� 15=2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
90

p
þ 15=2

q
: ð40Þ

Introducing s1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

90
p

� 15=2
q

and s2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

90
p

þ 15=2
q

, and eliminating the imaginary parts
of the solution, the total homogeneous solution of Eq. (34) is found as

u ¼ C1 þ C2x þ exp
�s1x

d

� 
C3 cos

s2x

d

� 
þ C4 sin

s2x

d

� h i
þ exp

s1x

d

� 
C5 cos

s2x

d

� 
þ C6 sin

s2x

d

� h i
: ð41Þ
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