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ABSTRACT 

In this paper, an a posteriori error estimator of the recovery type is developed for the gradient elasticity 
theory of Aifantis. This version of gradient elasticity can be implemented in a staggered way, whereby 
solution of the classical equations of elasticity is followed by solving a reaction-diffusion equation that 
introduces the gradient enrichment and removes the singularities. With gradient elasticity, singularities in 
the stress field can be avoided, which simplifies error estimation. Thus, we develop an error estimator 
associated with the second step of the staggered algorithm. Stress-gradients are recovered based on the 
methodology of Zienkiewicz and Zhu, after which a suitable energy norm is discussed. The approach is 
illustrated with a number of examples that demonstrate its effectiveness. 
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1 INTRODUCTION 

In classical elasticity, the stresses depend only on the first order derivative of displacements (strains) and 
not on higher-order derivatives. No information on the material’s microstructure is present in classical 
elasticity, and as a consequence size-dependent behaviour cannot be captured with classical elasticity. 
Moreover, classical elasticity is plagued by the occurrence of singular stresses and strains at the tips of 
sharp cracks, re-entrant corners or where point loads are applied. An alternative to classical elasticity is 
so-called gradient elasticity, in which the field equations are equipped with additional higher-order spatial 
derivatives of the relevant state variables. The higher-order terms are accompanied by an additional 
material parameter with the dimensions of length – this parameter is linked to the micro-structural 
geometry and is called “internal length scale”. Due to the presence of such an internal length scale, size-
dependent mechanical behaviour can be described [5, 7]. Furthermore, the occurrence of singularities in 
the stress and strain field can be avoided with gradient elasticity. 

One of the most versatile variants of gradient elasticity theory is the Aifantis theory [1-3]. Its 
attractiveness is due to its mathematical structure, which allows the fourth-order equilibrium equations to 
be solved as an uncoupled sequence of two sets of second-order equations [3]. For numerical 

implementations, this has the significant consequences that simple, 0C -continuous interpolations suffice 
for the spatial discretisation. This makes finite element implementation straightforward, as has been 
demonstrated in a number of studies [4-8]. 

We can use a priori and a posteriori error estimation techniques in order to determine the accuracy of 
numerical solutions. A systematic comparative presentation of these techniques is given in [9], and an in-
depth discussion on various types of estimators can be obtained in [18]. The two main families of a 
posteriori error estimators are the residual type estimators [10,11] and the recovery type estimators [12-
14] – here, the discussion will focus on the latter. The recovery type error estimators have been first 
introduced by Zienkiewicz and Zhu [12] and later, the authors presented the so-called superconvergent 
patch recovery method which improved the performance of recovery based methods [13,14]. This error 
estimate can also be applied to hierarchical p-refinement with a slight modification as given in [15]. A 
local a posteriori error estimator for the extended finite element method is devised in [16] which is based 
on a derivative recovery technique in the L2 norm and is applied to linear elastic fracture mechanics. In 
their later study, the authors proposed an extended global derivative recovery technique for extended 
finite elements [17].  

Thus, recovery type error estimators can be devised for use in fracture mechanics, where singularities are 
known to exist in the solution. However, and as argued above, it is also possible to analyse cracks with 
gradient elasticity by which singularities in the stress field can be avoided altogether. This should 
facilitate error estimation, and in this study a recovery type a posteriori error estimator for gradient 
elasticity will be developed. After revisiting the basic equations of the Aifantis gradient elasticity theory 
in Section 2 and its finite element implementation in Section 3, the suggested error estimator will be 
discussed in Section 4.  The effectiveness of this approach is demonstrated with two benchmark problems 
in Section 5. 

2 AIFANTIS ’ GRADIENT ELASTICITY THEORY 

One of the most popular gradient elasticity theories is the one derived by Aifantis and co-workers in the 
early 1990s [1-3]. In this theory, the usual linear elastic constitutive relations are extended with the 
Laplacian of the strain as  

 mmklklijklij C ,
2          (1) 

where is the Cauchy stress, C is the constitutive tensor,   is the usual infinitesimal strain and   is an 
internal length scale parameter representing the microstructure of the material. The equilibrium equations 
can be written in terms of displacement derivatives as 

0)( ,
2

,  ijlmmkjlkijkl buuC         (2) 
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where b are the body forces. The attractiveness of this theory is (i) that it contains only one internal length 
scale parameter, and (ii) that its mathematical structure allows to solve the fourth-order partial differential 
equations as an uncoupled sequence of two sets of second-order equations. More specifically, the various 
derivatives in Eq. (2) can be factorised, so that Eq. (2) can be rewritten as 

0,  i
c

jlkijkl buC          (3) 

which are the equations of classical elasticity, followed by  

c
k

g
mmk

g
k uuu  ,

2          (4) 

Here cu are the displacements following from the classical elasticity equations, whilst gu are the 

gradient-enriched displacements. Note that gu  in Eq. (4) is identical to u  in Eq. (2), and the superscript 
g  is used to distinguish the gradient-enriched displacements from its classical counterpart.  

