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ABSTRACT

Global climate and weather models are a key tool for the prediction of future crop productivity, but they all

rely on parameterizations of atmospheric convection, which often produce significant biases in rainfall

characteristics over the tropics. The authors evaluate the impact of these biases by driving the General Large

Area Model for annual crops (GLAM) with regional-scale atmospheric simulations of one cropping season

over West Africa at different resolutions, with and without a parameterization of convection, and compare

these with a GLAM run driven by observations. The parameterization of convection produces too light and

frequent rainfall throughout the domain, as compared with the short, localized, high-intensity events in the

observations and in the convection-permitting runs. Persistent light rain increases surface evaporation, and

much heavier rainfall is required to trigger planting. Planting is therefore delayed in the runs with parame-

terized convection and occurs at a seasonally cooler time, altering the environmental conditions experienced

by the crops. Even at high resolutions, runs driven by parameterized convection underpredict the small-scale

variability in yields produced by realistic rainfall patterns. Correcting the distribution of rainfall frequencies

and intensities before use in crop models will improve the process-based representation of the crop life cycle,

increasing confidence in the predictions of crop yield. The rainfall biases described here are a common feature

of parameterizations of convection, and therefore the crop-model errors described are likely to occur when

using any global weather or climate model, thus remaining hidden when using climate-model inter-

comparisons to evaluate uncertainty.

1. Introduction

Agricultural systems are inherently vulnerable to cli-

mate variability. This is particularly true in Africa
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where a large fraction of crop production is rainfed

(Cooper et al. 2008), making climate a key driver of food

security (Gregory et al. 2005). Climate change is pre-

dicted to further increase the vulnerability and un-

certainty of crop production in Africa, with most studies

showing a negative impact, although the magnitude of

this impact varies significantly among studies (Challinor

et al. 2007; Schlenker and Lobell 2010; Thornton et al.

2011; Knox et al. 2012).

To predict climate-change impacts on crops it is es-

sential to correctly capture the complex and dynamic

relationship between crops and climate. Yields can be

affected by changes in temperature, water vapor, radia-

tion, and rainfall (Schlenker and Roberts 2009; Lobell

et al. 2013;Wheeler et al. 1996), as well as the interactions

between these parameters. Different day-to-day vari-

ability in temperatures and precipitation can also have a

large impact on yields evenwhen themean conditions are

the same (Mearns et al. 1996; Riha et al. 1996).

One method of examining crop yield and climate

change questions is to apply statistical relationships

between crops and climate (Schlenker and Lobell 2010;

Lobell et al. 2008). However, these assume that the re-

lationships remain static in a new climate system. An-

other method is to use output from a climate model to

drive a process-based crop simulationmodel (Rosenzweig

et al. 2014; Thornton et al. 2009; Challinor and Wheeler

2008). These process-based models explicitly simulate

crop growth and development and their response to

environmental factors. If the key processes are adequately

represented, a process-based model has the advantage

that it can be applied in a range of locations and climates,

which is crucial for exploring the impact of a future

climate on crop yield. The behavior of the crop model,

however, will also depend on the nature of the climate

inputs. For example, the spatial and temporal mismatch

between the averaged output from the large grid squares

of a climate model and the ‘‘point based’’ spatial scale of

an average plant can affect simulated yields by changing

surface evaporation rates or the duration of dry spells

(Hansen and Jones 2000; Baron et al. 2005; Shin et al.

2010). Errors or biases in the climate-model output itself

will also influence the crop-model simulation (Berg et al.

2010), but it is less clear exactly how this uncertainty

propagates across models.

To understand and adequately quantify uncertainty in

simulated crop yields it is important to better understand

the sources of uncertainty in climate-model precipitation

and to see how this uncertainty propagates through to

crop yield. This is particularly important in West Africa

where rainfall is often the limiting factor on crop yields

(Bhatnagar-Mathur et al. 2009; Baron et al. 2005) and

mostly comes from convective systems with high spatial

and temporal variability. Precipitating cloud systems in

all global weather and climate models are subgrid, and

so depend on parameterizations of convection, which

are a major source of uncertainty in climate models

(Christensen et al. 2007). Parameterizations of convec-

tion have been shown to produce biases in the repre-

sentation of tropical rainfall that are qualitatively

similar across the majority of models (Moncrieff 2013).

In particular, while rainfall totals can be accurate,

models have a tendency to rain too often and too lightly

when compared to satellite observations, under-

estimating heavy rainfall events (Randall et al. 2003;

Stephens et al. 2010; Sun et al. 2006; Dai and Trenberth

2004; Dai 2006). While there are many possible causes

for this bias in the distribution of precipitation, such as

the boundary layer or microphysical schemes, compar-

isons with convection-permitting models suggest that

the parameterization of convection is the main source of

this error (Pearson et al. 2014; Holloway et al. 2012).

