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SUMMARY

In this paper, the effects of element shape on the critical time step are investigated. The common rule-of-
thumb, used in practice, is that the critical time step is set by the shortest distance within an element divided
by the dilatational (compressive) wave speed, with a modest safety factor. For regularly shaped elements,
many analytical solutions for the critical time step are available, but this paper focusses on distorted element
shapes. The main purpose is to verify whether element distortion adversely affects the critical time step
or not. Two types of element distortion will be considered, namely aspect ratio distortion and angular
distortion, and two particular elements will be studied: four-noded bilinear quadrilaterals and three-noded
linear triangles. The maximum eigenfrequencies of the distorted elements are determined and compared
to those of the corresponding undistorted elements. The critical time steps obtained from single element
calculations are also compared to those from calculations based on finite element patches with multiple
elements. Copyright c⃝ 2014 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: explicit time integration, critical time step, eigenfrequency, element distortion, element
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1. INTRODUCTION

Explicit time integration methods are the most popular methods to solve the dynamic equations of

fast-transient processes. Combined with lumped mass matrices, explicit algorithms require minimal

CPU time and computer memory per time step, and they are very simple to implement. However, a

significant drawback is that explicit time integrators are generally only conditionally stable. That is,

the time step used for time integration must be chosen smaller than the so-called critical time step

for the simulation to remain stable.

Much research has been carried out to compute, and subsequently control, the critical time step.

For low-order elements with regular shapes, it may be possible to derive the critical time step in

a closed-form expression, see for instance [1]. However, in more general applications the critical

time step has to be estimated, and it is important for practitioners that reliable rules-of-thumb are

provided that are safe but as close to the exact (yet potentially unknown) values of the critical time

step as possible. In what follows, the focus will be on the elasto-dynamics of solids and structures

for which the spatial discretisation is performed using the finite element method.

∗Correspondence to: Harm Askes, Department of Civil and Structural Engineering, University of Sheffield, Mappin
Street, Sheffield S1 3JD, United Kingdom, h.askes@sheffield.ac.uk
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2 H. ASKES ET AL.

1.1. Computing the critical time step

For explicit time integration schemes, such as the central difference scheme, the critical time step

∆tcrit is given by [2]

∆tcrit =
2

ωG
max

(1)

where ωG
max is the maximum eigenfrequency of the entire finite element assembly (the superscript

G indicates that this is a global quantity). In order to find the maximum eigenfrequency, a

global eigenvalue problem must thus be solved. This is usually deemed to be too expensive, and

most researchers solve instead the maximum eigenfrequency of a single element. The maximum

eigenvalue of the entire finite element mesh is smaller than the maximum eigenvalue of the

individual elements of that mesh [3]; therefore, it is safe to estimate the critical time step using

the maximum eigenfrequency of the smallest finite element.

The eigenvalue problem of a single element is a polynomial equation, whereby the degree of the

polynomial equals the number of degrees of freedom of that particular element. Generally, analytical

solutions can only be guaranteed for polynomial equations up to degree four (i.e. quartic equations),

which would restrict analytical solutions of element eigenvalue problems to finite elements that

have at most four degrees of freedom (e.g. two-noded bar elements, two-noded beam elements).

However, the eigenfrequencies corresponding to rigid-body motions are zero and the resulting

polynomial equations can usually be simplified considerably. Moreover, additional assumptions

such as reduced numerical integration and focus on the dilatational deformation mode may lead

to further simplifications. Thus, eigenvalues have been obtained for quadrilateral and hexahedral

elements [4] and for Mindlin plate elements [5]. More recently, the use of symbolic operation

software has enabled the evaluation of eigenvalue problems for more complicated finite elements,

such as four-noded and eight-noded quadrilaterals using lumped or consistent mass matrices and

reduced or full integration schemes [1].