If Eq. (4) is substituted back into Eq. (3), it is easily verified that Eq. (2) is retrieved. When this operator 
split was suggested first by Ru and Aifantis [3], the gradient enrichment was expressed in terms of 
displacements as given in Eq. (4). However, it can also be evaluated in terms of stresses by differentiation 
as  

c
lkijkl

g
mmij

g
ij uC ,,

2             (5) 

The use of Eq. (5) instead of Eq. (4) has some advantages: it was demonstrated in [5,6] that the use of Eq. 
(4) does not necessarily remove the singularities from all stress components at the tip of sharp cracks, 
whereas all stress singularities are removed if Eq. (5) is used – this discrepancy can be attributed to the 
nature of the variationally consistent boundary conditions [5]. 

3 IMPLEMENTATION OF AI FANTIS’ THEORY 

In this section, matrix-vector notation will be used instead of index notation, as is customary in finite 
element literature. A finite element implementation of the Aifantis’ theory which is based on Eq. (4) was 
first given in [4] and then extended to include Eq. (5) in [5]. In this study, and following the 
recommendations in [5], Eqns. (3) and (5) are used for the implementation of the Aifantis theory of 
gradient elasticity.  

Eq. (3) is the usual expression of equilibrium in classical elasticity, the spatial discretisation of which is 
well known and does not need to be repeated here. The weak form of Eq. (5) is obtained by 
premultiplying with a virtual strain field e  and integrating over the domain   as 

0)( 22 


dVCLueT               (6) 

where L is the usual strain-displacement differential operator, which in the two dimensional case is 
defined as 
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Integrating by parts and substituting  Se , where 1CS , results in 
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Here, the boundary terms are ignored, which is equivalent to adopting the homogeneous natural boundary 
condition 0 n [5, 7]. Finite element discretisation of Eq. (8) gives 
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The two fields of unknowns, namely the classical displacements and the gradient-enriched stresses, are 
discretised with shape functions uN and N , respectively. Furthermore, uu LNB   and underlined 

vectors contain the discretised nodal values of their continuous counterparts. With these specifications, 
the resulting system of equations can be written as 
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where f  is the external force vector, and 
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Eq. (10) is a decoupled system of equations in which the first row of equations can be solved prior to the 
second row of equations. Thus, it can be said that the gradient-enrichment (second row of equations) 
constitutes a post-processing of the results of classical elasticity (first row of equations). 

4 RECOVERY TYPE ERROR ESTIMATION FOR GRADIENT ELASTICITY 

Next, one of the a posteriori error estimates derived by Zienkiewicz and Zhu [12] is adapted to the finite 
element implementation of gradient elasticity. In their study, a nodal averaging method is used to recover 
the stresses as an approximation of the exact stresses which are in general unknown. These recovered 
stresses are much more accurate than the direct finite element solution, and therefore the difference 
between recovered stresses and finite element stresses is a good approximation of the actual error in the 
stresses. The error in the stresses is accordingly defined as 

rne             (14) 

where the subscripts n and r indicate “numerical” and “recovered”, respectively.  

The error defined in Eq. (14) can be used to estimate the error in particular locations of the domain. 
However, as a first indication of the overall error of a certain finite element computation, it is common to 
compute the error field across the entire domain in a suitably defined norm. If so desired, this can 
afterwards be used to normalise local errors such as those used in adaptive h-refinement algorithms, e.g. 
Following Zienkiewicz and Zhu, we will adopt an energy norm. From the continuum equations (3) and 
(5) it can be seen that the underlying energy functionals are 
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associated with Eq. (3), and 

   

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ijijm,klijklm,ijklijklij

2
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1
     (16) 

corresponding to Eq. (5). The last term in Eq. (16) provides the coupling from Eq. (3) to Eq. (5) and can 
be interpreted as “source term” for Eq. (5). Based on Eq. (16), an energy norm of the error associated with 
Eq. (5) can be defined as 