Given the importance of rainfall for crops, both di-

rectly and through its indirect impacts on other drivers

of productivity, the uncertainty in crop models in-

troduced by parameterizations of convection could be

significant both for predictions of climate change

impacts and for our understanding of their causes. Limi-

tations to computing power mean that parameterizations

of convection will be necessary for the foreseeable fu-

ture, so developing a process-based understanding of

their impact is a research priority. This will allow us to

better quantify the uncertainty in cropmodels caused by

the parameterization of convection, and increase our

understanding of what specific aspects of the parame-

terization are causing the most problems.

In this study we quantify the effect of the parame-

terization of convection on the representation of pro-

cesses in a crop simulation model. We use three types of

atmospheric inputs to drive a crop model: observational

data, output from typical weather model simulations

using parameterized convection, and output frommodel

simulations where convection is allowed to evolve ex-

plicitly, conducted for the first time at very high resolu-

tion. The use of these convection-permitting simulations

allows us to isolate the role of the parameterization of

convection from changes in model resolution or total

rainfall amounts.

We describe the models and data used in section 2. In

section 3 we present the total seasonal rainfall and crop

yield results from all the simulations, to provide context

for the subsequent process-based analysis. In section 4

we describe the key biases in the representation of

rainfall by parameterizations of convection, and their

impact on processes within the crop model. Last, section

5 summarizes the results, describing the implications of
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using parameterizations of convection for climate im-

pact studies and which aspects of the parameterizations

have the largest contribution to crop-model uncertainty.

2. Methods

a. Weather inputs

1) CASCADE MODEL DATA

As part of the Cascade project a suite of simulations

using the UKMet Office Unified Model (UM) were run

at resolutions ranging from 4 to 40km over the entire

West African region (from 258 to 358N and from 2258
to 258E at 12- and 40-km resolution; from 08 to 288N and

from 2208 to 208E at 4-km resolution) (Pearson et al.

2010). For this study the length of these simulations was

extended to cover the period 1 June–24 October 2006,

which covers themainmonsoon period in semiaridWest

Africa. The model was initialized with European Centre

for Medium-Range Weather Forecasts (ECMWF)

analyses. The 40- and 12-km nests were forced at the

boundaries by ECMWF analyses and the 4-km nest by

output from the 12-km simulations. While the forcing at

the boundaries provides some constraints on the large-

scale state, the model was allowed to freely evolve

within the domain for the duration of the simulation.

Two of the simulations were ‘‘convection permitting’’

(horizontal grid spacings of 4 and 12km) and two were

run with ‘‘parameterized’’ convection (horizontal grid

spacings of 12 and 40 km). The configurations were set

up to be as similar as possible except for the represen-

tation of convection, although some details differ. The

two 12-km runs in particular are exactly the same except

for the use of the parameterization, so that the effects of

resolution and the parameterization can be differenti-

ated. The two simulations with parameterized convec-

tion both use the Gregory and Rowntree (1990) scheme,

but the 40-km run used a relative humidity CAPE clo-

sure and the 12-km run used a vertical velocity closure

[more details on the impact of the different parameter-

izations on the simulations can be found in Birch et al.

(2014)]. These two simulations were also configured

differently in their treatment of cloud–radiation in-

teractions, so that the 12-km simulation would have a

configuration similar to the convection-permitting sim-

ulations, thus allowing a better comparison between

the two 12-km runs, while the 40-km configuration

was equivalent to the Met Office operational

forecast model.

2) OBSERVATIONS

Observations were used to provide a comparison with

the different UM simulations. Rainfall was taken from

the satellite-derived Tropical Rainfall Measuring Mis-

sion product TRMM-3B42 at 0.258 3 0.258 resolution
(Huffman et al. 2007), which combines measurements

from multiple satellites, calibrated with the use of sur-

face rain gauges. Shortwave radiative fluxes were de-

rived from the Land Surface Analysis Satellite

Application Facility at ;3-km resolution (Geiger et al.

