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Abstract

In this paper, a micro-inertia gradient visco-elasticity theory is proposed and

implemented for the description of wave dispersion in periodic visco-elastic

composites characterised by (stiffness-)proportional damping. An expression

for the internal length parameter has been derived in terms of geometry and

material properties. The theory has been validated through a numerical

simulation of wave propagation in a one-dimensional periodic composite bar

for two different heterogeneity levels, where the proposed theory has shown

good agreement with the solution obtained by explicitly modelling the mate-

rial heterogeneity. The effects of both gradient enrichment and viscosity on

wave propagation as well as their interaction have also been analysed.
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1. Introduction

Many gradient-enriched theories have been proposed in the past to over-

come deficiencies of classical elasticity (see for instance [1–3]) and plastic-

ity [4–7] theories in describing particular phenomena in both static and dy-

namics, such as size effects, strain and stress fields in the neighbourhood of

crack tips and dislocation lines [2, 3, 8–12] and wave dispersion in dynam-

ics [13–16].

The failure of classical theories in the description of the previously men-

tioned phenomena is due to the absence of internal length parameters, charac-

teristic of the underlying microstructure. On the contrary, gradient-enriched

theories are capable of considering the effects of microstructure on the macro-

scopic behaviour of a material by including high-order gradients, accom-

panied by internal length parameters, which are representative of the mi-

crostructure. Despite the significant number of gradient-enriched theories

for elasticity and plasticity, gradient visco-elasticity theories have received

less interest in the past. In particular, materials like synthetic polymers,

biopolymers, wood, human tissues, bituminous materials and metals at high

temperature show strong visco-elastic behaviours, thus it is of interest to de-

velop a continuum theory that captures the micro-structural as well as the

time-dependent phenomena.

An attempt to describe viscoelastic materials has been made by Gud-

mundson [17] in 2006, who proposed a strain gradient visco-elastic model to

describe length scale effects in such materials. However, as the author points

himself further in [17], the proposed method is lacking a link between the

length scale and the material’s microstructure.
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In this paper a micro-inertia gradient visco-elasticity theory is proposed

to study wave dispersion in periodic composites; allowing new insights about

the effects of both gradient enrichment and viscosity on wave propagation

as well as their interaction. The proposed theory is characterised by a di-

rect link with the underlying microstructure as well as material properties.

Moreover, an effective and straightforward finite element implementation of

the presented theory is proposed. In Section 2, derivation of the continuum

high-order model, characterised by an internal length parameter, is presented

starting from a simple periodic discrete lattice model. In Section 3 the higher

accuracy of the proposed methodology in capturing the dispersive behaviour

of the discrete model is shown through a dispersion analysis. Thereafter,

in Section 4 a brief description of the finite element implementation of the

proposed theory is provided, along with some details about the adopted time

integration algorithm. In Section 5 a homogenisation approach for periodic

composites is proposed, along with a relation for the internal length scale,

linking geometry and material properties. In Section 6 an application of the

new methodology is presented, in order to show the interaction between vis-

cosity and inertia gradients, as well as the different effects they have on wave

propagation and dispersion. Finally, some final considerations about the gra-

dient visco-elastic theory are given in Section 7, followed by a discussion of

future research directions.

2. Model derivation

Gradient visco-elasticity theory can be obtained through the continuali-

sation of a discrete lattice (Fig. 1) as explained in [18], taking into account
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that now the particles of mass m are in series with Kelvin-Voigt models

characterised by spring stiffness s and viscosity η; the distance between two

consecutive particles is denoted d . The equation of the motion of the nth

particle can be written as:

mün = s (un+1 − 2un + un−1) + η (u̇n+1 − 2u̇n + u̇n−1) (1)

Passing now from the discrete to the continuum model, the displacements

can be rewritten with the following expressions:

u(x, t) = un(t) and u(x± d, t) = un±1(t) (2)