5 
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Here, n  is the stress gradient vector of the numerical solution and r  is the recovered stress 

gradient vector. However, since the stresses are the primary variables in Eq. (5), it follows that rn    

so that the first contribution in the integral of Eq. (17) vanishes identically. Eq. (17) can therefore be 
simplified as 
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     (18) 

Thus, the energy norm of the error is expressed in terms of the derivatives of the primary variables, as 
usual. We will also employ a relative error   defined by 

 


 e           (19) 

Finally, the energy norm of the exact error is measured by 

                 


  dVSe exactn
T

exactnexact

22

2
1
                                              (20) 

Thus, the global error effectivity index is defined as the ratio of the approximate error to the exact error 

           
exact

e

e



                                                                                                                 (21) 

5 BENCHMARK EXAMPLES 

5.1 Cantilever Beam 

A plane stress cantilever beam example subjected to a unit point load shown in Figure 1 is solved by 
classical and gradient elasticity theories for coarse and successively refined meshes and the three stress 
components under the point load are given in Table 1 where c and g indicate stresses obtained from 
classical and gradient elasticity solutions, respectively. 
 

                                                                 

E = 1000000 kN/m2 ;  h=0.15 m ;   = 0.20                                                            

 

Figure 1 Cantilever beam under a tip load of 1kN 

Table 1 Mesh refinement study for stresses under the point load 

Mesh c
xx g

xx c
yy g

yy c
xy g

xy 

(2x1) 4.150 3.131 -5.233 -3.846 -2.774 -3.047 

(4x2) 4.901 2.997 -19.966 -8.740 -4.147 -3.736 

(8x4) 8.625 3.037 -40.610 -10.431 -9.879 -4.280 

(16x8) 17.593 3.131 -80.867 -11.186 -20.716 -4.537 

(32x16) 35.373 3.193 -161.550 -11.571 -41.745 -4.645 

2 m

4 m

1 kN
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The three stress components of classical elasticity solution roughly double in value for every successive 
mesh refinement corresponding to divergence. On the contrary, stress components converge to finite 
values when gradient elasticity is used.  

Stresses along the cantilever beam obtained by classical elasticity and Aifantis’ gradient elasticity theories 
for 5 different meshes are shown in Figures 2 and 3, respectively. In classical elasticity solution, the 
singularities under the point load cannot be captured for very coarse meshes but with mesh refinement, 
those singularities become apparent, as expected. In Figure 3, it is shown that singularities are eliminated 
by the usage of gradient elasticity.    

 

Figure 2 Mesh refinement study of classical elasticity solution 

 

Figure 3 Mesh refinement study of gradient elasticity solution 
 

Relative errors in stresses obtained for h refinement using different length scale parameters in log-log 
scale are plotted in Figure 4 to examine the convergence of the implementation. It is seen that relative 
errors decrease considerably with the increment of number of degrees of freedom (DOF). Furthermore, 
the convergence rate is somewhat higher for larger values of the length scale, which can be explained by 
the stress smoothing resulting from the gradient enrichment. Thus, the stress field is smoother, and 
convergence is easier to achieve, for larger values of the length scale.  

In Figure 5, relative errors for increasing length scale parameters are shown for 4 different meshes. The 
convergence rate increases with mesh refinement as expected, although the error reduction is different for 
different values of the length scale. In line with what can be seen in Figure 4, the error is somewhat larger 
for 1  m 

The effectivity index of the estimator is plotted against mesh refinement in logarithmic scale for different 
length scale parameters in Figure 6. It is observed that the effectivity index is very close to 1 for all 
analyses. Furthermore, it converges to 1 with both mesh refinement and increasing length scale 
parameter, which demonstrates the effectiveness of the proposed error estimator.    
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Figure 4 Relative errors in stresses for h refinement using different length scale parameters 

 

Figure 5 Relative errors in stresses for increasing length scale parameters 

 

Figure 6 Effectivity index for h refinement and different length scale parameters 
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5.2 Tensile Strip Specimen 

A plane stress tensile strip specimen made of polymethylmethacrylate (PMMA) shown in Figure 7 has 
two opposite crack-like U-notches of 6 mm in the middle and it is subjected to a uniformly distributed 
tensile force. Experimental study of the tensile strip specimen is given in [19] and its internal length scale 
parameter validation is performed in [20]. First, stress distributions along the midline are obtained both by 
classical and gradient elasticity theories for 3 successively refined meshes and for 4 length scale 
parameters. Afterwards, relative errors are examined for h refinement and for 4 length scale parameters. 
Finally, effectivity indexes are obtained in order to demonstrate the effectiveness of the proposed a 
posteriori error estimation approach.     
 
