The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of A recovery-type a posteriori error estimator for gradient
elasticity.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/85968/

Version: Accepted Version

Article:
Calik-Karakose, U.H. and Askes, H. (2015) A recovery-type a posteriori error estimator for
gradient elasticity. Computers and Structures, 154. 204 - 209. ISSN 0045-7949

https://doi.org/10.1016/j.compstruc.2015.04.003

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

A RECOVERY-TYPE A POSTERIORI ERROR ESTIMATOR
FOR GRADIENT ELASTICITY

*Ulkii H. Cahk-Karakose! and Harm Askes?
YFaculty of Civil Engineering, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey

’Department of Civil and Structural Engineering, University of Sheffield, Mappin Street,
Sheffield, S1 3JD, United Kingdom

Key Words: Gradient elasticity; a posteriori error estimatioecovery-type error estimator

ABSTRACT

In this paper, an a posteriori error estimator of the recovery type isogedelor the gradient elasticity
theory of Aifantis. This version of gradient elasticity can be implementedsitaggered way, whereby
solution of the classical equations of elasticity is followed by solvingaation-diffusion equation that
introduces the gradient enrichment and removes the singularities. With gradieaitylastigularities in
the stress field can be avoided, which simplifies error estimation. Thus, we denetopmestimator
associated with the second step of the staggered algorithm. Stress-gradientsvareddmased on the
methodology of Zienkiewicz and Zhu, after which a suitable energy norm is discussed. fidselajip
illustrated with a number of examples that demonstrate its effectiveness.

*Corresponding authofel: +90 532 240 91 96.
E-mail addressds: calikkarakose@itu.ediiiitkii H. Calik-Karakose], h.askes@sheffield.ad(Hkrm Askes)



mailto:calikkarakose@itu.edu.tr
mailto:h.askes@sheffield.ac.uk

1 INTRODUCTION

In classical elasticity, the stresses depend only on the first ordeatderiof displacements (strains) and
not on higher-order derivativedlo information on the material’s microstructure is present in classical
elasticity, and as a consequence size-dependent behaviour cannot be captured withaltesiiitgl
Moreover, classical elasticity is plagued by the occurrence of singular stegs$etrains at the tips of
sharp cracks, re-entrant corners or where point loads are applied. An alternatassital elasticity is
so-called gradient elasticity, in which the field equations are equipped with additional higher-oridér spat
derivatives of the relevant state variables. The higher-order terms are acconipamiedadditional
material parameter with the dimensions of lengtlthis parameter is linked to the micro-structural
geometry and is called “internal length scale”. Due to the presence of such an internal length scale, size-
dependent mechanical behaviour can be described [5, 7]. Furthermore, the occurrence ofismgulari
the stress and strain field can be avoided with gradient elasticity.

One of the most versatile variants of gradient elasticity theory as Atfantis theory[1-3]. Its
attractiveness is due to its mathematical structure, which allows the-fwdghequilibrium equations
be solved as an uncoupled sequence of two sets of second-order equations [3]. For Inumerica

implementations, this has the significant consequences that siﬁ:\?ﬂeontinuous interpolations suffice
for the spatial discretisation. This makes finite element implementatraightforward, as has been
demonstrateth a number of studidg-8].

We can use a priori and a posteriori error estimation techniques intordetermine the accuracy of
numerical solutions. A systematic comparative presentation of these technigiwves i [9], and an in-
depth discussion on various types of estimators can be obtained in [18]. The two mbés fafma
posteriori error estimators are the residual type estimators [10,11] arettvery type estimatof42-
14] - here, the discussion will focus on the latter. The recovery type erroratmtinhave been first
introduced by Zienkiewicz and Zhu [12] and later, the authors presented theesbstglerconvergent
patch recovery method which improved the performance of recovery based methils TI8s error
estimate can also be applied to hierarchical p-refinementanstiyht modification as given in [15A
local a posteriori error estimator for the extended finite element methdmVised in [1pwhich is based
on a derivative recovery technique in the horm and is applied to linear elastic fracture mechanics. In
their later study, the authors proposed an extended global derivative recoverguecfor extended
finite elements [1J

Thus, recovery type error estimators can be devised for use in fracturamesc where singularities are
known to exist in the solution. However, and as argued above, it is also possible se anatks with
gradient elasticity by which singularities in the stress field can be avoitegethier. This should
facilitate error estimation, and in this study a recovery type a posteran estimator for gradient
elasticity will be developed. After revisiting the basic equations of the égfgnadient elasticity theory
in Section 2 and its finite element implementation in Section 3, the suggesiedstimator will be
discussed in Section 4. The effectiveness of this approach is demonstrated with two bepabiteris
in Section 5.

