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than in the control group. In addition, although many cognitive 
functions appear to be impaired in those with ASD, the literature 
is littered with examples of non-replication, suggesting that there is 
no specific cognitive impairment that is consistent and universal in 
ASD (see also Happé et al., 2006). The data on impairments in cog-
nitive task performance in ASD may therefore be better interpreted 
as arising from a pervasive and generalized impairment rather than 
a collection of several, different, modality, or task specific impair-
ments. A promising candidate for such a generalized impairment 
is increased levels of intra-participant variability, as this would 
lead to increased variability between participants, and represents 
a parsimonious explanation for the many areas of cognition that 
appear to be impaired in those with ASD. Furthermore, increased 
intra-participant variability would lead to reduced test re-test reli-
ability and could therefore explain the high level of inconsistency 
within the literature.

Variability and fluctuation in behavior and task performance are 
commonly observed in individuals with developmental disorders 
(Castellanos et al., 2005). Although most typically associated with 
ADHD, recent empirical work has demonstrated that individuals 
with ASD show significantly greater intra-individual response time 
variability during a simple 2AFC task compared not only to a group 
of typically developing (TD) matched control participants, but also 
compared to a group of matched participants with ADHD (Geurts 
et al., 2008). Intra-individual variability appears to be an  important 

IntroductIon
Autism spectrum disorder (ASD) is a complex neurodevelopmental 
disorder that has been estimated to occur in 1.16% of children 
in the UK (Baird et al., 2006). It is characterized by substantial 
difficulties in social cognition, interaction, and communication 
(APA, 1994). In addition to these core deficits, ASD is associated 
with a wide range of more general impairments in many cogni-
tive domains including, executive function (Hill, 2004), memory 
(Bennetto et al., 1996), attention (Allen and Courchesne, 2001), 
and perception (Simmons et al., 2009). An underlying etiology 
that links impairments across such an array of domains has not yet 
been identified. The literature on perceptual function is particularly 
puzzling, as while those with ASD show impaired performance of 
some tasks, e.g., detecting coherent motion within local motion 
noise (Milne et al., 2002), they show superior performance on tasks 
that involve detecting a target within a static array (Plaisted et al., 
1998). Furthermore, enhanced and diminished perceptual sensitiv-
ity appear to co-occur, as Bertone et al. (2005) have demonstrated 
enhanced first-order contrast perception and decreased second-
order contrast perception within the same group of participants.

A persistent difficulty in identifying the etiology of ASD arises 
from a high level of inter-participant variability. This is evidenced 
by the number of studies that discuss participant sub-groups within 
the ASD sample, and the number of studies in which estimates of 
variation around the mean/median are larger in the ASD group 
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indicator of pathophysiological processing therefore, and its poten-
tial to explain a number of task-related behaviors in those with 
ASD should not be over-looked. However, there are many potential 
routes to response time variability, including: variability in higher-
order cognitive functions such as initiating or generating motor 
responses (Deutsch and Newell, 2005); transient lapses of attention; 
and/or variability in early sensory encoding (e.g., Croner et al., 
1993; Arieli et al., 1996). The source of intra-participant variability 
in ASD is therefore unclear.

A number of authors have suggested that neural noise may be 
increased in individuals with ASD or that increased levels of noise 
may contribute to reduced cognitive task performance in those 
with ASD (e.g., Rubenstein and Merzenich, 2003; Baron-Cohen and 
Belmonte, 2005; Dakin and Frith, 2005; Simmons et al., 2009). In 
particular some have suggested cortical hyper-excitation especially 
in primary sensory cortices, which would lead to increased cortical 
noise in ASD (Rubenstein and Merzenich, 2003). However, as yet, 
there is no direct evidence for greater neural noise in those with 
ASD. Increased neural noise would be evidenced by increased vari-
ability across individual trials of EEG, therefore the aim of this study 
is to compare variability in single-trial EEG in a group of children / 
adolescents with ASD with a group of TD matched controls.