In the literature, there are two interesting exceptions to the general observation that most

researchers focus on the element eigenvalue problem. Firstly, Lin [3, 6] suggested to use the

eigenvalue problem at the integration point level, rather than the element level. The presented

bounds on the respective eigenvalues demonstrate that this approach is safe but conservative: the

critical time step computed using the integration point eigenvalues is around 15 % lower than

the critical time step computed using the elemental eigenvalues for the tests reported in [3] and

around 30 % lower than the global maximum eigenvalue for the tests reported in [6]. Alternatively,

some researchers aim to solve the global eigenvalue problem, using for instance power iteration

methods [7] or Lanczos methods [8]. If the difference between global maximum eigenfrequency

and elemental maximum frequency is large, such methods may lead to a significant increase in

time step size. Although this could lead to reduced CPU times, this is off-set by the increased

computational effort required to solve the global eigenvalue problem, which can be considerable.

Furthermore, such global methods may even be unsafe in that they over-estimate the critical time

step — a problem that has been mentioned, and solved, in [8].

1.2. Controlling the critical time step

It is generally found that the relevant factors that determine the critical time step are the wave speed

of the material (in particular the dilatational one), the nature of the higher-order eigenmodes of the

finite element, and the element geometry. This knowledge has been used in the literature to control,

and indeed manipulate, the critical time step.

The wave speed can be decreased (thereby increasing the critical time step) by increasing the

mass density or decreasing the stiffness of the material. Obviously, these rather crude methods

change the mechanical properties of the system, but they have been successfully applied to the

simulation of relatively slow processes. For instance, increasing the mass density (often denoted as

“mass scaling”) has been reported to be satisfactory in metal forming simulations [9,10,11,12,13],

whereas decreasing the stiffness has been suggested for the simulation of surgery applications [14].

However, for faster processes such unphysical modifications are usually not recommendable [15].

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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THE EFFECTS OF ELEMENT SHAPE ON THE CRITICAL TIME STEP 3

Locally, the wave speed may also be affected by penalty functions used to impose constraints. As

such, the critical time step can be decreased by the use of stiffness-type penalties or increased via

mass-type penalties [16]; using both types of penalty at the same time can then be used to keep the

critical time step unmodified [17, 18, 19].

An important notion is that the critical time step is set by the largest eigenvalue, therefore

physical properties may be adjusted such that the larger eigenvalues are lowered whereas the smaller

eigenvalues remain unaffected. This has been the philosophy of more sophisticated adjustments to

the mass matrix such as those suggested in [15, 20, 21, 22]. In these applications, a non-diagonal

matrix is added to the mass matrix such that the total mass is conserved, but the larger eigenvalues

are lowered — often significantly. Whilst at first sight this may seem to be yet another unrealistic

and unphysical way of adjusting the material properties, it was shown recently that such approaches

are in fact equivalent to introducing micro-structural inertia in the material properties in the spirit

of gradient-enriched continuum theories [23]. However, the fact that this approach relies on non-

diagonal mass matrices is a significant drawback. To address this, it has been suggested to use

iterative solution methods [24], to use the micro-inertia effects only in those parts of the domain

where the element sizes are small [23], or to modify the micro-inertial mass matrix according to a

Neumann expansion in order to preserve its diagonal structure [25].

1.3. Effects of element shape

An aspect that has remained relatively under-emphasized in the literature is the element shape.

Whilst it is well-known that the critical time step is proportional to the element size (usually taken

to be the smallest distance between any two non-adjacent edges or faces of the element), the effects

of non-regular element shapes seem to have received far less attention in the literature — a notable

exception for heat problems is due to Myers [26]. This is indeed the focus of the present paper.

The apparent stiffness of a finite element assembly may be increased by element distortion. Thus,

there is an intuitive argument that such an artificially increased stiffness may lead to artificially

increased wave speeds and, in turn, artificially decreased critical time steps. If this turns out to be

true, guidance to practitioners must be provided regarding the extend to which the critical time step

is affected, so that this can be accounted for.

In Sections 4–7, the effects will be studied of aspect ratio distortion and angular distortion

on four-noded quadrilateral and three-noded triangular elements. In Section 8, the maximum

eigenfrequencies of distorted elements are then compared to the maximum eigenfrequencies of

undistorted elements. Next, assemblies of multiple finite elements are studied in Section 9. First,

however, some relevant fundamentals and the eigenfrequencies of undistorted elements are revisited

in Sections 2 and 3, respectively. Throughout, use has been made of the symbolic operation software

Maple for the single element computations, whereas MATLAB has been used for the computations

with multiple elements in Section 9.