2 AIFANTIS > GRADIENT ELASTICITY THEORY

One of the most popular gradient elasticity theories is the one derived by A#fladtio-workers in the
early 1990s[1-3]. In this theory, the usual linear elastic constitutive relations aradedewith the
Laplacian of the strain as

Oy = Cijkl (‘9k| _fzgm,mm) 1)

whereo is the Cauchy stress, C is the constitutive tensais the usual infinitesimal strain and is an
internal length scale parameter representing the microstructure rohtbeal. The equilibrium equations
can be written in terms of displacement derivatives as

Ci (Uk,u - fzuk,nmm) +b =0 (2



where b are the body forces. The attractiveness of this theory is (i) that it contains only one émgttmal |
scale parameter, and (ii) that its mathematical structure allows to solve ttedialer partial differential
equations as an uncoupled sequence of two sets of second-order equations. Mordlgptwficarious
derivatives in Eq. (2) can be factorised, so that Eq. (2) can be rewritten as

C.jkl Ulf,n + h =0 (3)
which are the equations of classical elasticity, followed by
ukg _Ezukg,mm = uli (4)

Here u®are the displacements following from the classical elasticity equationsst wifiare the

gradient-enriched displacements. Note thétin Eq. (4) is identical tal in Eq. (2), and the superscript
g is used to distinguish the gradient-enriched displacements from its classical counterpart.

If Eg. (4) is substituted back into Eq. (3), it is easily verified that(Epis retrieved. When this operator
split was suggested first by Ru and Aifantis [3], the gradient enrichmentewaressed in terms of
displacements as given in Eq. (4). However, it can also be evaluated in terrassdssby differentiation
as
2

O'i? - O-ijg,mm = Cijkl UEJ %)
The use of Eq. (5) instead of Eq. (4) has some advantages: it was demonsfta&dtat the use of Eq.
(4) does not necessarily remove the singularities from all stress compongwgstip of sharp cracks,
whereas all stress singularities are removed if Eq. (5) is-usieid discrepancy can be attributed to the
nature of the variationally consistent boundary conditions [5].

3 IMPLEMENTATION OF Al FANTIS’ THEORY

In this section, matrix-vector notation will be used instead of index notatids, @astomary in finite
element literatureA finite element implementation of the Aifantis’ theory which is based on Eq. (4) was

first given in [4] and then extended to include Eq. (5) in [5]. In this study, and fobjowhe
recommendations in [5], Egns. (3) and (5) are used for the implementation of the Alaotg of
gradient elasticity.

Eq. (3) is the usual expression of equilibrium in classical elasticity, the spigtie¢tisation of which is
well known and does not need to be repeated here. The weak form of Eq. (5) is obtained by
premultiplying with a virtual strain fielde and integrating over the domaia as

j & -(o-1*V35—CLu)dV =0 (6)
Q

where L is the usual strain-displacement differential operator, which in the twenglonal case is
defined as

90 9
T OoX 8y
L = P (7)
o — =
oy OoOX
Integrating by parts and substitutiog= S , whereS=C™, results in
T T
(85T SodV + || 2951299 4 09 51299 |y (55T LudV = 0 8)
Q 2 OX ox oy oy Q

Here, the boundary terms are ignored, which is equivalent to adopting the homogeneousmatdaa/
condition n-Vo = 0[5, 7]. Finite element discretisation of Eq) (Bves
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The two fields of unknowns, namely the classical displacements and the gradient-enrietwss sare
discretised with shape functionbl,and N_, respectively. FurthermorB, = LN, and underlined

vectors contain the discretised nodal values of their continuous counterpartsh&gehspecifications
the resulting system of equations can be written as