Unfortunately, single-trial analysis of EEG is seldom performed. 
The main reason for this is that EEG recorded at the scalp consti-
tutes a mixture of a number of sources signals, therefore, activity 
associated with a single process, being mixed with signals arising 
from other processes as well as on-going “background” oscilla-
tions, is difficult to identify within each trial. Here, EEG data are 
decomposed with independent component analysis (ICA), which, 
as described below, un-mixes the different source signals recorded 
at the scalp, enabling activity from independent processes to be 
identified in single-trials (Makeig et al., 1997, 2004; Onton et al., 
2006) and variability within individuals to be measured.

Whole-brain dynamic processes are underpinned by the forma-
tion of cell assemblies, i.e., groups of cells that oscillate in synchrony, 
or precisely timed succession, for transient periods (Nunez and 
Srinivasan, 2006). As numerous cell assemblies may be active at 
any given time, oscillation synchronicity within specific frequency 
bands is thought to be the mechanism by which the output of single 
units is identified as being part of a coherent network (Singer et al., 
1997). Performing even a simple experimental task will excite a 
number of different cell assemblies which will be active alongside 
numerous other task-unrelated assemblies. A difficulty faced by 
EEG researchers is the fact that electrical activity generated by these 
separate assemblies becomes mixed, and, via volume conduction, 
smeared, across the scalp. That is, each EEG electrode records a 
mixture of signals arising from multiple cognitive processes and 
from on-going “background” oscillatory activity. Furthermore, 
scalp electrodes also record activity from non-brain sources includ-
ing muscle (eye-movements, blinking, heartbeat) and in some 
cases from non-physiological electrical sources (e.g., line-noise). 
Filtering and artifact rejection reduces the influence of some of 
these unwanted contributions to EEG, however, the spatial mixing 
of numerous brain-based processes means that the signal of inter-
est, i.e., the signal associated with the cognitive task, is mixed with 
signals from task-unrelated processes and is therefore difficult to 
observe and measure on a trial-by-trial basis.

This spatial mixing of EEG has shaped the way that EEG data 
are analyzed, most notably by leading to a dominance in single-
trial averaging to calculate the event-related potential (ERP). The 
theory behind the ERP technique is that by calculating an aver-
age of several time-locked trials, event unrelated activity, being 
phase- and time-random with respect to the time-locking event, 
cancels to near zero amplitude, whereas the part of the EEG that 
is time-locked to the relevant event remains visible in the signal. 
Single-trial analysis is therefore rejected in favor of “average” 
event-related analyses. However, given the value of understand-
ing variability across single-trials, just as the SD provides vital 
information regarding the distribution of values around a mean 
response time, a number of alternate methods have been put for-
ward for facilitating single-trial analysis of EEG data. These include 
complex filtering (Salajegheh et al., 2004), maximum likelihood 
estimation (Jaskowski and Verleger, 1999), parametric modeling 
(von Spreckelsen and Bromm, 1988), multivariate matching pursuit 
algorithms (Sieluzycki et al., 2009), general linear model analyses 
(Pernet et al., 2011), and decomposing data using ICA (Jung et al., 
2001). ICA provides an elegant solution to the problems associated 
with spatial mixing of EEG, and facilitates analysis of single-trials by 
decomposing EEG data into separate informational components of 
brain dynamics that closely reflect activity associated with specific 
cognitive or sensory processes, thus removing the need for time-
locked averaging (e.g., see Jung et al., 2001).

Independent component analysis is a method of blind source 
separation that separates N linear mixtures into N independent 
informational components (Makeig et al., 1997). It is based on 
the assumption that source signals are statistically independent 
whereas signal mixtures are not. Maximizing the joint entropy of 
the extracted signals gives rise to the “un-mixing matrix” W that, 
when multiplied by EEG data X, produces the original source sig-
nals U, i.e., U = WX. The columns of the un-mixing matrix, W, 
hold coefficients of spatial filters that pass the activity of only one 
independent source process and suppress all the others. Each IC 
is represented by the time-course of activation (given by each row 
of U), and the weights with which the component projects to the 
electrodes which are given in the inverse of the un-mixing matrix 
W−1. Plotting these weights onto a schematic head model allows one 
to visualize the scalp topography of each independent component.