2008). Land surface temperature data from the ECMWF

operational analysis were also used (50-km resolution),

which combine model simulations with all the surface

and radiosonde observations available. As part of the

special observation period of the African Monsoon

Multidisciplinary Analyses campaign the observa-

tional network was greatly enhanced during the 2006

monsoon season (Parker et al. 2008) and some of these

observations were submitted to the Global Telecom-

munications System (GTS) for ingestion into model

analyses. All datasets were interpolated onto a 0.58 3
0.58 grid (;55 km).

b. Crop model

The data described in section 2awere used to drive the

General Large Area Model for annual crops (GLAM;

Challinor et al. 2004). This is a process-based model

specifically designed to simulate crops over large areas

(i.e., for grid cells comparable to those used in regional

and general circulation models). GLAM has been used

to simulate yields in both current and future climates in a

number of tropical regions including West Africa

(Vermeulen et al. 2013; Nicklin 2013; Teo 2006). We

used GLAM to simulate groundnut, an important cash

crop in the region (Ingram et al. 2002), during the 2006

West African monsoon season. The parameter set used

was suitable for Spanish-type groundnut, which is grown

across West Africa [for details, see Vermeulen et al.

(2013)]. The model was run for the regions in semiarid

West Africa where groundnut is grown and for which

subnational crop yield data were available, including

Senegal, southern Mali, Burkina Faso, northern Ghana,

and southwestern Niger (see Fig. 1).

The input data required by GLAM consist of daily

weather data, three soil hydrological parameters, and a

planting window. The weather variables required are

rainfall, downwelling shortwave radiation at the sur-

face, and maximum/minimum surface temperatures.

The soil hydrological parameters required are the lower

limit, drained upper limit, and saturation limit. These

parameters can vary across grid cells but are assumed to

be constant with depth. They were calculated from the

textural information given in the U.N. Food and Agri-

culture Organization (FAO) digital soil map of the

world. The planting window used in this study was from

the start of June until the start of August for all model
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grid cells. GLAM uses an ‘‘intelligent planting routine’’

that plants the crop on the first day during the planting

window when the soil moisture reaches a given fraction

of the water holding capacity. If this criterion is not met,

the crop is planted on the final day of the planting

window. In this study, the optional process of replanting

was also enabled, which allows the crops to be replanted

if they fail to become established due to early season

water stress (Vermeulen et al. 2013). Replanting was

only allowed within the planting window.

GLAM focuses on the response of crops to weather,

and uses a single calibration parameter to account for

reductions in yield due to nonclimatic factors such as

nonoptimal management, pests, and diseases. For this

study we set the calibration parameter to 1 for all grid

cells, indicating no reduction in yield due to nonclimatic

factors. This allows us to study the propagation of un-

certainty from climate to crop models, as it ensures that

the relationships between crop yields and weather in-

puts in the simulation are not masked or distorted by the

calibration process. A run driven by observed weather is

used to describe the crop–weather relationships with

realistic weather inputs, and is used to validate the

processes in the runs forced by model data.

Crop yield observations are also used for comparison

with the crop-model output, from a combination of data

from the FAO CountrySTAT database (FAOstat 2012;

http://faostat3.fao.org/home/E), the Ghana Meteoro-

logical Agency, and the Thematic Data Base Manage-

ment System (TDBase 2001; ‘‘La banque des donnees

tabulaires du Systeme Integre pour l’Alerte Precoce’’).

Data span the period 1983–2009, although data avail-

ability varied by region (Fig. 2a shows the combined

average for all datasets).

Five different runs were performed with different

weather inputs and resolutions. Four runswere driven by

the UM simulations described in section 2a(1). Two of

these were convection-permitting (i.e., ‘‘explicit’’ con-

vection) at 4- and 12-km resolution (4Exp and 12Exp)

and two used parameterized convection at 12- and 40-km

resolution (12Param and 40Param). The final run was

driven by the weather observations described in section

2a(2) at 0.58 (;55km) resolution (ObsWeather). Table 1

provides a summary of the five crop-model runs.

3. Rainfall totals and yields

In this section we provide a comparison of the total

seasonal rainfall and crop yields in the different runs to

provide the context for the more detailed analysis of

processes in section 4. The atmospheric model simula-

tions are allowed to freely evolve within the high-

resolution domains; despite the constraints imposed by

the boundary conditions, there are large differences in

FIG. 1. Mean seasonal rainfall (1 Jun–24 Oct) in (a) ObsWeather, (b) 4Exp, (c) 12Exp, (d) 12Param, and

(e) 40Param. Note that in terms of this variable, the use of explicit convection in the model does not automatically

improve the results.
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rainfall totals between the runs (Fig. 1). All model runs,

except for 12Param, have considerably higher rainfall to-

tals compared to satellite observations. There is a high

degree of uncertainty in satellite rainfall estimates, with

different satellite products showing a variation of 650%

over theCascade domain (Birch et al. 2014). The rainfall in

the model simulations, however, is often more than 50%

higher than the observations, and is therefore likely to be

unrealistic. 12Param, on the other hand, underestimates

rainfall in the Sahel, and the differences with 40Param are

related to the different parameterization of convection

used, as opposed to differences in resolution [further dis-

cussion on these differences can be found in Birch et al.