L
. == (10)
_KUO' KUG g Q

where f is the external force vector, and

jva = 5" [N]B,dVu ©)
Q

K,,=]B;CB,dV (11)
Ke =JBIN_dV (12)

GS€2 o 4 O’S€2
x o~ ox oy oy

Eqg. (10) is a decoupled system of equations in which the first row of equations canelepsialr to the
second row of equations. Thus, it can be said that the gradient-enrichment (secondequatiohs)
constitutes a post-processing of the results of classical elasticity (first eyuations).

T T
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4 RECOVERY TYPE ERROR ESTIMATION FOR GRADIENT ELASTICITY

Next, one of the a posteriori error estimates derived by Zienkiewicz and Zhis [ddapted to the finite
element implementation of gradient elasticity. In their study, a nodal averaging reetsad to recover
the stresses as an approximation of the exact stresses which are in general unkese/medovered
stresses are much more accurate than the direct finite element solotothegefore the difference
between recovered stresses and finite element stresses is a good approximatiactoéltesror in the
stresses. The error in the stresses is accordingly defined

e =0,—0, (14)
where the subscripts n andhdicate “numerical” and “recovered”, respectively.

The error defined in Eq. (14) can be used to estimate the error in particular locdtibiesdomain.
However, as a first indication of the overall error of a certain finéeeht computation, it is common to
compute the error field across the entire domain in a suitably defined norm. If seddésis can
afterwards be used to normalise local errors such as those used in adaptive frenefaigonithms, e.g.
Following Zienkiewicz and Zhu, we will adopt an energy norm. From the continuum equatiomsl (3) a
(5) it can be seen that the underlying energy functionals are

U, = j% £5C,, £5dV — [WWhadV — [Utt,dS (15)
0 0 r

associated with Eqg. (3), and
U, = [ % Hv vV 16
2—!&5 O-iijkIle_'_ GiijjkIle,m _Lo-ijgij (16)
corresponding to Eqg. (5). The last term in Eq. (16) provides the coupling from Eqg.E8) (5) and can

be interpreted as “source terni’ for Eq. (5). Based on Eq. (16), an energy norm of the error associated with
Eq. (5) can be defined as



o, = 5 {01 -0 ) Sl =0 )+ 2V, ~Vo, ) SVa, ~Vo, Jav (17)

Here, Vo, is the stress gradient vector of the numerical solution ¥iaq is the recovered stress

gradient vector. However, since the stresses are the primary variables in, Edo([Svs that o, = o,
so that the first contribution in the integral of Eq. (17) vanishes whdiyti Eq. (17) can therefore be
simplified as

e, =[5 (o, Vo, ) SlVa, -V, )av

o (18)

Thus, the energy norm of the error is expressed in terms of the derivdtiesprimary variables, as
usual. We will also employ a relative ermprdefined by

_lel
n (29)
o]
Finally, the energy norm of the exact error is measured by
”ea”ixact = :L%gz(vgn o VGEXBC i S(VGn o VGexact)d\/ (20)

Thus, the global error effectivity index is defined as the ratio of the approximateoetfierexact error

9 — ”eo'” (21)
”eff”exact

5 BENCHMARK EXAMPLES

51 Cantilever Beam

A plane stress cantilever beam example subjected to a unit point load shbigaria 1 is solved by
classical and gradient elasticity theories for coarse and successivedd refeshes and the three stress
components under the point load are given in Table 1 wdfeaddc® indicate stresses obtained from
classical and gradient elasticity solutions, respectively.