A number of papers have demonstrated the usefulness of 
decomposing EEG data into ICs, not only for isolating artifactual 
contributions to scalp EEG, but also for studying on-going oscil-
latory activity, and event-related activity that contribute to ERP 
deflections recorded at the scalp (for examples see Debener et al., 
2005; Onton et al., 2005; Eichele et al., 2010). Here, ICA is used to 
identify independent components that represent early (<200 ms) 
activity evoked by presentation of a simple visual stimulus, in order 
to compare single-trial EEG variability in those with and with-
out ASD. In addition to decomposing the data with ICA, the EEG 
epochs were converted to current source density (CSD) models 
(e.g., Kayser and Tenke, 2006). CSD transforms compute the second 
spatial derivative of voltage between nearby electrode sites, which 
enhances local electrical activity while attenuating distal activity. 
By emphasizing local contributions to the surface map, some of the 
variability associated with spatial smearing via volume conduction 
may be reduced. Comparing measures of variability obtained from 

Milne Increase EEG variability in ASD

Frontiers in Psychology | Perception Science  March 2011 | Volume 2 | Article 51 | 2

http://www.frontiersin.org/perception_science/
http://www.frontiersin.org/perception_science/archive


an independent component that fulfilled the selection criteria (see 
below) was identified. The two samples of data were therefore well 
matched both in terms of participant characteristics and data qual-
ity. Participant details are provided in Table 1.

The participants with ASD were recruited from a local clinic for 
children with pervasive developmental disorders. Only participants 
with a clinically defined diagnosis of autism (N = 5), Asperger’s syn-
drome (N = 5), or ASD (N = 3) were recruited2, no participant had 
a co-morbid diagnosis, or a known specific neurological or genetic 
condition (e.g., Fragile X, Rett Syndrome) that could account for their 
diagnosis of ASD. The TD children were recruited from an e-mail list 
of volunteers and were screened for any history of developmental, 
neurological, or genetic disorder. No participant had taken medica-
tion within 24 h of participation. Written informed consent was 
obtained from the parents of all participants and verbal assent was 
obtained by the participants prior to testing. The procedures followed 
were in accordance with the ethical standards of the South Sheffield 
NHS ethics committee and the Declaration of Helsinki.

PsychometrIc assessment
Degree of ASD symptoms were assessed in all participants by 
way of an observational measure (the Childhood Autism Rating 
Scale, CARS, Schopler et al., 1988) and a parental questionnaire 

the raw channel EEG with measures of variability obtained from 
two different methods of spatially filtering will illustrate which 
method produces the least variable data, thus ensuring that the 
most appropriate source of data is used when comparing variability 
between the participants with and without ASD.

The result in this paper present a re-analysis of data collected 
for a previous study (Milne et al., 2009), in which the visual evoked 
response in children/adolescents with and without ASD was inves-
tigated. Previously, we compared amplitude and latency indices of 
the visual evoked potential (VEP, e.g., the C1 and P1 deflections), 
and changes in α- and γ-band power associated with presentation of 
Gabor patches at a range of different spatial frequencies. We found 
that the time at which spectral power increase following stimulus 
onset was reduced in the participants with ASD (see also Isler et al., 
2010), and that the extent to which the spatial frequency content of 
the stimuli modulated α- and γ-band power was less in the partici-
pants with ASD (see also Jemel et al., 2010). Here, I now investigate 
intra-participant EEG variability: single-trial variability across the 
time-course is analyzed by comparing point-by-point amplitude 
variability across trials, and also by computing the degree of inter-
trial phase consistency across the time-course. In addition, vari-
ability of P1 amplitude, i.e., the consistency of P1 magnitude, and 
variability of P1 latency, i.e., the consistency of the time at which 
the peak occurs will be investigated. The P1 deflection is a positive 
going deflection within the VEP. It peaks between 100 and 160 ms 
after stimulus onset, is maximal over posterior leads and is generated 
within the extra-striate cortex. The P1 was selected for analysis as 
it is time-locked and phase-locked to stimulus onset. Therefore a 
“P1-like” increase in amplitude should be visible across single-trials, 
enabling variability between the two groups to be compared1.

materIals and method
PartIcIPants
Data were collected from 20 children/adolescents with ASD. Data 
from two participants were not analyzed as these participants had 
co-morbid diagnoses of ADHD. Data from another participant 
were excluded as despite having a clinical diagnosis of ASD, she 
failed to reach cut-off for ASD on the two screening measures that 
we used to ensure the homogeneity of our sample (further details 
are given below). From the remaining 17 participants, data from 
four participants were excluded as these participants did not show 
an independent component in their data decomposition that ful-
filled the criteria imposed for IC selection (further details are given 
below). Data are therefore presented from a total of 13 participants 
with ASD.