2. METHODOLOGY

The maximum eigenfrequency required in Eq. (1) is approximated by selecting the largest root ω
from the dynamic eigenvalue problem of a single element, that is

det
(

−ω2
M+K

)

= 0 (2)

where M and K are the element mass matrix and the element stiffness matrix, respectively.

In explicit dynamics, a lumped mass matrix is commonly used, the diagonal entries of which

are obtained from the consistent mass matrix by applying the row-sum technique, for instance. For

the stiffness matrix, different numerical integration schemes may be used, such as full integration

(the default option) or selective reduced integration (applying under-integration for the shear

deformation terms but full integration for the normal deformation terms); in this paper, the main

focus is on full integration but characteristic polynomials for reduced integration and selective

reduced integration are given in Appendices A and B, respectively. Ling and Cherukuri provide

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
Prepared using nmeauth.cls DOI: 10.1002/nme



4 H. ASKES ET AL.

a comprehensive review of different square element types and different integration rules, whilst

they also cover the plane stress option alongside the plane strain assumption [1].

It is convenient to express the maximum eigenfrequency and, thus, the critical time step in terms

of the wave speed of the material. In two-dimensional configurations, the dilatational wave speed cd

and the shear wave speed cs are given by

cd =

√

λ +2µ

ρ
(3a)

cs =

√

µ

ρ
(3b)

where λ and µ are the usual Lamé constants and ρ is the mass density of the material. It is also

useful to define the ratio q between shear and dilatational wave speed [1], which is a function of

Poisson’s ratio ν only:

q =
cs

cd

=

√

1−2ν

2−2ν
(4)

For linear elastic, isotropic materials, Poisson’s ratio −1 ≤ ν ≤ 1
2
. Therefore, for such materials

the dilatational wave speed is larger than the shear wave speed. As a result, the critical time step

is dictated by the dilatational wave speed, which is confirmed when checking the eigenmodes that

correspond to the maximum eigenfrequency.

The above observations have helped many users of finite element packages to find simple

estimates for the critical time step. An intuitive interpretation of the critical time step is that waves

should not be allowed to travel too quickly through an element. Thus, the critical time step is linked

to the speed of the dilatational waves and the shortest travel distance within an element. With this

in mind, the objective of this paper can be formulated as follows: verify whether element distortion

is adversal or beneficial to the rule-of-thumb that the critical time step is set by the shortest distance

divided by the dilatational wave speed. To do this in a systematic manner, the effects of element

distortion will be studied whilst keeping the wave speed and the shortest distance constant. Here,

“shortest distance” is defined as the shortest distance between any node and a non-adjacent edge.

3. EIGENFREQUENCIES OF UNDISTORTED ELEMENTS

In order to provide reference cases for the derivations later in this paper, first the eigenfrequencies

for a number of undistorted elements are computed. In two spatial dimensions, the element shape

function matrix N collects the finite element shape functions φi through

N =

[

φ1 0 φ2 0 . . .

0 φ1 0 φ2 . . .

]

(5)

The element consistent mass matrix M
cons is obtained from

M
cons =

∫

Ωel

N
T ρN dV (6)

and can subsequently be used to find the element lumped mass matrix M
lump via

M
lump
ii = ∑

j

Mcons
i j (7)

The element stiffness matrix K is written as

K =
∫

Ωel

B
T

DB dV (8)

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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where

B =



















∂φ1

∂x
0

∂φ2

∂x
0 . . .

0
∂φ1

∂y
0

∂φ2

∂y
. . .

∂φ1

∂y

∂φ1

∂x

∂φ2

∂y

∂φ2

∂x
. . .



















(9)

The material stiffness matrix D for plane strain is given in terms of the mass density ρ and the wave

speeds cd and cs from Eqns. (3) as

D = ρ ·









c2
d c2

d −2c2
s 0

c2
d −2c2

s c2
d 0

0 0 c2
s









(10)

The element lumped mass matrix M
lump and the element stiffness matrix K are substituted into

Eq. (2), after which this expression is solved for the eigenfrequencies ω . In order to compute the

critical time step, the largest eigenfrequency must be selected and substituted into Eq. (1). Typically,

the value of Poisson’s ratio ν determines which of the eigenfrequencies is the largest.

