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Abstract

Recent results on the unity feedback control analysis of multivariable
first-order type systems are extended to provide necessary and sufficient

conditions for integrity of the closed-loop system.

16 Introduction

In a recent paper (Owens, 1975) the concept of a multivariable
first-order type system has been introduced, and closed-form solutions
derived for proportional and proportional plus integral unity negative
feedback controllers capable of producing a high performance feedback
system with fast response speeds and small interaction effects. This
paper is primarily concerned with the important problem of the integrity
(Belletrutti and MacFarlane, 1971) of the resulting feedback system.

The following failures are considered in this paper,

(1) Sensor failure in loop j

In this situation, failure of measurement equipment in loop j

means that the feedback loop returns the erroneous signal
.(t) = 0.

yJ

(2) Actuator failure in loop j

In this situation, actuator failure reduces the jth control signal
uj(t) to zero for all time.
Necessary and sufficient conditions are established for the proposed
controller to produce a fail-safe system and an approach to the use of

compensation networks to achieve integrity outlined.

9 Extension of Previous Results (Owens, 1975)

For the purpose of this paper a multivariable first-order type system

is a system described by an mxm transfer function matrix G(s) of the

form,
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G(s) =

(s+bj)"1a.s.+ . |ets)| #0 S )
J
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is a set of dyads such that b, = b implies
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where uij 1<j<m i Q
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Note that this definition extends the previous (Owens
1975) to include the possibility of open-loop plant integrators and
open—loop unstable systems. The following result extends previous

results (Owens, 1975) to this case.

Result One

With the above definitions, {a.}

i iejem and {Bj}lsj are sets of

<m

linearly independent vectors and

G_ = lim sG(s) A )

5

exists and is non-singular. A forward path controller

ke ~1

R(s) = ficrer} 6 = ¢ M (e)|__ i)

produces a closed-loop system with return~difference determinant

[T(s)| = (s+k)™(s4e)"/s™
]

n =g

(s+bj) cos (4)
1

and closed-loop transfer function matrix

{I_+G(s)K(s)} 1G(s)K(s) = E%E M (k,0) + =S M, (k,c) e
where
lim M_(k,e) =I_ , lim M. (k,c) =0 et
froaas 1 m Yo 2
Proof

The linear independence of {aj} and {Sj} follows from the condition

|G(S)! # 0 and hence G_ is non-singular. Also
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g #5043
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where Yj+uk = 6jk’ l€j, k¢m, and hence
_1 m
GG (s)|5=0 = I bjozj'yj . (8)
i=1
Hence
m
CK(s) = I {k+ct S p la.y.* R
e ] e J 13
J
so that
m {(k+c—bj)s+kc} 4
G(s)K(s) = -E STy anj e CT0)
j=1
pi (32+(k+c)s+kc) +
T(s) = ImfG(s)K(s) = ‘E 5 P ajyj A1)
i=1 k|
m m, m =
[T(s)| = (s+k)™(s+c)™/s™ T (s+b.) Sa012)
=t
T_l( )G(s)K(s) = . gr{(k+ -b.)s+ke} + (13)
TS < TwRy I eendatked, v,
= Ek ? (k_bjz 0.y, + _ﬁ_, ?fEi;E; R . (14)
s fey {k-c) "3 s+c o (k=¢) "33
so that
M, (ko) = k@-e) M1 -k 16 ¢ s)| 3 s
1 m 0 5=0
M, (k,c) = (knc)_l{G G_l(s)| - el } R L)
2R ™ s=o0 m

and the result follows by letting k»=. Q.E.D.

As before (Owens, 1975), the proposéd controller (eqn.(3)) replaces
the open-loop poles by poles at -k, -c, each with algebraic multiplicity m.
As k increases (equations (5),(6)) the speed of response increases and
closed-loop interaction effects and steady state errors become

arbitrarily small.