(2014)]. The large differences in rainfall amounts between

40Param and 12Param provide an interesting point of

comparison; if the two parameterized runs have a consis-

tently different behavior from the convection-permitting

runs or observations, this is likely to be caused by the

characteristics of the parameterized convection itself

rather than any differences in rainfall totals.

In terms of spatial structure, the TRMM observa-

tions show a decreasing south–north gradient in

rainfall, with the exception of the most southern area

(northern Ghana) where rainfall amounts are lower.

Despite the differences in rainfall amounts, both

parameterized runs also exhibit a large-scale meridi-

onal gradient, and 40Param in particular also cap-

tures the maximum in rainfall at 258E. The

convection-permitting runs, on the other hand, have

high rainfall amounts up to the northernmost area of

the domain; with the exception of the dip in rainfall

over northern Ghana, the large-scale pattern is not as

distinct.

FIG. 2. Groundnut yields from (a) county-level observations averaged between 1983 and 2009, (b) ObsWeather,

(c) 4Exp, (d) 12Exp, (e) 12Param, and (f) 40Param.Note that in terms of this variable, the use of explicit convection

in the model does not automatically improve the results.

TABLE 1. List of GLAMcrop-model runs, categorized according to

the atmospheric data used as input.

Run name

Atmospheric

data Resolution (km)

Representation

of convection

ObsWeather Satellite obs 55 —

40Param Model 40 Parameterized

12Param Model 12 Parameterized

12Exp Model 12 Explicit

4Exp Model 4 Explicit
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As described in section 2, crop yield observations are

not directly comparable to the uncalibrated yields out-

put by GLAM. Some information may be gained,

however, by comparing the general characteristics of

the simulated yields with the available observations. To

capture the mean pattern in yields, the average

groundnut yields reported for the full available period

of 1983 to 2009 are shown (Fig. 2a). Note that for the

larger yield-reporting regions there could be large

variations within the region that are not captured.

Overall, yields are lower in the observations compared

to the ObsWeather results, although the maxima are

similar in magnitude (Figs. 2a,b). This is expected given

that GLAM has not been calibrated (i.e., the impact of

nonclimatic yield-reducing factors has not been taken

into account). There is reasonable agreement in terms

of the distribution of crop yields, with high yields across

;118N and in south Senegal and lower yields in

northern Ghana and the north and east of the domain.

The observations also show high small-scale variability

in yields, as can be seen for example throughout

Burkina Faso, where crop yields can vary by 100% over

distances of 100–200 km. Variability at similar scales

can also be found throughout the domain in

ObsWeather, despite the relatively coarse resolution of

the simulation.

Rainfall is a key driver of yield variability in the study

region (Bhatnagar-Mathur et al. 2009; Baron et al. 2005),

so many of the differences in the total seasonal rainfall

(Fig. 1) are also reflected in the yields. 40Param and the

two Exp runs have slightly higher yield maxima than

ObsWeather (up to 20%), and high-yield regions cover

much larger areas, leading to higher yields overall. Crop

yields in 12Param, where rainfall was underestimated

compared to observations, are underestimated by up to

75% when compared with ObsWeather throughout

large parts of the domain (Fig. 2e), despite the fact that

the magnitude of the total rainfall bias is similar to, if not

smaller than, that in the other runs. While the

convection-permitting runs have high yields up to the

northern end of the domain, the parameterized runs

have a more realistic large-scale north–south gradient,

consistent with the total seasonal rainfall. On the other

hand, in the convection-permitting runs yields vary

considerably at scales of ;100km, more consistent with

observations than 40Param, where the yields vary

smoothly throughout the domain. The greater spatial

heterogeneity in rainfall in both observations and the

convection-permitting runs is likely to be the cause of

this variability in yields. This variability is more ap-

parent in 12Exp compared to 4Exp, probably due to the

very high domain-mean rainfall in 4Exp producing

reasonably high yields even in locations where rainfall

is lower than the mean. Overall there is therefore

no clear trend in the accuracy of results regarding

resolution or use of parameterization when only eval-

uating total rainfall and yields in the domain. In the

next section, however, we investigate further any

differences in the more detailed representation of

rainfall and their impact on processes within the

crop model.