3.1. Four-noded square element

For square elements with edge length h and using full integration, Eq. (2) can be expanded as

ω6h6
(

3ω2h2 −4c2
d −4c2

s

)2 (
ω2h2 −8c2

s

)2 (
ω2h2 −8c2

d +8c2
s

)

= 0 (11)

The (square of the) eigenfrequencies are thus found, using Eq. (4), as

ω2
1 = ω2

2 = ω2
3 = 0 (12a)

ω2
4 = ω2

5 =
4c2

d

(

1+q2
)

3h2
(12b)

ω2
6 = ω2

7 =
8c2

dq2

h2
(12c)

ω2
8 =

8c2
d

(

1−q2
)

h2
(12d)

The zero eigenfrequencies in Eq. (12a) correspond to the rigid body motions. The eigenfrequencies

(normalised with respect to h/cd) are plotted against Poisson’s ratio in Figure 1 (left). It can be

seen that the largest eigenfrequency is ω8 for positive values of ν and ω6 = ω7 for negative values

of ν . Note that ωmax = 2cd/h for ν = 0 which, upon substitution into Eq. (1), leads to the well-

known rule-of-thumb that ∆tcrit = “element size”/“wave speed”, although this rule-of-thumb must

be applied with some safety factor for other values of Poisson’s ratio.

3.2. Three-noded equilateral triangle

The shape functions for a three-noded equilaterial triangle with height h can be written as

φ1 =
h− x

√
3− y

2h
(13a)

φ2 =
h+ x

√
3− y

2h
(13b)

φ3 =
y

h
(13c)

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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Figure 1. Normalised eigenfrequencies ωh/cd against Poisson’s ratio ν for square elements (left) and for
right-angled isosceles elements (right)

where the origin of the Cartesian coordinate system has been chosen halfway the base of the triangle.

The eigenvalue problem of Eq. (2) then becomes

ω6h6
(

ω2h2 −9c2
s

)2 (
ω2h2 −9c2

d +9c2
s

)

= 0 (14)

which yields

ω2
1 = ω2

2 = ω2
3 = 0 (15a)

ω2
4 = ω2

5 =
9c2

dq2

h2
(15b)

ω2
6 =

9c2
d

(

1−q2
)

h2
(15c)

Similar to the square element discussed above, it can be easily verified that the largest

eigenfrequency is ω4 = ω5 for negative Poisson’s ratios and ω6 for positive Poisson’s ratios.

3.3. Three-noded right-angled isosceles triangle

Although the equilateral triangle is probably the most regularly shaped triangle from a purely

geometric point of view, it is also worthwhile to document the eigenfrequencies of a right-angled

isosceles triangle since such elements would appear in structured meshes for rectangular domains.

Taking the length of the hypothenuse to be equal to 2h so that the height of the triangle is again h,

the shape functions can be written as

φ1 =
h− x− y

2h
(16a)

φ2 =
h+ x− y

2h
(16b)

φ3 =
y

h
(16c)

The eigenvalue equation problem reads

ω6h6
(

ω2h2 −6c2
s

)(

ω4h4 −6ω2h2c2
d +27c2

dc2
s −27c4

s

)

= 0 (17)

so that

ω2
1 = ω2

2 = ω2
3 = 0 (18a)

ω2
4 =

6c2
dq2

h2
(18b)

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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Figure 2. Aspect ratio distortion for rectangular elements

ω2
5 =

3c2
d

h2

(

1−
√

1−3q2 (1−q2)

)

(18c)

ω2
6 =

3c2
d

h2

(

1+
√

1−3q2 (1−q2)

)

(18d)

The non-zero eigenfrequencies of Eqns. (18) are plotted against Poisson’s ratio in Figure 1 (right),

and it can be seen that ω6 is the largest eigenfrequency for all values of ν .

4. THE EFFECTS OF ASPECT RATIO DISTORTION ON RECTANGULAR ELEMENTS

The first type of element distortion that will be considered is denoted as “aspect ratio distortion”

of rectangular elements. Applying aspect ratio distortion to a square, the dimensions of the (now

rectangular) element can be indicated with h and α · h, respectively — see Figure 2. Thus, α > 1

sets the magnitude of aspect ratio distortion whilst maintaining h as the notation for the shortest

distance within the element.