1 kN

y

2m E = 1000000 kN/f;, h=0.15 m ;v = 0.20

4m
/IV /III

Figure 1 Cantilever beam under a tip load of 1kN

Table 1 Mesh refinement study for stresses under the point load

Mesh 6%« 0% Sy oy S’y oy

(2x1) 4.150 3.131 -5.233 -3.846 -2.774 -3.047
(4x2) 4,901 2.997 -19.966 | -8.740 -4.147 -3.736
(8x4) 8.625 3.037 -40.610 | -10.431| -9.879 -4.280
(16x8) 17.593 3.131 -80.867 | -11.186 | -20.716 | -4.537

(32x16) | 35.373 | 3.193 |-161.550| -11.571| -41.745| -4.645




The three stress components of classical elasticity solution roughly double irforadwery successive
mesh refinement corresponding to divergepce. On the contrary, stress componentse confier
values when gradient elasticity is used.

Stresses along the cantilever beam obtained by classical elasticity and Aifantis’ gradient elasticity theories
for 5 different meshes are shown in Figures 2 and 3, respectively. In classitiaityelsslution, the
singularities under the point load cannot be captured for very coarse mesheth boesh refinement,
those singularities become apparent, as expected. In Figure 3, it is shown that s@wyafareliminated
by the usage of gradient elasticity.
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"E 50.00 = 2x1 mesh
> 40.00 —A4x2 mesh
= 30.00 8x4 mesh
o 20.00
10.00 16x8 mesh
0.00 32x16 mesh
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x [m]
Figure 2 Mesh refinement study of classical elasticity solution
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Figure 3 Mesh refinement study of gradient elasticity solution

Relative errors in stresses obtained for h refinement using diffieregth scale parameters in log-log
scale are plotted in Figure 4 to examine the convergence of the implemeritasoseen that relative
errors decrease considerably with the increment of number of degrees of fri@@Bin Furthermore,
the convergence rate is somewhat higher for larger values of the length scalegamhichexplained by
the stress smoothing resulting from the gradient enrichment. Thus, the stieeds Benoother, and
convergence is easier to achieve, for larger values of the length scale.

In Figure 5, relative errors for increasing length scale parameters are shoWdifferent meshes. The
convergence rate increases with mesh refinement as expected, although the erroniiediitférent for
different values of the length scale. In line with what can be seen in Figure 4, the someiwhat larger
for /=1m

The effectivity index of the estimator is plotted against mesh refinemésganthmic scale for different
length scale parameters in Figure 6. It is observed that the effectivity imdexy close to 1 for all
analyses. Furthermore, it converges to 1 with both mesh refinement and increasthg sleaig
parameter, which demonstrates the effectiveness of the proposed error estimator.


http://tureng.com/search/on%20the%20contrary

relative error(log)

-0.5
-0.7
-0.9
-11
-1.3
-1.5
-1.7
-1.9
-2.1
-2.3

——|=2m
—i—|=1m
=#=1=0.50 m
=>=1=0.25m

number of DOF(log)

Figure 4 Relative errors in stresses for h refinement using different length scalespermm
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Figure 5 Relative errors in stresses for increasing length scale parameters
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Figure 6 Effectivity index for h refinement and different length scale parameters



5.2  Tensile Strip Specimen

A plane stress tensile strip specimen made of polymethylmethacrylate (P8idn in Figure 7 has
two opposite crack-like U-notches of 6 mm in the middle and it is subject@ditiformly distributed
tensile force. Experimental study of the tensile strip specimen is given]iarjd9ts internal length scale
parameter validation is performed in [20]. First, stress distributions along the midlinganedtoth by
classical and gradient elasticity theories for 3 successively refined meshesrafdleingth scale
parameters. Afterwards, relative errors are examined for h refinement ancefagtid $cale parameters.
Finally, effectivity indexes are obtained in order to demonstrate the effectvefidbe proposed a

posteriori error estimation approach.

SYTRAYIEY

— t=6 mm; c,=62.33 N/mm

SRRRSRRRLE:

Gn
Figure 7 Geometry of the U-notched tensile strip specimen

Note that, due to its symmetry property, one quarter of the specimen is usedpioeity. In Figure 8, a
coarse mesh of 15x15 elements is used and stresses in y direction are plottechagdistante. Stresses
up to the crack tip are all about zero as expected and they attain unrealistic ralnestlae crack tip
when classical elasticity is used. It can be observed in Figures 8, 9, and 10 that thexssareamoothed
by the usage of gradient elasticity and more realistic values are obtaingtenittisrement of the length

scale parameter.