4. Rainfall biases and their impact on crop
processes

a. Rainfall frequencies and intensities

One key difference between the convection-permitting/

observed and parameterized simulations is how the

rainfall is distributed, both spatially and temporally. In

the Sahel;90% of the rainfall is delivered by mesoscale

convective systems (i.e., large, organized clusters of

thunderstorms) (Mathon et al. 2002). This means that

rainfall is unevenly distributed, with satellite observa-

tions showing more than 50% of locations/days with no

rainfall, and more than 50% of the total rainfall occur-

ring in high-intensity events (Fig. 3a). The two

convection-permitting runs show the same pattern, al-

though the distribution is shifted toward higher rainfall

intensities consistent with the overestimation of the

seasonal total rainfall, leading to ;90% of the rainfall

occurring in intense events and no rainfall 60%–70% of

the time (Figs. 3b,c). Parameterizations of convection,

on the other hand, fail to form the organized thunder-

storms that are observed, and produce frequent, light

rainfall spread over large areas. In both runs the vast

majority of rainfall events are light to moderate, with

few instances with no (15%–20%) or heavy (,10%)

rainfall (Figs. 3d,e).

The differences in resolution between the datasets will

affect the profiles shown in Fig. 3, as averaging the data

over larger grid boxes will tend to reduce both the

highest rainfall intensities and the number of grid points

with no precipitation. This alone, however, cannot ex-

plain the differences. The satellite observations are the

coarsest dataset and have a tendency to underpredict

heavy rainfall events compared to rain gauges (Jobard

et al. 2011), but despite this they show many more in-

stances of heavy and no rainfall compared to the models

with parameterized convection. The atmospheric model

runs also show a clear split depending on the use of the

parameterization, despite the presence of two simula-

tions run at the same resolution. The similarity in rainfall

intensities between the two parameterized runs, despite

the difference in resolution and the large discrepancy in

seasonal total rainfall between them, therefore points
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toward fundamental shortcomings in the parameteriza-

tion of convection itself.

b. Impacts on planting dates via changes in
evaporation

Changes in the rainfall distribution alter the surface

hydrology, which is particularly important in determining

planting dates. While planting windows can be used to

avoid planting at completely unrealistic times within the

model, as is done here, it is important that crop models

are able to determine planting dates in a realistic fashion,

so that they can be used to predict changes in planting

dates, as opposed to relying on planting dates as an input.

Planting dates also provide a more process-based way of

assessing the crop simulations than simply comparing

simulated and observed yields.

The large-scale monsoon onset is defined as the rela-

tively abrupt northward shift of rainfall from the coast to

;158N (Sultan and Janicot 2003). The main rainfall belt

reaches 158N on;30 July (day 210) in the observations,

and this shift is well captured in all runs as it is primarily

controlled by large-scale processes, which are con-

strained by the model lateral boundary conditions

(Fig. 4). Farmers, however, tend to plant earlier, during

the early-season showers or ‘‘local’’ monsoon onset, in

order to maximize the length of the growing season. In

all runs there are rainfall events before the large-scale

onset in the region 88–158N, north of the main rainfall

belt, although they are underestimated in 12Param

(Fig. 4d) and overestimated in the convection-

permitting runs (Figs. 4b,c).

Observed planting dates are typically around May–

June in northern Ghana (88–108N) and June–July far-

ther north (Portmann et al. 2010; Sacks et al. 2010). The

planting dates in ObsWeather and the two convection-

permitting runs are consistent with the literature values,

FIG. 3. Fraction of points with no (0–0.1mm), light (0.1–2mm), moderate (2–15mm), and heavy (.15mm) rainfall

(bars), and the contribution to the total seasonal rainfall of each bin (lines) for (a) ObsWeather, (b) 4Exp, (c) 12Exp,

(d) 12Param, and (e) 40Param.
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FIG. 4. Seasonal evolution of the zonally averaged rainfall (from 2108 to 58E) as a function of latitude in

(a) ObsWeather, (b) 4Exp, (c) 12Exp, (d) 12Param, and (e) 40Param.
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with planting occurring at the start of June in northern

Ghana, and progressively later (up to the end of July)

farther north (Figs. 5a–c). In the runs with parameter-

ized rainfall, on the other hand, planting occurs

throughout most of the domain on or after day 210, at

the end of July (Figs. 5d,e). Over large areas planting is

not triggered before reaching the end of the planting

window (white hashing in Fig. 5), and where planting is

triggered by the intelligent planting routine, it coincides

with the large-scale monsoon onset, when the main

rainfall belt moves north. This leads to a delay in

planting of nearly two months over northern Ghana.