Including the aspect ratio parameter α into the evaluation of Eq. (2) results in a polynomial

equation for ω as

ω6h6
(

3ω2h2α2 −4α2c2
d −4c2

s

)(

3ω2h2α2 −4c2
d −4α2c2

s

)(

ω2h2α2 −4α2c2
s −4c2

s

)

×
(

ω4h4α2 −4ω2h2
(

α2 +1
)

c2
d +64c2

dc2
s −64c4

s

)

= 0 (19)

which yields

ω2
1 = ω2

2 = ω2
3 = 0 (20a)

ω2
4 =

4c2
d

(

α2 +q2
)

3α2h2
(20b)

ω2
5 =

4c2
d

(

α2q2 +1
)

3α2h2
(20c)

ω2
6 =

4c2
dq2

(

α2 +1
)

α2h2
(20d)

ω2
7 =

2c2
d

α2h2

(

α2 +1−
√

(α2 +1)2 −16α2q2 (1−q2)

)

(20e)

ω2
8 =

2c2
d

α2h2

(

α2 +1+

√

(α2 +1)2 −16α2q2 (1−q2)

)

(20f)

In Figure 3 the non-zero eigenfrequencies ω4–ω7 are normalised with respect to ω8 and plotted

for a range of aspect ratios α and a range of Poisson’s ratios ν . Since these ratios of eigenfrequencies

are never larger than one, it can be concluded that ω8 as given in Eq. (20f) is the maximum

eigenfrequency for a rectangular element with full integration.

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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Figure 4. Aspect ratio distortion for right-angled triangular elements

5. THE EFFECTS OF ASPECT RATIO DISTORTION ON RIGHT-ANGLED TRIANGLES

Next, aspect ratio distortion is applied to right-angled triangles. The shortest distance within the

triangle is the altitude from the right angle towards the hypothenuse, and this distance is kept

constant at h. Several parametrisations are possible to capture this aspect ratio distortion, but the

one that leads to the simplest expressions is that based on the angle θ depicted in Figure 4. The

coordinates of the triangle can then be quantified by the dimensions a = h/sin(θ) and b = h/cos(θ)
and the associated eigenvalue problem leads to the following polynomial equation:

ω6h6
(

ω2h2 −6c2
s

)(

ω4h4 −6ω2h2c2
d +27sin2(2θ)

(

c2
d − c2

s

)

c2
s

)

= 0 (21)

Therefore,

ω2
1 = ω2

2 = ω2
3 = 0 (22a)

ω2
4 =

6c2
dq2

h2
(22b)

ω2
5 =

3c2
d

h2

(

1−
√

1−3sin2(2θ)q2 (1−q2)

)

(22c)

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2014)
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Figure 5. Angular distortion for rhombic elements

ω2
6 =

3c2
d

h2

(

1+

√

1−3sin2(2θ)q2 (1−q2)

)

(22d)

Since 0 ≤ q2 ≤ 3
4
, the maximum value that ω2

4 can attain is ω2
4 = 9c2

d/2h2. Furthermore,

0 ≤ q2
(

1−q2
)

≤ 1
4
, so that the minimum value that ω2

6 can attain is ω2
6 = 9c2

d/2h2. Therefore,

it can be concluded that ω4 ≯ ω6. It is also clear that ω5 ≤ ω6, thus ω6 is the largest eigenfrequency

for a right-angled three-noded triangle.

6. THE EFFECTS OF ANGULAR DISTORTION ON RHOMBIC ELEMENTS

Next, angular distortion is studied for square elements turning into rhombic-shaped elements. The

main parameter of distortion is the change of the internal angles of the element, indicated with θ as

in Figure 5. If the shortest distance of the element is to be kept constant at h, each edge of the element

has length h/cos(θ). It is possible to express the shape functions directly in Cartesian coordinates,

but this leads to lengthy and cumbersome derivations. More transparent expressions are obtained

if isoparametric shape functions are formulated in the usual local coordinates ξ and η , which for

rhombic shapes are related to the Cartesian coordinates x and y via x = ξ/cos(θ)+η tan(θ) and

y = η . The Jacobian matrix relating global to local coordinates only depends on the angle θ and is

thus constant throughout the element.