Participants in the TD control group were selected from a sample 
of 37 participants (19 male) who performed this task either as part 
of another study investigating developmental change of the VEP, or 
as part of the previously published study (Milne et al., 2009). Data 
from 12 of these participants is presented here; their inclusion was 
based on being a suitable match to one of the participants with ASD 
in terms of gender, age, and IQ and generating data from which 

1Note, that an index of earlier cortical response to visual stimuli is expressed by the 
C1 component, which peaks at around 100 ms and is generated in the striate cortex 
(Di Russo et al., 2001). However, C1 was not analyzed here as not all participants 
with ASD demonstrated a clear C1 deflection.

Table 1 | Participant demographics.

 ASD (N = 13) TD (N = 12) t- and

   p-Values

Gender 1 Female 1 Female 

ChronoloGiCAl AGE

Mean 11 years 8 months 12 years 4 months t(23) < 1, 

   p = 0.63

SD 2 years 6 months 2 years 11 months 

Range 8 years 4 months–15 7 years 11 months–16  

 years 5 months years 0 months

Full SCAlE iQ

Mean 105.9 111.1 t(23) < 1, 

   p = 0.37

SD 16.3 16.9 

Range 65–134 70–131 

CArS SCorE†

Mean 31.7  

SD 3.9  

Range 25–39.5  

SCQ SCorE‡

Mean 23.9  

SD 7.3  

Range 9–34

CARS, Childhood Autism Rating Scale, SCQ, Social Communication 
Questionnaire.
†Cut-off for autism is 30.
‡Cut-off for autism is 15.

2In the rest of this manuscript this sample will be collectively referred to as 
“ participants with ASD.”
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(the Social Communication Questionnaire, SCQ – lifetime ver-
sion Berument et al., 1999). The CARS requires the experimenter 
to rate the participant from a scale of 1–4 on 15 item behavio-
ral rating scale, for example “emotional response” and “fear and 
nervousness.” Scores range from 15 to 60 and the cut-off for ASD 
is 30. The SCQ consists of 40 “Yes/No” questions asking parents 
if their child currently displays specific autism-related behav-
iors or whether those behaviors were present between the ages 
of 4–5 years. Scores range from 0 to 40 and the cut-off score for 
ASD is 15. Intellectual ability was measured using the Wechsler 
Abbreviated Scale of Intelligence (WASI, Wechsler, 1999). This is 
comprised of four standardized sub-tests that assess expressive 
language, perceptual organization, abstract verbal reasoning, and 
non-verbal fluid reasoning abilities. The four sub-tests when con-
sidered together yield a “full scale IQ” that provides a composite 
measure of the participant’s general intelligence. All participants 
had normal, or corrected-to-normal, visual acuity.

stImulI and Procedure
Gabor patches were created using Matlab (The Mathworks, 
Inc.) and the psychophysics toolbox (Brainard, 1997). They 
were presented on a 17-inch monitor, which refreshed at 75 Hz. 
Stimuli were centrally presented on a gray background (average 
luminance = 14.4 cd/m2). The space-average luminance of each 
grating was 16.3 cd/m2, and the Michelson contrast, defined by 
(Lmax − Lmin)/(Lmax + Lmin) was 68%. The slight difference 
between the average luminance of the background and the stimuli 
was not visibly apparent and did not lead to any visible edges 
around the stimuli. At a viewing distance of 114 cm the patches 
subtended 6.78° by 6.78° of visual angle. All patches were pre-
sented in diagonal (45°), orientation, had a gaussian envelope 
with SD of 0.68°, and with spatial frequency modulation of 0.5, 
1, 4, or 8 cycles/degree. An additional stimulus, a gray-scaled 
image of a zebra was presented. Participants were instructed to 
respond by pressing a response button with the index finger of 
their dominant hand as quickly as possible whenever they saw 
the zebra.