2. Sensor Failure in Loop j

The main result in this section is as follows, where {e.}., . is
3 1gism

i % m
the natural basis in R .

Result Two

A unit negative feedback control system for the plant G(s) with
forward path controller K(s) (eqn.(3)) is stable with respect to sensor
failure in loop j if, and only if, ¢ = O (ie proportional controi only)

and

T -1
. =e. GG (s) e, 0 e LT
pJ 4 = |5=0 J

Proof
Using previous results (Owens, 1973)

closed-loop characteristic polynomial with sensor failure in loop i

closed-loop characteristic polynomial without sensor failure in loop 3

=e,m {1+ c(s)K(s)} Le., 8
J m J
Using equations (11),(8) and the fact that y£+a = 6Qk
ey = g et '
= ey
& ~. (s+k) (s+c) 2 Yo
=1
Y —— R R 9
(s+k) (s+c) m ® s=0
and hence
T, -1 2(atp,)
: = e P A0
3 s (S)ej (s+k) (s+c) (29

If c>0, then the failed system has a pole at the origin ie the system is
not asymptotically stable in the presence of sensor failure in any loop.
The case of proportional control (c=0) yields in a similar manner

ejTT’l(s)ej = (s4p)/ (s4k) ... (21)

The result follows by noting that stability requires pj>0. Q.E.D.
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A surprising observation is that the closed-loop poles in the presence
of sensor failure in loop j are -k (algebraic multiplicity m—1) and —pj
(which does not depend upon the gain parameter k). In practical terms
this means that integrity can be tested at low gains. In fact the
following result demonstrates that sensor—integrity can be deduced quite
easily from the closed-loop step responses, a fact that could be of

significance in applications.

Result Three

A unity negative feedback control configuration for the system G(s),
with forward path proportional controller K(s) (equation (3) with c=o0)
is stable with respect to sensor failure in loop j if, and only if, the
steady state error in output j in response to a unit step demand in
output j is strictly positive.

From equations (5), (15)

{Im+G(s)K(s)}_1G(s)K(s) = S—EE {Im—k_

IGmG_l(s)lszo} ... (22)

The result follows by noting that k>0, observing that the diagonal terms

are k(s+k)_1{1—kdlpj} and invo ing equation (17). Q.E.D.

The step by step design procedure (Owens, 1975) is easily extended to

cope with an investigation of sensor-integrity, by either, calculating
=, 5 5 " Vi

G G (S)[s=o and checking that the diagonal terms are strictly positive,

or by calculation of the open-loop step responses and the use of Result

three. Unfortunately, it is not possible to guarantee that integrity
will be present in all loops., The following result illustrates that,

1n certain cases of practical interest, stable, minimum-phase compensation

networks can be used to provide the desired characteristics.




Result Four

If the system is open—loop stable (ie b2>0, lg9<m), then a forward

path controller of the form K(s) = Kl(S)KZ(S) with

(s+b )
Ll % +
Kl(S) = Gm 2_2__1 W QRYE i (23)
-1 -1
K,(s) =k(GK) =~ = (G(IK () 7| _ » k0 S day

can, by suitable choice of stable poles {—kz} » produce a closed-

1<<m

loop system which is asymptotically stable and stable with respect to
sensor failure in any loop.
Proof

By equations (7),(23)

+

. e 45)

3 =]
G(S)Kl(S) = gil (s+k2) oy

so that, G(S)Kl(s) is a multivariable first-order system with pole set

{—k2}1$25m, and K2(S) is simply the proposed controller (Result one)

for such a system. As k>0 and G(s) is open—loop asymptotically stable,

the closed-loop system is asymptotically stable. For the resulting
system

L -1

Py = ey (G ()R (s)) 7| _ e
;s i +
= ¥ k {e."a Hy, e.} , lgism o e (26)
-1 L3 &2 ]
=1
using (GKl)co = Im and equation (25). The proof of the result now depends
; . 35
upon the existence of a setm?f stable poles { k2}1$26m such that PJ> s
lsjsm. Noting that Im = 3 u2y2+ then, for any strictly positive real
=1

number g




T +
) q{ej th}{\(jl ej} =q >0 vy (27

It g

L

and the result follows by choosing kl = k2 = ... =k =q. Q:E.D.