With these preliminaries, the eigenvalue problem of Eq. (2) reduces to

ω6h6
(

9ω4h4 −24ω2h2
(

c2
d + c2

s

)

+16cos2(θ)
(

c2
d − c2

s

)2
+64c2

dc2
s

)

×
(

ω2h2 −8c2
s

)(

ω4h4 −8ω2h2c2
d +64cos2(θ)c2

dc2
s −64cos2(θ)c4

s

)

= 0 (23)

Accordingly, the eigenfrequencies of the element are given by

ω2
1 = ω2

2 = ω2
3 = 0 (24a)

ω2
4 =

4c2
d

3h2

(

1+q2 −
(

1−q2
)

sin(θ)
)

(24b)

ω2
5 =

4c2
d

3h2

(

1+q2 +
(

1−q2
)

sin(θ)
)

(24c)

ω2
6 =

8c2
dq2

h2
(24d)

ω2
7 =

4c2
d

h2

(

1−
√

1−4cos2(θ)q2 (1−q2)

)

(24e)

ω2
8 =

4c2
d

h2

(

1+
√

1−4cos2(θ)q2 (1−q2)

)

(24f)
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Figure 6. Rhombic elements: ratio of eigenfrequencies ω5/ω8 (left) and ω6/ω8 (right)
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Figure 7. Angular distortion for isosceles triangular elements

The eigenfrequencies of Eqns. (12) are retrieved by taking θ = 0.

With 0 ≤ q2 ≤ 3
4

and taking 0 ≤ θ ≤ 90◦, it can be stated that ω4 ≤ ω5 and ω7 ≤ ω8. In Figure

6 the two eigenfrequencies ω5 and ω6 are plotted normalised with respect to ω8, which shows that

ω5 < ω8 and ω6 ≤ ω8. Therefore, the largest eigenfrequency is ω8.

7. THE EFFECTS OF ANGULAR DISTORTION ON ISOSCELES TRIANGULAR

ELEMENTS

Applying angular distortion to isosceles triangles is most conveniently done by taking the length of

the longest side equal to 2αh, whereby the distortion parameter α is taken as α > 1
3

√
3 in order to

keep the shortest distance of the triangle equal to h (see Figure 7). Including the angular distortion

in the eigenvalue problem of Eq. (2) results in

ω6h6
(

2ω2h2α2 −3
(

3α2 +1
)

c2
s

)(

2ω4h4α2 −3ω2h2
(

3α2 +1
)

c2
d +54c2

dc2
s −54c4

s

)

= 0 (25)

which leads to

ω2
1 = ω2

2 = ω2
3 = 0 (26a)

ω2
4 =

3c2
d

(

3α2 +1
)

q2

2α2h2
(26b)

ω2
5 =

3c2
d

4α2h2

(

3α2 +1−
√

(3α2 +1)2 −48α2q2 (1−q2)

)

(26c)

ω2
6 =

3c2
d

4α2h2

(

3α2 +1+

√

(3α2 +1)2 −48α2q2 (1−q2)

)

(26d)

Figure 8 depicts the ratio of ω4 divided by ω6 for a range of values for the distortion parameter

α and the Poisson’s ratio ν , and it can be verified that ω4 ≤ ω6. Furthermore, from Eqns. (26) is

it clear that ω5 ≤ ω6. Therefore, the largest eigenfrequency for a three-noded isosceles triangle is

given by ω6.
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Figure 8. Isosceles triangles, ratio of eigenfrequencies ω4/ω6

8. COMPARING DISTORTED AND UNDISTORTED ELEMENTS

Now that the maximum eigenfrequencies of the distorted elements have been determined, it is of

interest to compare these to the maximum eigenfrequencies of the associated undistorted elements.

Since the shortest distance in all expressions for the eigenfrequencies has been denoted by h

throughout, it can be verified whether element distortion has an adverse or beneficial effect on

the maximum eigenfrequency.

The quantity of interest is the maximum eigenfrequency of the distorted element divided by the

maximum eigenfrequency of the corresponding undistorted element. In particular,

• For aspect ratio distortion of quadrilaterals, ω8 from Eq. (20f) is divided by ω6 from Eq. (12c)

or ω8 from Eq. (12d), as appropriate. The result is plotted in Figure 9, top left. It can be

verified that the maximum eigenfrequency of a rectangle is never larger than the maximum

eigenfrequency of a square with identical shortest distance.