50.00

40.00
& 30.00 classical elasticity
g = |=0.25 mm
> 20.00
x, =—1=0.50 mm

b ——
5 10.00 e ——[=1.00 mm
0.00 éﬁ [=2.00 mm
) 2 4 6 8 10 12 14 16

-10.00 )
Distance [mm]

Figure 8 Stresses along the edge of the one quarter specimen using (1&&hb5) m



The number of elements in both directions is doubled in Figure 8 and it is sethrethat a noticeable
jump in stresses of classical elasticity around the crack tip. In Figure ®wuthber of elements is
increased again leading to a (60x60) mesh. The jump in stresses of clasdicéledatition increases
which means that the singularities can be observed more clearly when small mesh sizes are used.

70.00
60.00
50.00
= classical elasticity
c 40.00
g =—1=0.25 mm
> 30.00
4 =1=0.50 mm
2
5 20.00 = |=1.00 mm
10.00 ——|=2.00 mm
0.00
) 2 4 6 8 10 12 14 16
-10.00 .
Distance [mm]
Figure 9 Stresses along the edge of the one quarter specimen using (3@s30) m
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10.00 —eL0mm
0.00 <
-10.00 0 2 4 6 8 10 12 14 16

Distance [mm]

Figure 10 Stresses along the edge of the one quarter specimen using (60x60) mes

In order to examine the convergence of the implementation, relative errors in stressbtined for h
refinement using different length scale parameters as given in Figure 11, plotted in log-loly isceden
that relative errors decrease considerably with increasing the numbereésiefjfreedom as well as the
length scale parameter. The length scale with a value of 0.25 mm is vercampdired to the element
sizes of the coarsest meshes, therefore the behaviour of the erroofisireeivith the other values of the
length scale (although the error is still monotonically decreasing with the elenggnt siz

In Figure 12, relative errors for increasing length scale parameters are shown feréhdiheshesAs
expected, the convergence rate increases with mesh refinement. However, anothatimbserthat
larger values of the length scale generally lead to lower levels of errgrisThecause larger values of
the length scale lead to more smoothed-out stress distributions, which can be captaredsity by the
finite element discretisation, thus leading to lower errors.



Finally, the effectivity index of the estimator is plotted against meBhement in logarithmic scale for
different length scale parameters in Figure 13 and it is seen that the #fféuatiex is very close to 1 for
all analyses. This demonstrates the effectiveness of the proposed error estimator.

'1.4 T T T 1
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Figure 11 Relative errors in stresses for h refinement using different lengthpralmeters
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Figure 12 Relative errors in stresses for increasing length scale parameters
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Figure 13 Effectivity index for h refinement and different length scale parameter
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6 CONCLUSIONS

In this paper, a recovery typeposteriori error estimator is developed for tigantis’ gradient elasticity
theory. This version of gradient elasticity can be implemented in a staggayediwereby the fourth-
order equilibrium equations are solved as an uncoupled sequence of two sets of secormgliatiters.

Thus, simple,CO—continuous interpolations suffice for the spatial discretisation which makesitee fi
element implementation straightforward. The developed error estimator is associatéub witcond step
of the staggered algorithm where stress-gradients are recovered based on the method=pkewicz
and Zhu, after which a suitable energy norm is discussed.

It is demonstrated with two benchmark examples that stress singularitiespoimteloads and around
crack tips are avoided with gradient elasticity which simplifieeregstimation. It is observed thateth
relative error decreases and the convergence rate increases with meshergfias well as, generally,
with increasing length scale parameter.

In order to investigate the effectiveness of the proposed error estimator,ettévieff index is plotted
against mesh refinement for different length scale parameters and it ihae#reteffectivity index of
the estimator is very close to 1 for all analyses which demonstrates that the proposed method is effective.
Finally, it is noted that in this paper we have used artificial valuethé gradient elasticity length scale,
solely to test the developed error estimator. In real-life applicationsathe of the length scale should
be measured from experiments or deduced from the micro-structural geometry etéhials see [7]
for an overview.
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