Each of the four Gabor patches was shown 72 times, the zebra 
was shown 36 times. The order of stimulus presentation was ran-
domized. Each stimulus remained on screen for 39 refresh cycles 
(507 ms), with an additional variable inter-stimulus interval of 
either 24 (312 ms), 39 (507 ms), or 54 (702 ms) refresh cycles. A 
white fixation cross measuring 0.2° by 0.2° remained in the center 
of the screen for the duration of the task. Participants were asked 
to maintain fixation and to limit their blink frequency during the 
experiment.

data recordIng
EEG was continuously recorded using a high-density array of 
128 Ag/AgCl electrodes (Electrical Geodesics Inc., Tucker, 1993). 
Impedance was kept below 50 kΩ. The signal was amplified (×1000), 
filtered on line with a band-pass of 0.01–80 Hz, then digitized 
at a sampling rate of 1 kHz. The electro-oculogram (EOG) was 
recorded from bipolar electrode pairs located at the outer canthi 
and above and below the left and right eyes. Data were referenced 
to the vertex electrode, and were stored on the hard drive of a G4 
Macintosh power PC.

data Pre-ProcessIng
Data were analyzed off-line using EEGLAB (Delorme and Makeig, 
2004, http://www.sccn.ucsd.edu/eeglab), and the CSD toolbox (Kayser 
and Tenke, 2006; Kayser, 2009) running under Matlab 7.4 (The 
Mathworks, Inc.). A number of pre-processing steps were performed 
on the data before applying either ICA or CSD interpolation. First, 
the data were high-pass filtered (1 Hz) to minimize drift. Then the 
number of channels was pruned from 128 to 64. Pruning was neces-
sary in order to improve the quality of ICA decomposition, given the 
relatively small amount of data recorded (∼5 min). Initially channels 
that showed noise artifacts due to poor connection to the scalp were 
deleted, then channels were removed if they showed high kurtosis, 
finally, additional channels that showed the smallest inter-electrode 
distance were removed until 64 relatively evenly spaced electrodes 
remained. In some cases a small number of additional channels were 
deleted by the experimenter if any noise artifacts on any particular 
channel were still visible. (Given the small amount of data recorded 
there was a bias toward rejecting channels rather than portions of data 
in order to facilitate ICA.)

After channel pruning, noisy segments of data, i.e., segments 
that contained gross artifacts such as muscle twitching or swal-
lowing were removed from the data. At this stage, the data were (i) 
decomposed by extended infomax ICA using the function runica, as 
implemented in EEGLAB, and then segmented into epochs associ-
ated with presentation of the high spatial frequency Gabor patch 
(8 cycles/degree); epochs were 800 ms long (−100 ms pre-stimulus), 
and baseline corrected by subtracting the mean of the 100 ms pre-
stimulus interval, and (ii) segmented into epochs as described above 
and then transformed into CSD estimates (measured in μV/cm2) 
using a spherical spline surface Laplacian (Perrin et al., 1989) as 
implemented by Kayser and Tenke (2006), Kayser (2009), with a 
spline-smoothing coefficient (λ) of 1.0−5. Both sets of data were 
then low-pass filtered (<30 Hz).

Independent component source locations were estimated by 
creating an equivalent current dipole model for each component 
using the dipfit function from EEGLAB, this function estimates 
dipole location by applying inverse source modeling methods to 
a standard boundary element head model. The coordinate system 
used to specify electrode locations of both sets of data is publicly 
available as a look-up table [“10-5-System Mastoids EGI129.csd”] 
via the CSD toolbox. Three types of data were analyzed: (i) the back-
projected independent time-course of the selected component (see 
below), (ii) the time-course of the CSD interpolated data from the 
selected channel (see below), and (iii) the time-course of the raw, 
spatially un-filtered data from the selected channel.