• For aspect ratio distortion of right-angled triangles, ω6 from Eq. (22d) is divided by ω6 from

Eq. (18d). The result is plotted in Figure 9, top right. In this case, element distortion does lead

to an increase of the maximum eigenfrequency, but this increase is relatively small. The largest

increase equals 2/
√

3 ≈ 1.155 which occurs for the hypothetical combination of Poisson’s

ratio ν = 0 and distortion angle θ = 0. However, if one imposes a bound on the maximum

acceptable distortion during mesh generation (that is, an upper bound on the ratio a/b, or a

lower bound on angle θ ), the largest increase in the eigenfrequency would be less than 2/
√

3.

• For angular distortion of quadrilaterals, ω8 from Eq. (24f) is divided by ω6 from Eq. (12c)

or ω8 from Eq. (12d), as appropriate. The result is plotted in Figure 9, bottom left. Also in

this case, element distortion leads to a modest increase in the maximum eigenfrequency. The

largest increase equals
√

2 and is obtained for the limit case of degenerate element geometry

via distortion angle θ = 90◦ combined with Poisson’s ratio ν = 0. Again, this type of distortion

can be controlled during mesh generation so that increase factors lower than
√

2 will then be

obtained.

• For angular distortion of isosceles triangles, ω6 from Eq. (26d) is divided by ω4 from Eq.

(15b) or ω6 from Eq. (15c), as appropriate. The result is plotted in Figure 9, bottom right. As

can be seen, the maximum eigenfrequency of a distorted isosceles triangle is never larger than

the maximum eigenfrequency of an equilateral triangle with identical shortest distance.

Perhaps the most pertinent conclusion is that the effects of element distortion on the maximum

eigenfrequency (and, in turn, the critical time step) are limited: in none of the studied cases was

an unbounded increase factor found. Thus, the intuitive notion that the critical time step is set by

the shortest distance of an element and the dilatational wave speed still applies — although modest

safety factors must be used in some instances.
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Figure 9. Maximum eigenfrequencies of distorted elements divided by those of undistorted elements —
aspect ratio distortion of square elements (top left) and right-angled triangles (top right); angular distoration

of square elements (bottom left) and isosceles triangles (bottom right)

9. CRITICAL TIME STEP FOR FINITE ELEMENT ASSEMBLIES

Next, finite element assemblies of more than one element will be considered. As mentioned in the

Introduction, most researchers estimate the critical time step by focussing on a single element,

but according to Eq. (1) the exact value of the critical time step is found by computing the

eigenfrequencies of the entire finite element mesh, not of a single element in isolation — although

the latter gives a safe bound to the exact (globally obtained) value of the critical time step [3].

Structured patches of multiple finite elements are generated by taking n elements in each

direction. For quadrilaterals, this means that n× n elements with identical dimensions are used.

For triangles, each of the quadrilaterals is then subdivided into two triangles with identical

dimensions (thus leading to n×n×2 elements in total). As such, patches of distorted right-angled

triangles and patches of distorted isosceles triangles are generated from initial grids of rectangles

and parallelograms, respectively. Values for n ∈ [1,2,4,8,16] are taken, and global stiffness and

(lumped) mass matrices are generated using mass density ρ = 1 kg/m3, Young’s modulus E = 1

N/m2 and Poisson’s ratio ν = 1
4
. The eigenfrequencies of the resulting system are then obtained in

numerical (rather than symbolic) format and substituted into Eq. (1) to obtain the critical time step.

In Figure 10 the critical time steps are plotted for the two types of elements and the two types

of element distortion that are studied, using a range of element distortion parameters. It can be

seen in all considered cases that larger patches of elements lead to larger values of the critical

time step, although there seem to be asymptotic values for each combination of element type and

distortion type. The main observations of Section 8 are also confirmed, namely that increased

element distortion leads to increased critical time steps for rectangles and isosceles triangles, and

to decreased critical time steps for right-angled triangles and rhombic elements. For rectangles

