
This is a repository copy of Understanding cracked materials: is Linear Elastic Fracture 
Mechanics obsolete?.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/85972/

Version: Accepted Version

Article:

Askes, H. and Susmel, L. (2014) Understanding cracked materials: is Linear Elastic 
Fracture Mechanics obsolete? Fatigue and Fracture of Engineering Materials and 
Structures, 38 (2). 154 - 160. ISSN 8756-758X 

https://doi.org/10.1111/ffe.12183

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Please cite this article in press as: Askes, H., Susmel, L. Understanding cracked materials: is Linear 
Elastic Fracture Mechanics obsolete? Fatigue Fract Engng Mater Struct 38, 154�160, 2015. 

Understanding cracked materials: 
is Linear Elastic Fracture Mechanics obsolete? 

 

Harm Askes1 and Luca Susmel2 

Department of Civil and Structural Engineering 

University of Sheffield, United Kingdom 

 

Abstract  

Linear Elastic Fracture Mechanics has enabled the research community to solve a 

wide variety of problems of practical and scientific interest; however, it has 

historically suffered from two main shortcomings. Firstly, it predicts physically 

unrealistic singular stresses and strains at crack tips. Secondly, microstructural 

effects are lacking, so that a major source of size-dependent behaviour is not 

captured. Gradient-enriched elasticity overcomes both these shortcomings: 

singularities are avoided, so that crack-tip stresses can be used to assess integrity, 

and the inclusion of microstructural terms implies that size effects can be captured. 

In this investigation, it is shown that gradient-enriched crack tip stresses can directly 

be used to model the transition from the short to the long crack regime. The 

accuracy of this approach was validated by a wide range of experimental results 

taken from the literature and generated under both static and high-cycle fatigue 

loading. This high level of accuracy was achieved without having to resort to 

phenomenological model parameters: the extra constitutive coefficient was simply 

the (average) grain size of the material. 
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Introduction 

In 1964, Irwin affirmed that “… linear elastic fracture mechanics already provides a 

rather complete set of mathematical tools. Additional experimental observations 

rather than additional methods of analysis are now the primary need for practical 

applications” [1]. This has been taken quite literally: Linear Elastic Fracture 

Mechanics (LEFM) is still widely used, but its theoretical foundations have remained 

virtually untouched, being treated as axiomatic by the international scientific 

community. Therefore, most research efforts have been focussed on providing 

experimental data for a wide range of materials under different loading conditions. 

What we have achieved in sectors such as, for instance, transportation and energy 

production would have been impossible without the LEFM based design theories. 

There are, however, two main problems with LEFM: (i) singularities and (ii) 

microstructurally induced scale effects. 

First of all, LEFM is based on the classical equations of elasticity, which 

predict singular stresses and strains at the tips of sharp cracks, re-entrant corners 

and other parts of the geometry that see an abrupt change of boundary conditions 

[2]. However, since at a macroscopic level natura non facit saltus, the appearance of 

singularities is an artefact. This is also supported by the fact that cracks in real 

materials experience the so-called blunting phenomenon – this holding true 

independently of the level of brittleness. 

Secondly, LEFM does not capture the behaviour of short cracks [3], where 

“short” is to be understood in relation to the microstructural dimensions of the 

material (for instance the grain size of a metal)- see Refs [4, 5] and references 

reported therein. Indeed, the microstructural characteristics are missing from the 

elastic constitutive equations that form the basis of LEFM. This observation can be 
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used (i) to understand why LEFM fails in describing short cracks, and (ii) which 

approach should be used instead. If the crack length is long compared to the 

microstructural dimensions, then the crack dominates the macroscopic behaviour 

and the microstructure can safely be disregarded without significant loss of accuracy. 

On the other hand, if the crack length is short compared to the microstructural 

dimensions, then crack and microstructure are equally important to predict the 

macroscopic behaviour. 

Perhaps slightly crudely it can be said that LEFM has been developed to 

model the presence of zero-radius geometrical features according to classical linear 

elasticity, rather than tackling the roots of the problem, i.e. the material constitutive 

law. In this setting, a radically different approach would then be to revisit the basic 

ingredients of LEFM, that is the equations of classical elasticity, by including 

additional microstructural terms. With this microstructural enrichment, the equations 

of elasticity can be used effectively to describe the short- as well as the long-crack 

behaviour. This obviously implies that this idea can only be used provided that the 

plasticity effects can be neglected with little loss of accuracy (such as, for instance, 

in brittle materials and in metals cracking in the high-cycle fatigue regime). 