The two parameterized runs have opposite biases in

total rainfall, and in 40Param, delayed planting occurs

despite receiving more rainfall than ObsWeather before

day 210 (cf. Figs. 4a and 4e, north of 88N). The intelligent

planting routine used by GLAM plants the crop when

the soil moisture in the top soil layer reaches a given

fraction of the water holding capacity. Differences in the

rainfall distribution will alter the availability of water to

the crops, by affecting how much rainfall is lost from the

soil via evaporation, runoff, and drainage.

Figure 6 shows the fraction of rainfall lost to evapo-

ration before planting. In both parameterized runs more

than 90% of rainfall is lost to evaporation. This can be

attributed to the presence of persistent light rainfall in

the parameterizedmodels, which leads to a daily cycle of

light wetting of the upper soil layers, which can

evaporate before the next rainfall event the following

day. The early-season rainfall events are therefore in-

sufficient to trigger planting, so planting can only occur

when rainfall totals increase substantially with the ar-

rival of the large-scale monsoon onset. ObsWeather,

which has lower rainfall than 40Param between days

160–200, has lower evaporation rates, particularly over

northern Ghana where the largest discrepancy in

planting dates exists. This discrepancy in planting dates

is due to the fact that rainfall events are more intense,

causing soil moisture to increase enough to trigger

planting even when rainfall totals are lower. The over-

prediction of rainfall totals and maximum rainfall in-

tensities in the two convection-permitting runs leads to

increased runoff and drainage (not shown), which is

coupled to an underestimation of evaporation. These

two effects offset each other, leading to planting dates

that are similar to ObsWeather.

It is worth pointing out that evaporation is not a

function of the rainfall intensity alone. For example,

there are differences in temperature between the runs

(discussed further in section 4c), with 40Param having

the highest mean temperatures, which will also con-

tribute to increased evaporation. This could explain, for

example, the very similar evaporation rates between

12Param and 40Param, despite the higher number of

heavy rainfall events in 40Param. However, the overall

consistency between the two parameterized runs (which

FIG. 5. Planting dates in (a)ObsWeather, (b) 4Exp, (c) 12Exp, (d) 12Param, and (e) 40Param. Thewhite hatching

shows regions where the intelligent planting routine was not triggered and therefore planting occurred at the end of

the planting window.
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have opposite biases in radiation and temperature) and

the differences in evaporation between 40Param and

ObsWeather, which have similar mean temperatures,

suggest that variations in the rainfall distribution are the

primary driver of the differences in evaporation.

It could be argued that the convection-permitting and

parameterized model configurations are equally in-

correct, as they both have evaporation biases of similar

magnitude, although of the opposite sign. The cause of

the errors, however, is different between the two sets of

runs. The issues in the convection-permitting configu-

ration are directly related to an overestimation of rain-

fall in these runs, which in turn pushes the entire

distribution of rainfall in Fig. 3 to the right. If the rainfall

totals were closer to observations, for example using a

simple multiplicative correction, runoff and drainage

would decrease while evaporation would increase.

Furthermore, these errors do not affect planting dates,

which are therefore similar to ObsWeather, because

early-season rainfall is able to trigger planting. The evap-

oration errors in the parameterized model, on the other

hand, are not related to rainfall totals, but to the distri-

bution of rainfall intensities. Evaporation will always be

overestimated if rainfall is too frequent and too light,

as shown by the presence of similar biases in 12Param

and 40Param, despite the large differences in rainfall

totals. Therefore, a correct simulation of the planting

dates depends critically on correcting the biases in the

rainfall distribution generated by parameterizations of

convection.

c. Impacts of delayed planting on temperatures

Errors in planting dates have indirect effects on the

representation of the plant cycle in the crop model. All

the atmospheric model runs, as well as the satellite ob-

servations used in ObsWeather, show higher surface

temperatures early in the season, with a relatively sharp

decrease shortly before, and during, the large-scale

monsoon onset and a more gradual increase in early

September, during the monsoon retreat (Fig. 7a). Be-

cause of the seasonal cycle in temperatures (and other

variables such as radiation), delayed planting alters the

conditions the plant is exposed to when growing, as it

will develop at a different time in the seasonal cycle.

Although the shape of the seasonal cycle is very sim-

ilar between all the runs, there are differences in the

actual values even before considering the impact of the

planting date. 40Param has the highest temperatures,

with differences of 2–5K with the other model runs

before the monsoon onset, decreasing to 1–2K after the

onset. The remaining three runs, however, match

closely. The ObsWeather temperatures generally lie

between the two sets of models. The mean tempera-

tures, therefore, do not separate clearly between the

parameterized and convection-permitting configura-

tions, and resolution or other parameters that make up

FIG. 6. Fraction of rainfall lost to evaporation from 1 Jun to planting in (a) ObsWeather, (b) 4Exp, (c) 12Exp,

(d) 12Param, and (e) 40Param.
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the model setup appear to be more important. For ex-

ample, as discussed in section 2a(1), 12Param and

40Param not only use different closures in the parame-

terization of convection but also handle cloud–radiation

interactions differently, which could explain the dis-

crepancy between the two.