Then, by using the Taylor series the generic displacement can be written

as

u(x± d, t) ≈ u(x, t)± du′(x, t) +
1

2
d2u′′(x, t)± 1

6
d3u′′′(x, t)+

+
1

24
d4u′′′′(x, t)± · · · (3)

and substituting Eq. (3) into Eq. (1), a new equation of the motion is ob-

tained, in which an higher order term appears for both displacements and

velocities:

mü(x, t) = sd2
[

u′′(x, t) +
1

12
d2u′′′′(x, t)

]

+

+ ηd2
[

u̇′′(x, t) +
1

12
d2u̇′′′′(x, t)

]

(4)

or similarly, replacing the mass, the spring stiffness and the (stiffness-) pro-

portional damping, respectively, with the following relations m = ρAd,

s = EA/d and η = τEA/d
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ρü(x, t) = E

[

u′′(x, t) +
1

12
d2u′′′′(x, t) + τ

(

u̇′′(x, t) +
1

12
d2u̇′′′′(x, t)

)]

(5)

where ρ is the mass density, E is the Young’s modulus and τ is the (stiffness-)

proportional damping coefficient. In Eqs. (4) and (5), truncation of the

Taylor series has been applied such that only the next-highest order terms

are maintained.

Figure 1. Mono-dimensional discrete model consisting in particles and Kelvin-Voigt

models.

In this way an enriched-gradient model with positive sign has been ob-

tained, which unfortunately has been proved to produce unstable results [19].

On the other hand, as shown in [19] the same model but with negative sign

leads to stable results. This can be obtained trough a simple mathematical

manipulation that consists in taking the Laplacian of the original equation

of the motion (5), that is (ignoring the spatial and temporal dependence for

notational simplicity)

ρü′′ = E

[

u′′′′ +
1

12
d2u′′′′′′ + τ

(

u̇′′′′ +
1

12
d2u̇′′′′′′

)]

(6)
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multiplying Eq. (6) by 1
12
d2, which leads to (neglecting higher-order terms)

1

12
d2ρü′′ =

1

12
d2E (u′′′′ + τ u̇′′′′) (7)

and finally subtracting Eq. (7) from Eq. (5), which leads to:

ρ

(

ü− 1

12
d2ü′′

)

= E (u′′ + τ u̇′′) (8)

or alternatively

ρ
(

ü− ℓ2ü′′) = E (u′′ + τ u̇′′) (9)

where the length scale ℓ is linked to the inter-particle distance d by the

expression ℓ = 1√
12
d.

This technique can also be applied in multi-dimensions, which in the

isotropic case leads to the following equation of the motion:

ρ
(

ü− ℓ2∇2ü
)

= LTDL (u+ τ u̇) (10)

where D is the constitutive matrix and the derivative operators L and ∇, in

the most general case, take the form

L =
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with ∇2 ≡ ∇T∇ (11)

6



Note 1. For non-isotropic materials the length scale ℓ is not a scalar any-

more, but the length scale effects in each direction of anisotropy are collected

in a tensor Ls (see for example [20]).

3. Dispersion analysis

3.1. Discrete model

To study the dispersive behaviour of the discrete model of Eq. (1), the

general harmonic solution

un = U exp(i(ωt− kxn)) (12)

is considered, where U is the amplitude, k is the wave number, t is the time,

xn the coordinate of the nth particle and ω is the angular frequency defined

as a complex number as

ω = ωh + iωd (13)

with ωh and ωd the harmonic and damping component of ω, respectively.