 

Fundamentals of gradient-enriched elasticity 

Gradient elasticity is understood here as a subclass of so-called “generalised 

continuum” models in which microstructural terms are included in the classical 

equations of elasticity. More particularly, in gradient elasticity higher-order spatial 

derivatives of relevant state variables (such as strains, stresses or accelerations) 

appear. In what follows, we will assume quasi-static conditions; that is, inertia 

contributions are left out of consideration. 



Please cite this article in press as: Askes, H., Susmel, L. Understanding cracked materials: is Linear 
Elastic Fracture Mechanics obsolete? Fatigue Fract Engng Mater Struct 38, 154�160, 2015. 

The first systematic treatise of gradient elasticity is due to Mindlin [6]. He 

started off by deriving a mathematically complete but rather complicated theory of 

elasticity with microstructure and 903 independent constitutive coefficients, which he 

then simplified to an isotropic gradient elasticity theory with 2 standard coefficients 

(the usual Lamé constants) and two length parameters that account for the 

microstructural effects. A few decades later, an even simpler theory was suggested 

by Aifantis, whereby the relation between stresses,  , and strains,  , is written as 

[7-13] 

 

   22:  C          (1) 

 

where C  is a fourth-order tensor containing the usual elastic moduli. The only new 

parameter compared to classical elasticity is the length scale parameter  , and it is 

clear that the standard equations of elasticity are retrieved by taking 0 .  

The actual solution of a boundary value problem with the enriched constitutive 

relation of Eq. (1) is most conveniently performed using the solution method devised 

by Ru and Aifantis [12] and later extended to finite element implementations [14]. In 

this Ru-Aifantis approach, firstly the classical equations of elasticity are solved by 

ignoring the effects of the length parameter. Afterwards, the stresses (or strains, or 

displacements – see [14] for a discussion) are used in a pseudo reaction-diffusion 

equation that includes the length parameter and that leads to a smoothing of the 

relevant fields. Thus, the singular stresses that are found using classical elasticity at 

the tips of sharp cracks are transformed into finite (yet localised) stresses after this 

second step of the analysis is performed. It is emphasized that both steps of the 

analysis (i.e. the standard elastic analysis followed by the stress-smoothing) involves 
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the solution of a global system of linear equations. Thus, the computational costs are 

roughly double that of performing a standard elastic analysis. 

The length parameter   has in the literature (see for instance [8] for an 

overview) been linked to a wide variety of microstructural quantities ranging from the 

inter-particle spacing in an atomic lattice to the laminate thickness in composites. 

Obviously, there are several orders of magnitude difference in such estimates, but a 

general conclusion from the overview in [8] is that the length parameter   is related 

to the size of the dominant source of heterogeneity. This can probably best be 

captured by linking   to the Representative Volume size RVEL  for a heterogeneous 

material, i.e. [15] 

 

 22

12

1
RVEL           (2) 

 

In an elastic context, the Representative Volume size is normally found to be equal 

to a few times the average size of the dominant inclusion [9, 10]. For the ceramic 

and metal materials used in the experimental validation below, this would be the 

grain size. Thus, for such materials it follows that the intrinsic length scale parameter 

  of gradient elasticity is roughly of the same magnitude as the grain size of the 

material. 

 

Embedding strength in gradient elastic stress analysis: a novel 

method to assess cracked materials 

The fact that stresses and strains are non-singular in gradient elasticity has an 

important implication for fracture mechanics: namely, the stresses at the crack tip 
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can be used directly to assess the integrity of the material or the structural 

component. Therefore, strength analysis follows straightforwardly from stress 

analysis, which is in contrast with LEFM. The mathematical intricacies of LEFM 

(such as the J-integral and stress intensity factors) can thus be avoided altogether, 

whilst the linear structure of the equations (and the associated simplicity of analytical 

and numerical solution procedures) is maintained. Consequently, the integrity of 

materials and structural components can be assessed in a much more intuitive, 

robust and generalised way.  

A new result in this context is the unified treatment of static and fatigue-

induced cracks for a large range of crack lengths. Consider the plate containing a 

central through-thickness crack which is sketched in Figure 1. If such a plate is 

subjected to a static axial force, the resulting nominal gross stress is equal to g . In 

a similar way, when the above cracked plate is subjected to a cyclic force, the range 

of the corresponding nominal gross stress is denoted as min,max, ggg   , where 

max,g  and min,g  are the maximum and minimum nominal gross stress in the fatigue 

cycle, respectively. 