The different planting dates affect the temperature

experienced by the plant, and so alter the differences

between the runs observed in the full seasonal cycle

(Fig. 7b). The later planting dates in 12Param and

40Param coincide with the seasonal minimum in tem-

peratures. Therefore, despite the much higher temper-

atures in 40Param relative to the other model runs, of up

to 5K before the large-scale onset, the temperatures

experienced by the crops are only 1K higher. In

12Param, the even later planting dates lead to lower

temperatures at first compared to the other runs, but

also an increasing, as opposed to decreasing, tempera-

ture trend with time. Temperatures in ObsWeather are

slightly higher than the convection-permitting runs,

consistent with the full seasonal cycle, due to a closer

match in planting dates.

These results show that it is not sufficient to accurately

represent the mean seasonal cycle in temperature in

order to correctly reproduce the growing conditions for

the simulated crops. The representation of rainfall by

parameterizations of convection can delay planting even

when the seasonal cycle of rainfall is correct, and this in

turn affects the conditions experienced by the crops, not

only for temperature, but also radiation (not shown). In

West Africa temperatures decrease during the first 30–

60 days of the plant life cycle, but increase again during

the monsoon retreat. Unrealistically late planting dates

in crop simulations therefore lead to crops initially

growing during the cooler part of the season, which

would cause an underestimation in climate studies of the

impacts of rising temperatures. On the other hand, crops

would experience higher temperatures close to the end

of the crop life cycle. At this time flowering and grain

filling occurs, and yields may be more sensitive to tem-

perature differences, thus overestimating the negative

effects of rising temperatures. More work is therefore

needed to understand what effect dominates in West

Africa, and how the processes described in this study

affect crop simulations in other tropical regions, in order

to better constrain the uncertainty in climate impacts

assessments introduced by rainfall errors in atmospheric

models.

5. Summary and discussion

Parameterizations of convection are a key source of

uncertainty in all global climate models, and the biases

in rainfall processes that they produce are essentially

shared by the majority of parameterizations (Randall

et al. 2003; Stephens et al. 2010; Sun et al. 2006; Dai and

Trenberth 2004; Dai 2006). For this reason, the impact

of these biases cannot be quantified by model inter-

comparisons, and their influence on climate change

impacts predictions remains largely unexplored. Here we

compare satellite observations with model configurations

that parameterize convection and with ‘‘convection-

permitting’’ configurations, which allow convection to

evolve explicitly. The configuration with parameterized

convection was run with horizontal resolutions of 12 and

40 km and the convection-permitting configuration was

run with resolutions of 4 and 12km. These different

datasets were used to drive a large-area crop model to

evaluate the impact of biases in the representation of

rainfall on the representation of crops.

FIG. 7. Domain-mean surface temperature as a function of (a) time and (b) day after planting.

The vertical dashed line in (a) indicates the large-scale monsoon onset date.
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The parameterized runs produced an unrealistic dis-

tribution of rainfall frequencies and intensities, a well-

known issue with parameterizations of convection. The

parameterization leads to too frequent light rainfall

events (in time and space), with too few heavy rainfall

showers and days with no rainfall at all. The bias in total

rainfall in the two parameterized runs was of opposite

sign, but despite the large differences in total rainfall this

persistent ‘‘drizzle’’ was observed in both the runs. The

two convection-permitting runs, on the other hand, had

rainfall distributions much closer to observations, al-

though peak rainfall intensities and rainfall totals were

overestimated.

Despite large differences in rainfall totals between the

two runs with parameterized convection (under- and

overpredicting rainfall respectively), there were some

consistent differences compared to the runs driven by

observations and the convection-permitting simulations.

Small-scale spatial variability in rainfall, and therefore

crop yields, is underpredicted in the parameterized runs,

even when the model was run at higher resolutions

(12 km, compared to 55km in the run driven by obser-

vations). Spatial variability in rainfall and crop yields is

an important factor when assessing the vulnerability of

farmers, as regional averages do not quantify the pro-

portion of people in a region that will be affected by crop

failures.