Substituting Eqs. (12) and (13) into Eq. (1) and considering that xn±1 = xn ± d,

the following expression for ωd and ωh are obtained

ωd = 2
c2e
d2

τ sin2

(

kd

2

)

(14)

ωh = 2
ce
d

∣

∣

∣

∣

sin

(

kd

2

)∣

∣

∣

∣

√

1− c2e
d2

τ 2 sin2

(

kd

2

)

(15)

where ce =
√

E/ρ is the elastic bar velocity. Sub-critical damping is identi-

fied via non-imaginary values of ωh, which leads to the following condition:

7



1− c2e
d2

τ 2 sin2

(

kd

2

)

≥ 0 (16)

or in terms of τ :

τ ≤ 1
∣

∣sin
(

kd
2

)∣

∣

d

ce
(17)

Since 0 ≤
∣

∣sin
(

kd
2

)∣

∣ ≤ 1, Eq. (17) can be simplified as

τ ≤ d

ce
(18)

which sets the threshold value of τ that separates sub-critical and super-

critical damping.

3.2. Continuum model

For what concerns the continuum model, the following harmonic solution

u(x, t) = U exp(i(ωt− kx)) (19)

is substituted into the one-dimensional continuum equation of the motion

(8), leading to the following equation

ρω2

(

1 +
1

12
d2k2

)

= Ek2 (1 + iωτ) (20)

Introducing Eq. (13) in Eq. (20) the following expressions for ωd and ωh are

obtained:

ωd =
c2ek

2τ

2
(

1 + 1
12
d2k2

) (21)

ωh =
cek

√

1 + 1
12
d2k2

√

1− c2ek
2τ 2

4
(

1 + 1
12
d2k2

) (22)
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Taking d = 0 m the continuum model for classical visco-elasticity is re-

trieved, obtaining the following expression for the harmonic component of

the angular frequency

ωh = cek

√

1− c2ek
2τ 2

4
(23)

Thus,

τ = 2
1

cekc
(24)

is the condition for critical damping, from which can be easily determined

the cut-off value kc (i.e. the wave number associated with ωh = 0).
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Figure 2. Harmonic component of the angular frequency versus wave number when

classical visco-elasticity theory is applied (a) and for the non-viscous micro-inertia theory

(b).

Similarly, the micro-inertia gradient elasticity model is found by setting
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the condition τ = 0 s which yields

ωh =
cek

√

1 + 1
12
d2k2

(25)

In Fig. 2a the harmonic component of the angular frequency ωh is plotted

against the wave number k, in the case the classical visco-elasticity theory is

applied, for different values of τ , while in Fig. 2b the same graph is plotted

for the non-viscous micro-inertia theory (τ = 0 s), for different values of d.

Returning to Eq. (22), it can be observed that positive values of the

argument of the second square root lead to real values of ωh, while if the

considered argument is negative, ωh becomes imaginary. Considering Eq. (19)

together with Eq. (13) it can be easily found that real values of ωh lead to the

case of sub-critical damping, while imaginary values make the system super-

critically damped (see AppendixA for a more detailed discussion about the

stability of this solution). Hence, summarising it can be stated that the

condition

τc =
1√
3

d

ce
(26)

which makes the argument of the square root null for k → ∞, represents

the condition of critical damping and consequently if τ < τc the system is

under-damped, while for τ > τc a range of higher wave numbers will be

over-damped.

Thus, an important feature of the proposed theory can be found in the

fact that varying τ (which depends on material properties) it is possible to

have control on which wave numbers are over-damped. In particular, the

lower bound of the over-damped wave numbers can be defined as the cut-off
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value kc obtained by imposing

1− c2ek
2τ 2

4
(

1 + 1
12
d2k2

) = 0 (27)

which leads to

kc =
2

√

c2eτ
2 − 1

3
d2

(28)

that represents the wave number in correspondence of which ωh is zero and

beyond which imaginary frequencies ωh are obtained.

In Fig. 3 the harmonic component of the angular frequency ωh, obtained

by applying the different models, is plotted versus the wave number k, for

different values of the dimensionless parameter ξ, writing τ as

τ = ξ
d

ce
(29)

It is worth clarifying that the results shown in Fig. 3 are physically of interest

only for 0 ≤ k ≤ π (i.e. first Brillouin zone). However, for reasons of

completeness and to allow further mathematical considerations, expressed

later in this Section, a wider range of wave numbers has been considered.