The construction used in the proof of Result 4 may produce practical
difficulties by requiring an excessive amount of phase advance in the
compensator. In these situations, an examination of the individual
terms in the summations of equation (26) may make possible a compromise

solution for {kz}lsﬁsm

3. Actuator Failure in Loop j

The following results are direct parallels to those of section 2.

Result Five
A unit negative feedback control system for the plant G(s) with
forward path controller K(s) (eqn (3)) is stable with respect to actuator

failure in loop j if, and only if, ¢ = 0 (ie proportional control) and

T -1
. =e. G (s8) G e. >0 wvail28)
qJ d ( |5=0 R |

Proof
It is easily shown that ¢ = 0 is required. Using previous results
(Owens, 1973)

closed-loop characteristic polynomial with actuator failure in loop j
closed-loop characteristic polynomial without actuator failure in loop j

= e {1 + R()6(s)} e, o0 (29)
+
1f B2 Wk = 62k’ 1<2, k<m, then

m
¢ o) = (s+b )ty g * <4+ (80}
o N 2 2°9

=1

m

~1 _ +
G (s)|S=OGco = 221 b,¥ 2, vy (3L)
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so that
m (k-b ) &
K(s)G(s) = ni P ) B S k32)
and
-1 m (S+bg) "
{Im + K(s)G(s)} = = i YT ¥ 8,
Popdices +k) {sI_ +G (S)l5=on} eela3)

The result follows by substitution into equation (29) and comparison

with equation (28). Q.E.D.

Integrity can be deduced simply from G(s) by calculation of G_l(s)\S 5
and G and examination of the diagonal terms of the product. Result
three has no useful parallel in the case of actuator failure. However,

result four can be extended as follows,

Result Six
If the system is open-loop stable (ie b2>0, 1¢%¢m), then a forward
path controller as given in Result 4 can, by suitable choice of stable

poles {- k2}1<2< , produce a closed-loop system which is asymptotically

stable and stable with respect to actuator failure in any loop.

Proof

From equations (23)-(25),

Kk +
22279,

Kz(s) = kI =~
o 1

L

neB

. (34)

and hence, noting that Gm“1 =

i
ne1 g

¥ +
oYy 2




P L
m (S+b ) + m + n -1 +
K. (s)K, (s)G(s) = {2 ——< ¥y MH I (kkDay MH I (s+b.) a B '}
1 2 g=1 (s%ko) "%7g i1 A % 54
m (k-k )
[} +
= L —— VY B R (35)
‘1 (s+k£) 278
and hence,
T -1 o +
(s+k)ej {Im + K(s)G(s)} e, = s + ej 121 kl?gﬁg ej ... (36)

The proof of the result now rests on the existence of a stable pole set
; m
T + . ; :
2 ; = el LY £i1<m. i B
{ kl}lslsm such that qJ eJ Eilkﬁwgsg eJ 0, l<j<m his follows in

a similar manner to the proof of Result 4. &.BuDs

4, Illustrative Example

To illustrate the results, consider the multivariable first-order

type system

s+5 s+1
G(S) = --....—1__.._.._.
(s+1) (5+3) 9 2t
1 2
1 3 - 1
= —(-é—-;-g-)— L 1 ]__I * —('é-_:i-)— [1 0] von (37)
B} 1
so that
1 2 -1 1
0, = s o, = ’ B. = ] B, = . "’(38)
A ¢ -l ol q A
-1 1 0 1
-Y = " -Y = % \P = s ‘if = ..¢(39)
R S ] L b A" h
Also
11 3 191
Gm = ’ G(O) = “3* -(40)
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so that

c6 (o) = , GG = cen (41)

ie., using Results 2 and 5, P = -1, P, = 5.4 q; = Ly 4y = 3 and the
closed-loop system with a controller of the form proposed will be unstable
if a transducer fails in loop one.