The planting dates simulated by the crop model were

also markedly different between the runs. In the pa-

rameterized runs, planting did not occur before the end

of the planting window over large areas of the domain (at

which point the crop is automatically planted). Where

the planting routine was successfully triggered, it only

happened with the arrival of the large-scale monsoon,

when rainfall rates substantially increase. In the runs

driven by observations and the convection-permitting

simulations, planting was triggered earlier, during early-

season rainfall events, with planting dates getting pro-

gressively later farther north. This ismore consistentwith

the behavior of farmers in the region, and differences in

planting dates with the parameterized models were of up

to 2 months in the south of the domain. This, in turn,

alters the conditions experienced by the crops, as plant-

ing in the parameterized model coincides with a seasonal

minimum in temperature, which affects the development

of the crops. This reduces the mean temperature expe-

rienced by the plant, compared to the earlier, more re-

alistic planting dates, but increases temperatures at the

end of the plant life cycle, when crops are likely to be

more sensitive to temperature changes.

The delayed planting in the parameterizedmodels can

be attributed to errors in the rainfall distribution. Per-

sistent light rainfall increases evaporation regardless of

the total rainfall rate, as only the top soil layers are

wetted each day, which causes nearly all of the rainfall to

be lost to evaporation (.90%) during the start of the

season. Much higher rainfall rates are therefore needed

for the rainfall to increase soil moisture enough to trig-

ger planting, and so planting can only occur when total

rainfall rates increase with the arrival of the main rain-

fall belt. This issue is independent of the rainfall totals in

the model, so a simple correction of the seasonal total

rainfall will not address these problems.

Crop models can be tuned to produce a more realistic

behavior, for example by constraining planting dates

and yields with observations. However, if the biases in

the inputs are not addressed, the processes within the

crop model will still be unrealistic; the characteristics of

parameterized rainfall will always produce excessive

evaporation, with not enough water penetrating deep

enough into the soil to be taken up by the crops. Another

way of looking at it is that, if the processes in the model

are incorrect, the tuning has to produce compensating

errors to match observations. Observational studies are

increasingly highlighting the importance of nonlinear

interactions between climatic inputs in order to de-

termine the impact of various environmental stresses on

crop yields (e.g., Schlenker and Roberts 2009; Lobell

et al. 2013). It is therefore essential that crop models are

correctly simulating these underlying processes. It is not

enough for a carefully tuned model to be able to re-

produce observations in order to ensure reliable per-

formance in the future, as there is no guarantee that the

tunings used will hold when climatic conditions change.

Although the results in this study use a single atmo-

spheric model, similar biases in the rainfall distribution

have been identified in other models that parameterize

convection (Sun et al. 2006; Dai 2006), and so this can

be considered to be a general shortcoming of any global

weather or climatemodel. The representation of processes

within the crop model is improved in the convection-

permitting model configurations, as it produces a more

realistic rainfall distribution. Although a much higher

resolution is required to fully resolve convection, the use of

two model runs with the same resolution (12km) but

different representation of convection is evidence that the

shortcomings described in this study can be attributed

directly to errors in the parameterization of convection.

Climatemodel intercomparisons will therefore suffer from

the same issues we describe, and so the model spread will

underestimate the true uncertainty.

The atmospheric model used in this study was not

calibrated, leading to large biases in total rainfall both

with and without the parameterization of convection,

which will also contribute to the misrepresentation of

processes in the crop model. More typical climate
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simulations, however, are much better at representing

rainfall totals than its variability (Dai 2006; Sun et al.

2006; Stephens et al. 2010). Improving the rainfall fre-

quency and intensity distributions should therefore be a

priority in the development of parameterizations of

convection. In the meantime, bias correction of rainfall

should tackle this shortcoming directly whenever using

climate-model data to drive crop models, for example as

done in Ines and Hansen (2006). This will allow a more

realistic representation of processes within the crop

model. More generally, we propose that a better rep-

resentation of processes should be prioritized over bet-

ter quantification of current yields when evaluating and

calibrating models, in order to increase our confidence

that the model will behave in a realistic way in different

climatological conditions.

More work is needed to understand how biases in

weather and climate models affect uncertainties in climate

impacts predictions. With the current drive to understand

the detailed processes that affect observed crop yields, a

similar process-based approach is necessary when trying to

understand the impact of model biases. Future work

should extend these results to consider model runs driven

by bias-corrected data, in order to better quantify the un-

certainty in past crop-model projections using climate-

model data, which did not take into account the biases

introduced by the parameterization of convection. This

would also help quantify the improvement in model pro-

cesses achieved by correcting the rainfall frequency and

intensity distribution. Further work is also needed to un-

derstand the cumulative impacts of the biases presented in

this study over the many years for which climate simula-

tions are typically run. Parameterizations of convection

have been shown to affect the regional-scale water cycle in

West Africa (Birch et al. 2014), and these biases may ac-

cumulate over long time periods in unpredictable ways.
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