(especially those with larger aspect ratios), the difference in critical time step between a single

element (n = 1) and multiple elements is relatively small. On the other hand, there is up to 15 %

difference between the critical time step of a single rhombic element and multiple rhombic elements.
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Figure 10. Critical time step ∆tcrit versus number of elements n — rectangular elements (top left), right-
angled triangles (top right), rhombic elements (bottom left) and isosceles elements (bottom right)

10. CONCLUSIONS

The effects of element distortion on the critical time step of low-order, two-dimensional finite

elements has been studied in this paper, with focus on aspect ratio distortion and angular distortion

of linear triangles and bilinear quadrilaterals. The dynamic eigenvalue problem has been formulated

and solved on element level for a number of cases, and the maximum eigenfrequencies have been

identified in symbolic form making use of appropriate parameters to capture the element distortion

such as aspect ratio or change of internal angle. Thus, the maximum eigenfrequencies were found

in terms of material parameters (dilatational wave speed and Poisson’s ratio), the shortest distance

within the element, and the element geometry.

The overriding conclusion is that element distortion can have an adverse effect on the critical time

step, nevertheless such effects tend to be limited. In many cases there was in fact a slight beneficial

effect of element distortion (that is, the critical time step was found to be increased by element

distortion), whereas the most significant decrease of the critical time step was found to be a factor

of
√

2. Thus, the rule-of-thumb used in practice that the critical time step equals the shortest distance

divided by the dilatational wave speed, with a modest safety factor, can still be used.

An interesting secondary observation is that the integration rule for the spatial integration of the

stiffness matrix does not affect the critical time step of quadrilateral elements. The reason is that the

critical time step is set by the dilatational wave speed, whereas under-integration affects the shear

wave speed but not the dilational wave speed. This holds for the undistorted square shape but also

for distorted rectangular and rhombic shapes. The full derivations have not been presented in detail
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here, but they can be verified using the characteristic polynomials presented in Appendices A and

B, respectively.
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A. CHARACTERISTIC POLYNOMIALS FOR QUADRILATERAL ELEMENTS: SELECTIVE

REDUCED INTEGRATION

Selective reduced integration implies that the shear terms are under-integrated. This can be achieved

by evaluating the third row of B as given in Eq. (9) at the centre of the element only. For four-noded

square elements, the eigenvalue problem of Eq. (2) then reads

ω6h6
(

3ω2h2 −4c2
d

)2 (
ω2h2 −8c2

s

)2 (
ω2h2 −8c2

d +8c2
s

)

= 0 (27)

The eigenvalue problem for a rectangular element with selective reduced integration can be written

as

ω6h6
(

3ω2h2 −4c2
d

)(

3ω2h2α2 −4c2
d

)(

ω2h2α2 −4α2c2
s −4c2

s

)

×
(

ω4h4α2 −4ω2h2
(

α2 +1
)

c2
d +64c2

dc2
s −64c4

s

)

= 0 (28)

and for a rhombic quadrilateral element it reads

ω6h6
(

9ω4h4 −24ω2h2c2
d +16sin2(2θ)c2

dc2
s −16sin2(2θ)c4

s +16cos2(θ)c4
d

)

×
(

ω2h2 −8c2
s

)(

ω4h4 −8ω2h2c2
d +64cos2(θ)c2

dc2
s −64cos2(θ)c4

s

)

= 0 (29)

B. CHARACTERISTIC POLYNOMIALS FOR QUADRILATERAL ELEMENTS: REDUCED

INTEGRATION

If reduced integration is applied to all three rows of matrix B, the eigenvalue problem of Eq. (2) for

a four-noded square element reduces to

ω10h10
(

ω2h2 −8c2
s

)2 (
ω2h2 −8c2

d +8c2
s

)

= 0 (30)

Applying reduced integration to a rectangular element yields

ω10h10
(

ω2h2α2 −4α2c2
s −4c2

s

)(

ω4h4α2 −4ω2h2
(

α2 +1
)

c2
d +64c2

dc2
s −64c4

s

)

= 0 (31)

and for a rhombic element this gives

ω10h10
(

ω2h2 −8c2
s

)(

ω4h4 −8ω2h2c2
d +64cos2(θ)c2

dc2
s −64cos2(θ)c4

s

)

= 0 (32)

As usual, the increased number of zero roots for ω corresponds to a number of unphysical zero-

energy modes.
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