With gradient elasticity, the corresponding stress field can then be determined 

by directly incorporating into the stress analysis the length scale parameter  . This 

allows the gradient-enriched crack tip stress to be determined under both static ( tip ) 

and fatigue loading ( tip ) – see Figure 1. By using the Theory of Critical Distances 

argument [4, 16], the assumption can be formed that crack propagation is inhibited 

as long as the following conditions are assured: 

 

UTStip     (static assessment)      (3) 
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0  tip   (high-cycle fatigue assessment)    (4) 

 

where UTS  is the material ultimate tensile strength, whereas 0  is the un-notched 

material fatigue limit experimentally determined under the same load ratio 

max,min, / ggR   as the one characterising the in-service load history applied to the 

cracked material being assessed. 

Another important aspect which is worth mentioning here is that the intrinsic length 

scale parameter   of gradient elasticity is directly related to the classic LEFM 

material properties [16, 17] through the following critical distances [4]: 
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In the above definitions, KIc is the plane strain fracture toughness, whereas Kth is 

the threshold value of the LEFM stress intensity factor range. By using the Area 

Method argument re-interpreted according to non-local mechanics, it was then 

shown that intrinsic length scale parameter   can directly be estimated via the 

above critical distance values as follows [16, 17]: 

 

 SL
8
1

  under static loading       (7) 

 L
8
1

  under high-cycle fatigue loading     (8) 
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Relationships (7) and (8) should make it evident that there exists an implicit link 

between gradient elasticity’s and LEFM’s modus operandi, even though gradient 

elasticity allows the static and high-cycle fatigue assessment to be performed without 

making use of KIc and Kth, respectively. This will be proven in the next section. 

To conclude, it also worth observing that, in the log-crack regime, gradient elasticity 

is seen to be able to model the scale effect in accordance with what postulated by 

LEFM. In particular, in Refs [16, 17] it was proven that, when   is estimated via Eqs 

(7) and (8), the use of gradient-enriched crack tip stresses results, in a Kitagawa-

Takashi like log-log representation, in a straight-line having inverse slope equal to -

1/2 and perfectly overlapping the threshold straight line estimated according to 

LEFM. 

 

Experimental validation 

By performing a systematic bibliographical investigation, a number of relevant 

experimental results were selected from the technical literature. All data re-analysed 

in the present section were generated by testing samples under both static and 

cyclic loading. The specimens tested under static loading were made of different 

ceramic materials with crystalline structure. In such materials, atoms are linked 

together mainly either by ionic bonds (such as Al2O3) or by covalent bonds (such as 

SiO2). Since both ionic and covalent bonds are characterised by a high lattice 

resistance to the dislocation motion, fast fracture in cracked ceramics is seen to 

occur mainly trans-granularly due to cleavage [18]. Table 1 summarises the static 

mechanical properties of the investigated ceramics with the corresponding average 

grain size d , where IcK  is the plane strain fracture toughness (as to the 
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experimental determination of both d  and IcK , the Reader is referred to the original 

sources). The experimental data were obtained under axial loading by testing 

samples containing different crack-like geometrical features, including controlled 

surface flaws, surface scratches, large pores, and sharp notches. Such results were 

generated by employing either cylindrical or flat specimens having reference 

dimensions of the cross sectional area in the range 3-10 mm. 

The cracked specimens tested under high-cycle fatigue loading were instead made 

of two different metallic materials, i.e. 2.25Cr-1Mo [27] and JIS SM41 [28, 29]. Table 

2 lists the fatigue properties of the above metals together with the corresponding 

average grain size d (as reported in the quoted papers). Further, in this table also 

the threshold values of the LEFM stress intensity factor range, denoted as thK , are 

reported, such material properties being experimentally determined under the 

appropriate value for load ratio R (as to the experimental procedures followed to 

determine thK  the Reader is referred to the original sources). Finally, the re-

analysed experimental results were generated by testing, under cyclic axial loading, 

cylindrical samples of 2.25Cr-1Mo [27] containing superficial cracks and plates of JIS 

SM41 containing lateral cracks [28, 29]. The gauge length diameter of the 2.25Cr-

1Mo specimens was equal to 10 mm [27], whereas the 2.25Cr-1Mo rectangular 

specimens with two lateral cracks had gross cross-sectional area equal to 50 x 3 mm 

[28, 29]. 