From Fig. 3, considering wave numbers up to π, it is evident that

the micro-inertia gradient visco-elastic model is able to describe with higher

accuracy the dispersive behaviour of the discrete model, compared to the

classical visco-elastic model, even if it must be observed that the improvement

introduced by the gradient enrichment becomes weaker for high value of τ .

It can also be noticed that, in the case of critical damping (Fig. 3b), the

ωh − k curve, resulting from the micro-inertia gradient model, can be split
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Figure 3. Harmonic component of the angular frequency versus wave number for the

discrete model (dashed line), classical visco-elastic model (dash-dotted line) and micro-

inertia gradient visco-elastic model (solid line), for different values of ξ: ξ = 0.4 (a),

ξ = 1/
√
3 (b), ξ = 0.6 (c), ξ = 1.0 (d).

into two parts: a first part characterised by a negative second derivative

(concave) and a second one convex. Through a more accurate study of the

second derivative it has been found that for ξ > 1/
√
6 the curve shows an
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inflexion point.

Thus, we can summarise the results of the proposed micro-inertia gradient

model as follows

• 0 ≤ ξ ≤ 1/
√
6: the ωh − k curve is always concave and it tends to the

horizontal asymptote

ωh = 6
Ce

d

√

1

3
− ξ2 (30)

• 1/
√
6 < ξ ≤ 1/

√
3: the curve is characterised by a first concave part

followed by a second convex one, but ωh is real for every wave number;

• ξ > 1/
√
3: ωh assumes imaginary values for some wave numbers.

Finally, comparing Fig. 3 with Fig. 2 it can be easily seen that both

classical visco-elasticity and gradient elasticity models alone are not able to

accurately describe the dispersive behaviour of the discrete model, but intro-

ducing a micro-inertia gradient enrichment into the classical visco-elasticity

theory a significant improvement of the results is obtained for 0 ≤ k ≤ π.

4. Discretisation

Starting from Eq. (10) the finite element equations for the bi-dimensional

case will be defined, while the equations for the three-dimensional case can

be easily obtained, following a similar procedure. Some information about

the time integration algorithm adopted in the proposed methodology to solve

the equations of the motion will be also provided.
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4.1. Finite element equations

The continuum displacements field is discretised by means of shape func-

tions which, as usual, are collected in the matrix Nu

Nu =





N1 0 N2 0 · · ·

0 N1 0 N2 · · ·



 (31)

which allow us to express the continuum displacements u = [ux, uy]
T in terms

of the nodal displacements d = [d1x, d1y, d2x, d2y, . . . ]
T through the relation

u = Nud.

Taking the weak form of the equation of the motion (10), considering

now also the body forces b, with domain Ω and boundary Γ, followed by

integration by parts, and considering the discretisation of the displacements

described above, we obtain the following equation:

∫

Ω

ρ

[

Nu
TNu + ℓ2

(

∂Nu
T

∂x

∂Nu

∂x
+

∂Nu
T

∂y

∂Nu

∂y

)]

dΩ d̈ +

+

∫

Ω

Bu
TDBudΩ

(

d+ τ ḋ
)

=

∫

Ω

Nu
TbdΩ +

∫

Γ

Nu
TtdΓ (32)

where t is the vector of the prescribed traction on the Neumann part of the

boundary and includes also the inertia effects, while Bu = LNu is the strain-

displacement matrix.

Finally we obtain the discrete system of equation

[M+H] d̈+K
(

d+ τ ḋ
)

= f (33)

with

K =

∫

Ω

Bu
TDBudΩ (34)
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the stiffness matrix,

M =

∫

Ω

ρNu
TNudΩ (35)

the classic mass matrix,

H =

∫

Ω

ργℓ2
(

∂Nu
T

∂x

∂Nu

∂x
+

∂Nu
T

∂y

∂Nu

∂y

)

dΩ (36)

the gradient-enriched part of the mass matrix and

f =

∫

Ω

Nu
TbdΩ +

∫

Γ

Nu
TtdΓ (37)

the force vector.