 
 
 
 
 
 
  
                                                       E=3600 MPa ; =0.36            

  t=6 mm ; n = 62.33 N/mm                                               

 

 

 
 
 
 
 

Figure 7 Geometry of the U-notched tensile strip specimen 

Note that, due to its symmetry property, one quarter of the specimen is used for simplicity. In Figure 8, a 
coarse mesh of 15x15 elements is used and stresses in y direction are plotted against the distance. Stresses 
up to the crack tip are all about zero as expected and they attain unrealistic values around the crack tip 
when classical elasticity is used. It can be observed in Figures 8, 9, and 10 that those values are smoothed 
by the usage of gradient elasticity and more realistic values are obtained with the increment of the length 
scale parameter.  

 
Figure 8 Stresses along the edge of the one quarter specimen using (15x15) mesh 
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The number of elements in both directions is doubled in Figure 8 and it is seen that there is a noticeable 
jump in stresses of classical elasticity around the crack tip. In Figure 9, the number of elements is 
increased again leading to a (60x60) mesh. The jump in stresses of classical elasticity solution increases 
which means that the singularities can be observed more clearly when small mesh sizes are used.  
   

Figure 9 Stresses along the edge of the one quarter specimen using (30x30) mesh 
 

 

Figure 10 Stresses along the edge of the one quarter specimen using (60x60) mesh 

In order to examine the convergence of the implementation, relative errors in stresses are obtained for h 
refinement using different length scale parameters as given in Figure 11, plotted in log-log scale. It is seen 
that relative errors decrease considerably with increasing the number of degrees of freedom as well as the 
length scale parameter. The length scale with a value of 0.25 mm is very small compared to the element 
sizes of the coarsest meshes, therefore the behaviour of the error is out of line with the other values of the 
length scale (although the error is still monotonically decreasing with the element size). 

In Figure 12, relative errors for increasing length scale parameters are shown for 5 different meshes. As 
expected, the convergence rate increases with mesh refinement.  However, another observation is that 
larger values of the length scale generally lead to lower levels of error. This is because larger values of 
the length scale lead to more smoothed-out stress distributions, which can be captured more easily by the 
finite element discretisation, thus leading to lower errors. 
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Finally, the effectivity index of the estimator is plotted against mesh refinement in logarithmic scale for 
different length scale parameters in Figure 13 and it is seen that the effectivity index is very close to 1 for 
all analyses. This demonstrates the effectiveness of the proposed error estimator.    

 
 

 

 

 

 

 

 

 

Figure 11 Relative errors in stresses for h refinement using different length scale parameters 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12 Relative errors in stresses for increasing length scale parameters 
 
  
 

 

 

 

 

 

 

 

 

Figure 13 Effectivity index for h refinement and different length scale parameters  
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6  CONCLUSIONS 

In this paper, a recovery type a posteriori error estimator is developed for the Aifantis’ gradient elasticity 
theory. This version of gradient elasticity can be implemented in a staggered way whereby the fourth-
order equilibrium equations are solved as an uncoupled sequence of two sets of second-order equations. 

Thus, simple, 0C -continuous interpolations suffice for the spatial discretisation which makes the finite 
element implementation straightforward. The developed error estimator is associated with the second step 
of the staggered algorithm where stress-gradients are recovered based on the methodology of Zienkiewicz 
and Zhu, after which a suitable energy norm is discussed.  
It is demonstrated with two benchmark examples that stress singularities under point loads and around 
crack tips are avoided with gradient elasticity which simplifies error estimation. It is observed that the 
relative error decreases and the convergence rate increases with mesh refinement as well as, generally, 
with increasing length scale parameter.  
In order to investigate the effectiveness of the proposed error estimator, the effectivity index is plotted 
against mesh refinement for different length scale parameters and it is seen that the effectivity index of 
the estimator is very close to 1 for all analyses which demonstrates that the proposed method is effective.  
Finally, it is noted that in this paper we have used artificial values for the gradient elasticity length scale, 
solely to test the developed error estimator. In real-life applications, the value of the length scale should 
be measured from experiments or deduced from the micro-structural geometry of the materials – see [7] 
for an overview. 
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