From a cracking behaviour point of view, similar to what is observed in 

ceramics loaded statically, also in metals at room temperature fatigue cracks are 

seen to grow mainly in a trans-crystalline mode [30]. Further, in terms of crack arrest 

mechanisms, both in ceramics loaded statically and in metals subjected to fatigue 

loading, the propagation of cracks is seen to be arrested by the grain boundaries that 
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act as inherent microstructural barriers [31, 32]. This supports the hypothesis, 

mentioned earlier, that the gradient elasticity length scale parameter   is 

proportional (and in fact, as we argued, more or less equal) to the grain size d . 

Thus, we will use d . 

The selected experimental results are summarised in the normalised 

Kitagawa-Takashi diagram [3] reported in Figure 2. For static failure, the vertical axis 

is the ratio between the nominal gross stress resulting in the breakage of the ceramic 

samples, th , and the material ultimate tensile strength, UTS . For fatigue failure, the 

ordinate is the ratio between the range of the nominal fatigue limit (referred to the 

specimens’ gross section), th , and the material un-notched fatigue limit, 0 . 

This parametrisation allows results generated under static and high-cycle fatigue 

loading to be plotted in the same chart. The horizontal axis is the normalised 

equivalent crack length calculated as daF /2 , where F  is the LEFM geometric 

shape factor of the specimen and a  is the crack length. The equivalent length 

defined as above allows experimental results generated by testing samples having 

shape factor F  different from unity to be compared directly to the case of a central 

crack in an infinite plate loaded in tension (for which F  is, by definition, equal to 

unity) [33]. In other words, in Figure 2 the LEFM shape factor F  is used solely to 

summarise in a single diagram data from samples with different geometries; F is not 

related to the material parameters. 

These experimental data are accompanied by the results of numerical 

modelling; the curve plotted in Figure 2 was determined numerically by sampling the 

gradient enriched stresses at the tip of the crack – something that would be 

impossible in LEFM, as these stresses would then be singular. The numerical results 

were obtained through two consecutive steps of numerical analysis. First, a standard 
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linear elastic analysis was performed, leading to a displacement field in which all 

gradient effects are absent. Next, the displacements found in the first step are used 

as input in the second step, in which a reaction-diffusion type equation is solved on 

the same finite element mesh to introduce the gradient enrichment and, thus, the 

effects of the micro-structural length. Similar to the first step, in the second step a 

global system of equations must be solved, but the unknowns in the second step are 

the gradient-enriched stresses (for full details, see [8, 10]). 

Turning back to the chart of Figure 2, the threshold condition (continuous 

curve) was determined by recalculating the nominal stress (i.e. either th  or th ) so 

that UTStip    for static loading and 0  tip  for fatigue loading, respectively – 

see Eqns (3) and (4). The diagram of Figure 2 makes it evident that gradient 

enriched crack tip stresses are successful in modelling the transition from the short- 

to the long-crack regime, this holding true both under static and fatigue loading.  

 

Discussion 

It is well-known that LEFM cannot be used to model the behaviour of short cracks. 

For any material, LEFM predicts that the nominal strength increases as the crack 

length decreases, eventually resulting in a failure stress which is higher than either 

the material ultimate tensile strength UTS  (under static loading) or the plain fatigue 

limit 0  (under high-cycle fatigue loading). In contrast, as can be verified from 

Figure 2, gradient-enriched elastic crack tip stresses are capable of capturing the 

transition from the short to the long-crack regime. For decreasing crack lengths, the 

gradient-enriched crack tip stresses gradually approach the horizontal asymptote 

given by the inherent material strength. Note also that the right-hand side straight 

branch of the curve plotted in the normalised Kitagawa-Takashi diagram is 
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characterised by a slope equal to 21 , which is in accordance with the LEFM basic 

equations, i.e. aFK g   for static failure or aFK g   for fatigue 

failure. 

From a practical point of view, the real novelty here is that accurate 

predictions can be made by simply using the grain size d  and either the material 

ultimate tensile strength UTS  or the plain fatigue limit 0 , without any additional 

curve fitting. This results in great simplification of the design process, since 

experimentally determining both IcK  and thK  according to the pertinent standard 

codes’ procedures is not only expensive, but also time-consuming. In contrast, with 

gradient elasticity, structural integrity can be assessed without the need for 

determining IcK  or thK  at all. 