To offset this difficulty, try a controller of the form

K(s) = Kl(s)Kz(s) where (result 4)

i =1 b 2
_ (s+3) L (s+1) B
Kl(S) = -O . {"(g:k—l')— 7]: [ 1 2] # ——————(S+k2) 3 [1 l]} .(42)
-1
Ky(s) =k I, = (G(K N | _ ce. (43)
then
1 : 1 .
G(s)K, (s) ~ S |, }12]4~§E§ 1[1—ﬂ e ()

which is a multivariable first order type system. From equations (36)
and (26), the resulting closed-loop system is totally failure stable if,

and only if,

T 2 +
ej E kgngg ej >0 j =1,2 FhDY
=1
T 2 +
e iil k¥ B e, >0 i =1,2 ... (46)
le —kl + 2k2 >0
Zkl = k2 * 8
k2 > 0
k; >0 ... (47)
which is satisfied if kl’kZ are positive and
1 kl
§<k__2<2 ;;*(48)
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To simplify the compensation networks it is reasonable to set either

kl = 3 or k2 = 1. Choosing kl = 3, eqn (48) reduces to

1.5<k2<6 ee. (49)

which represents the range of k2 required to guarantee both sensor and
actuator integrity in every loop. For convenience, choose k2 = 4,
The design procedure can now be completed by the choice of an

appropriate value of k. 1In fact, from section 24

{IZ+G(S)K(S)}~1G(S)K(S) =-§%E {Iz—k-I(GKl)m(G(s)Kl(s))_l|S=o}

=-S-1j—k {L, - k } ... (50)

so that, for example, any choice of k greater than 20 will ensure a fast

response with interaction effects less than 10%. The steady state error

in channel one however will be of the order of 25%. This can be

reduced by increasing the value of k.

5 Effect of Failures on Closed-loop Response

It is of interest to investigate the effect on the closed-loop
transient performance of a failure in any loop. Consider the case of
sensor failure in loop j, and assume that the closed-loop system is
stable in the presence of this failure. The closed-loop transfer
function matrix with proportional control and failure in loop j is,

using equations (5),(21),

{I_+ 6(s)K(s) (I -e,e. )} ta(s)K(s)
m m 3 ]

(I - 1 e)a)ks)e, e, T3 e ags )k (s)
m 1]

+.E§l£5:il . T}.“E_ M. (k,0)
m (s+pj) i s+k "1

]

{1
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K M) M (k) ceulsn)

s+k 1 stpj 2
where

M) = {I - XM (k,0)e.e, M, (k,0) ia2)
1 m k—pj it I e

- k2 T

Mz(k) = -1:“_13; M (k,O)ejEj Ml(k,o) -.(53)

An examination of these relationships and the use of eqn (15) indicates
that, for high gains, a unit step demand in output %#j will, in general,
produce a high quality performance from all loops k#j and a large
transient deviation in output j. A unit step demand in output j will

produce, in general, large transient deviations in all channels.

6. Conclusions

Previous results (Owens, 1975) have been extended to include the
possibility of open-loop plant integrators and open-loop unstable systems.
The proposed controllers produces a closed-loop system capable of
producing arbitrarily fast response speeds, small closed-loop interaction
effects and small steady-state errors. Closed-lcop integrity with
respect to sensor or control actuator failure is easily deduced from
the transfer function matrix G(s) and a systematic approach is outlined
to the synthesis of compensation networks producing a system stable with
respect to any single sensor or actuator failure. Important observations
are that the integrity of the system is independent of controller gain
so that integrity can be tested experimentally using a low gain controller.
In the case of sensor failure, integrity can be tested by an examination

of the steady state errors in response to appropriate unit step demands

in output.
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