4.2. Time integration

In dynamics the equations of the motion of discrete systems are solved in

the time domain by using direct integration algorithms.

Here, the Crank-Nicolson method [21] has been used, obtained from the

Newmark method [22] by setting the two parameters β∗ = 1/4 and γ∗ = 1/2,

which is unconditionally stable [23].

The fundamental relations of this method are:

üi+1 =
4

∆t2

(

ui+1 − ui −∆t u̇i −
1

4
∆t2üi

)

(38)

u̇i+1 = u̇i +
1

2
∆t (üi + üi+1) (39)

where ui, u̇i and üi are, respectively, the displacement, velocity and acceler-

ation at the i th time instant, while ∆t is the chosen time step; that lead to

the following time-discretisation of Eq. (33)
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[

4 [M+H]

∆t2
+

(

2τ

∆t
+ 1

)

K

]

ui+1 =

= [M+H]

(

4ui

∆t2
+

4u̇i

∆t
+ üi

)

+ τK

(

2ui

∆t
+ u̇i

)

+ f (40)

from which the nodal displacements at time i+1 can be determined, knowing

the values of the nodal displacements, velocities and accelerations at the

previous time step i.

5. Homogenisation approach and length scale identification for pe-

riodic composites

In the scope of this paper, the periodic elastic composite analysed by [14]

will be considered. This periodic composite consists of two different materials

(properties are denoted by the subscript 1 and 2 respectively), with volume

fraction defined by the parameter α as shown in Fig. 4.

Figure 4. Mono-dimensional representation of a periodic bi-component material.

Now the constitutive relations can be presented as

σ = E (ε+ τ ε̇) (41)

16



where τ is the damping proportional factor.

Considering the homogeneous continuum model proposed by [14], neglect-

ing the multiple time scales and taking into account the constitutive relation

(41), the leading order equation of the motion takes the following form:

ρü = E (u′′ + τ u̇′′) (42)

where

ρ = αρ1 + (1− α)ρ2 (43)

E =
E1E2

(1− α)E1 + αE2

(44)

are, respectively, the homogenised mass density and Young’s modulus.

Including the next high-order term the equation of the motion reads:

ρü = E (u′′ + τ u̇′′) + γd2E (u′′′′ + τ u̇′′′′) (45)

where d is the size of the unit cell as shown in Fig. 4 and γ is expressed in

the following way:

γ =
1

12

[

α(1− α)(ρ1E1 − ρ2E2)

(1− α)ρE1 + αρE2

]2

(46)

Imposing the two conditions 0 < α < 1 and ρ1E1 6= ρ2E2 we get γ > 0.

As it can be easily noticed, Eq. (45) represents an enriched-gradient equa-

tion of the motion in which the higher-gradient term is characterised by

a positive sign, which, as previously mentioned, produces unstable results.

However, with a mathematical procedure similar to the one previously ex-

plained, as also proposed by [14] for elastic materials, it is possible to re-

place the previous unstable model with a stable inertia-gradient model. This

17



mathematical manipulation consists in taking the second spatial derivative

of Eq. (42), multiplying it by γd2 and substituting the result into Eq. (45),

which leads to the following stable inertia-gradient equation of the motion:

ρ
(

ü− γd2ü′′) = E (u′′ + τ u̇′′) (47)

or equivalently

ρ
(

ü− γd2ü′′) = Eu′′ + Cu̇′′ (48)

where C = τE.