It is also worth observing that the majority of the experimental results fall 

within an error interval of ±20%. Such a physiological scattering can be ascribed, on 

one hand, to the well-known difficulties which are usually encountered when 

manufacturing and testing cracked specimens (especially those containing short 

cracks), and, on the other hand, to the actual material morphology as well as on the 

presence of both microstructural defects and hard inclusions [4]. The level of 

conservatism which is obtained in the very long-crack regime deserves to be 

discussed in detail. In the presence of very long cracks, the effect of the cracks 

themselves tends to prevail over the local effect of the microstructure. Accordingly, 

the level of conservatism which is obtained in the very long-crack regime could be 

ascribed to the fact that when cracks become very long compared to the material 

microstructural features, the size of the process zone may change, resulting in a 

different value for length scale  : the validity of this idea is supported by the fact that 
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slightly reducing the value of critical length   (i.e. taking d75.0  ) would have been 

enough to accurately predict the experimental results also in the very-long crack 

regime. However, using the grain size d  allows the long-crack behaviour to be 

modelled by reaching a slightly higher margin of safety. 

Using gradient elastic facture mechanics instead of LEFM can have significant 

impact on materials science. Similar to what is commonly done with finite radius 

stress raisers, design stresses are directly estimated at the crack tips, that is, at 

those material points for which LEFM would predict infinitely large stresses. Both 

static and high-cycle fatigue strength can be estimated by solely using those 

mechanical properties which are usually available for engineering materials, i.e. the 

material ultimate tensile strength and the plain fatigue limit. The fact that the 

necessary stress fields are directly determined through conventional finite element 

models implies that practitioners with no specific LEFM background can safely and 

efficiently design cracked material against either static or high-cycle fatigue loading. 

 

Conclusions 

 Using gradient elasticity instead of classical elasticity, stress analysis is still 

elastic, but singularities due to abrupt changes in boundary conditions can be 

avoided. 

 Singular-free stress fields imply that crack tip stresses are unique and finite, 

and can thus be used for design directly. Hence, strength analysis can be 

merged into stress analysis. 

 Through the inclusion of an internal length parameter, the effects of 

microstructure enter the stress analysis. This accounts for size and scale 

effects, and thus a unified description of long and short cracks is possible. 
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 We have validated our methodology with a number of experimental results. 

These have confirmed its capability to model the transition from the short to 

the long crack regime under static as well high-cycle fatigue loading. 

However, more work is obviously required to check the applicability of our 

approach to other fracture-related problems. 

 In anticipation of future work, being able to use crack tip stresses has the 

potential to change radically the way the behaviour of cracked materials is 

modelled. 
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Tables 

 

Material Ref. 
UTS  IcK  d  

[MPa] [MPa·m1/2] [mm] 

SiC [19] 620 3.7 0.003 

Sialon [19] 920 4.6 0.002 

Si3N4 [19] 650 4.5 0.004 

Si3N4 [20, 21] 880 5.0 0.0015 

Si3N4 [22] 700 5.0 0.0015 

Si3N4 [23] 700 5.0 0.0030 

Si3N4 [24] 510 5.0 0.004 

Al2O3 [19] 200 3.1 0.02 

Al2O3 [20] 790 3.5 0.003 

Al2O3 [20] 610 3.5 0.007 

Al2O3 [23] 210 3.5 0.02 

Al2O3 [25] 610 3.5 0.002 

Al2O3 [25] 390 3.5 0.005 

Al2O3 [26] 390 3.5 0.003 

 

Table 1: Mechanical static properties, and grain size d , of the investigated 
engineering ceramics. 

 

 

Material Ref. R  
0  thK  d  

[MPa] [MPa·m1/2] [mm] 

2.25Cr-1Mo [27] -1 502 12.6 0.1a 

JIS SM41 [28, 29] -1 331 13.0 0.025 

JIS SM41 [28] 0 310 6.5 0.025 

JIS SM41 [28] 0.5 271 4.6 0.025 
aAustenite grain size 

 

Table 2: Fatigue properties, and grain size d , of the investigated metallic materials. 
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Figure 1: In-field use of gradient-enriched crack tip stresses to perform both the 
static and the high-cycle fatigue assessment of cracked materials. 

 

 

 

Figure 2: Accuracy of gradient-enriched crack-tip stresses in modelling the transition 
from the short to the long-crack regime under both static and fatigue loading. 
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