Comparing now Eq. (9) with Eq. (48), the length scale ℓ can be written

in terms of geometry and material parameters only:

ℓ = d
√
γ (49)

6. Numerical tests

The proposed theory has first been applied to the one-dimensional wave

propagation problem consisting in a 100 m long periodic composite bar,

similar to the one shown in Fig. 4, in which the first material is charac-

terised by mass density ρ1 and Young’s modulus E1, while for what con-

cerns the second material, the properties are denoted as ρ2 and E2. Fol-

lowing Eqs. (43) and (44), the macroscopic effective material properties are

ρ = 1 kg m−3 and E = 1 N m−2. Both materials are characterised by the

same damping proportional factor τ and the volume fraction is assumed to

be α = 0.5, while the unit cell size is taken d = 1 m.

The bar has a square cross section A = 1 m2, it is fully restrained at its

right hand end and subjected to a unit-pulse at its left hand end.
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Figure 5. Dynamic response of the mono-dimensional periodic composite bar for Case a

(a, c, e) and Case b (b, d, f) and for different value of the (stiffness-)proportional damping

coefficient: τ = 0.000 s (a, b), τ = 0.001 s (c, d), τ = 0.002 s (e, f), at t = 90 s.
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The two problems presented in [24], denoted as Case a and Case b,

are analysed for different values of τ (τ = 0.000 s which corresponds to

the case of rate independent elastic material discussed in [24], τ = 0.001 s

and τ = 0.002 s). The length scales for the two problems are determined

through Eqs. (46) and (49), which leads to ℓ = d
√
γ = 0.289 m for Case a

and ℓ = d
√
γ = 0.159 m for Case b.

The problems have been modelled using linear elements, in particular the

elastic/viscoelastic heterogeneous solution has been obtained by explicitly

modelling the microstructural heterogeneity of the bar, through alternating

groups of elements, characterised by the properties of material 1 and 2, so

that the unit cell size d = 1 m. A time step of ∆t = 6.25 · 10−2 s has been

used for the heterogeneous solution, while for the classical and gradient sim-

ulations it has been assigned a value ∆t = 0.2 s.

In Fig. 5 the wave front profile after 90 s is shown for both Case a and b

and for different value of viscosity, where Figs. 5a and 5b are the same pre-

sented in [24]. Comparing the wave fronts produced by the gradient and the

explicit heterogeneous models, it can be observed that the proposed theory

provide a good approximation of the heterogeneous model. Furthermore, the

comparison between the solution given by the gradient model with that re-

sulting from classical elasticity (which, neglecting numerical dispersions, can

be considered a Heaviside function) clearly shows the ability of the gradient

enrichment to properly describe the dispersive behaviour of an heterogeneous

material regardless the viscosity, in fact from Fig. 6 it can be noticed that

viscosity does not produce any significant reduction in the speed propagation

of the wave front, represented by the slope of the front itself. Fig. 5, finally,
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shows that the dispersive character of a medium is led by the intensity of its

heterogeneity, this means that the higher the ratios E1/E2 and ρ1/ρ2 (and

consequently the value of the length scale ℓ) the stronger the dispersive effect

of the medium.
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Figure 6. Effect of viscosity on the dynamic response of the bar: classical (a) and gradient

(b) elastic/viscoelastic solutions for the Case b heterogeneous bar.

While Fig. 5 points out the effects and advantages of the gradient en-

richment, from Fig. 6 it is possible to appreciate the effect of viscosity on

the dynamic response of the bar, which mainly consists in a reduction of

the amplitude of the high frequency components. This effect is particularly

visible in the classical case, while introducing a certain heterogeneity of the

material the effect becomes weaker and, as can be observed in Fig. 7, also this

effect is led by the intensity of the material heterogeneity, in particular the

stronger the heterogeneity the lower is the attenuation of the high frequency

components.
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Figure 7. Effect of viscosity on the dynamic response of the bar: particular of the first

peak of the wave front profile for Case a (a) and Case b (b).

Hence, as summarised in Table 1, the introduction of a gradient enrich-

ment has a strong effect on the speed propagation of the wave front, allow-

ing a more accurate description of the dispersive behaviour of both elastic

and visco-elastic heterogeneous materials, while the viscosity has a moderate

damping effect on the high frequency components and no significant effects

on the speed propagation of the wave front. Therefore, the benefit of the

proposed theory is that it allows, without significant additional computa-

tional costs, a more accurate description of the global dynamic behaviour

of a visco-elastic material, which is not possible by applying either gradient

elasticity or classical visco-elasticity alone, because of the complementary

nature of the effects of gradient enrichment and viscosity.
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Table 1. Entity of the effects of gradient enrichment and viscosity on both speed propa-

gation of the wave front and high frequency components.

Gradient enrichment Viscosity

Speed propagation of

the wave front
Strong reduction Negligible

High frequency

components
Negligible Moderate damping

7. Conclusions

An inertia-gradient viscoelastic theory has been proposed for the mono-

dimensional wave propagation problems in the case of proportional damping.

This theory represents a first attempt to extend and generalise gradient

theories to the class of visco-elastic problems, and provides a more accurate

tool to describe the dispersive behaviour of periodic visco-elastic composites.

The performed dispersion analysis has shown that the introduction of

a micro-inertia gradient enrichment, in the governing equations, helps cap-

turing with higher accuracy the dispersive behaviour of the discrete model;

furthermore from the mentioned analysis it has been also found that by

changing the value of the (stiffness-)proportional damping coefficient τ it is

possible to introduce super-critical damping and, in this case, control which

wave numbers are super-critically damped.

Interaction between viscosity and inertia-gradient has been also investi-

gated as well as their effects on wave front propagation/dispersion.

The ability of the proposed theory to adequately describe dispersive wave

propagation phenomena has been shown and it has been observed that vis-
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cosity and gradient enrichment have two complementary effects, which makes

essential the use of a gradient visco-elastic theory, for an accurate description

of the overall dynamic behaviour of a visco-elastic material: while viscosity

attenuates the high frequency components, gradient enrichment reduces the

speed propagation of the wave front. Furthermore, the presented theory

shows a very good agreement, in terms of displacements, with the correspon-

dent heterogeneous model, where the microstructural heterogeneity of the

material is explicitly modelled.

Since the proposed theory represents the first attempt to introduce vis-

cosity in a gradient elasticity theory, at this stage our main goal is to explore

and understand the interaction between viscosity and inertia-gradient, as well

as their effects on wave dispersion rather than propose a complete gradient

viscoelasticity theory; for this reason we have focused our efforts in studying

a very specific problem.

Some issues remain open for future studies, in particular:

• extension of the proposed theory to periodic composites, whose consti-

tutive materials are characterised by either proportional damping with

different factor of proportionality or non proportional damping;

• extension of the one-dimensional theory to the multi-dimensional case.

AppendixA. Stability

When the argument of the square root in Eq. (22) is negative, ωh takes

the following form

ωh = ±i
cek

√

1 + 1
12
d2k2

√

c2ek
2τ 2

4
(

1 + 1
12
d2k2

) − 1 (A.1)
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Considering Eq. (13), Eq. (19) can then be rewritten as

u(x, t) = U exp((iωh − ωd) t) exp(−ikx) (A.2)

and substituting Eqs. (21) and (A.1) into Eq. (A.2), the following expression

is obtained

u(x, t) = U exp







± cek
√

1 + 1
12
d2k2

√

c2ek
2τ 2

4
(

1 + 1
12
d2k2

) − 1− c2ek
2τ

2
(

1 + 1
12
d2k2

)



 t



 exp(−ikx)

(A.3)

Focusing the attention on the argument of the first exponential term, it

can be observed that negative values produce stable results and represent

the condition of super-critical damping, while positive values would lead to

unstable results (amplification of the response). However, it can easily be

shown that the considered argument is always negative; hence there are no

risks to incur in instabilities of the solution.
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