data selectIon
IC selection
Only components whose scalp maps had <15% residual variance 
from the best-fitting forward model scalp projection were consid-
ered for further analysis. Any remaining components that reflected 
muscle activity, electrocardiogram, or eye-movements, on the basis 
of their dipole location, spectra, and scalp maps, were considered 
artifacts and excluded from further analysis. From the remaining 
components, selection of the component that represented activity 
associated with visual perception was based on two criteria: (i) 
the back-projected time-course was required to show time-locked 
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in the signal following stimulus presentation, therefore inter-trial 
α phase coherence, specifically at 11.7 Hz, was calculated using 
the newtimef function in EEGLAB. The highest ITPC value within 
the 100–170 ms post stimulus onset time-window was extracted 
for each participant to give an indication of the maximum level 
of ITPC, a high level (up to 1) indicates strong phase coherence, 
i.e., low variability; a low level (down to 0) indicates weak phase 
coherence, i.e., high variability. In addition, ITPC was calculated 
across the time-series.

increase in amplitude between 100 and 170 ms after stimulus onset; 
and (ii) the estimated equivalent current dipole was required to 
be located in posterior cortex. In all cases the selected component 
accounted for a larger percentage of the variance of the total EEG 
than any other component between 100 and 170 ms. The mean per-
centage variance accounted for by the selected components in this 
time-window was 70%, indicating that the selected  components 
contributed substantially to the VEP. The mean residual variance 
of the dipole fit for the selected independent components was rea-
sonably low (6.5%), suggesting that the selected ICs reflect the 
activity of a compact region in the cortex. The estimated Talairach 
coordinates of the equivalent current dipole of each component 
suggested that the neural generators of the component activations 
were located in extra-striate cortex.

Channel selection
Channel selection was based on an optimized electrode approach 
(e.g., Foxe and Simpson, 2002), whereby the channel that showed 
the highest P1 amplitude, from the CSD interpolated data, was 
selected for analysis. The CSD scalp maps at the latency at which 
the P1 peak was maximal, with the selected electrode marked by 
a black dot are presented in Figure 1 (left column); scalp maps 
from the IC selected for each participant are presented in Figure 1 
(right column). Despite not being used in the IC selection criteria, 
the similarity between the weight with which the ICs project to the 
scalp electrodes and the topography of the CSD maps at the time-
point when P1 was maximal, confirms that the selected component 
represent activity associated with the P1 deflection.

defInIng the varIables of Interest
P1 amplitude and latency
A number of variables were calculated from the three sources of 
data. In line with conventional ERP analyses, P1 amplitude was 
given by the highest (peak) amplitude between 100 and 170 ms; 
P1 latency was given by the time of this peak from stimulus onset. 
For the single-trial analyses, the highest amplitude between 100 and 
170 ms was identified in each trial; P1 amplitude was calculated 
as the median amplitude value, P1 latency was calculated as the 
median time at which these single-trial peaks occurred.

Variability
Variability in the expression of the P1 amplitude was estimated by 
calculating the median absolute deviation (MAD) of the P1 ampli-
tude and latency values, normalized by dividing by the median. In 
addition, across-trial amplitude variability was calculated at each 
time-point in the epoch. Due to the inherent difficulty of calculating 
co-efficients of variation when the central tendency is close to 0, 
amplitude values were normalized prior to computing the MAD 
estimate by converting all of the data to a z-score.

The degree to which each participant showed phase coherence 
over trials was calculated by computing an inter-trial phase coher-
ence (ITPC) measure. ITPC is a frequency domain measure that 
indicates the degree to which EEG activity is phase-locked, across 
trials, to specific experimental events – in this case presentation 
of the 8 cycles/degree Gabor patch. The power spectrum of each 
trial was calculated using a hanning tapered fast Fourier trans-
form with a window size of 128 ms. α-Band power was dominant 
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FiGurE 1 | Current source density (CSD) and iC scalp maps. CSD maps 
(left panel) are plotted at the time when P1 amplitude was highest. The 
electrode selected for analysis is indicated by the black dot. IC scalp maps 
(right panel) are stationary, and therefore constant across the time-course. 
[(A) = TD, (B) = ASD].
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source (all F > 3.4, all p < 0.05) and were therefore followed-up with 
paired-samples t-tests. These analyses indicated that there was no 
difference in variability when measured from the CSD interpolated 
data and the back-projected IC data (all t < 1, all p > 0.1), but the 
variables computed from the raw channels were significantly more 
variable than the variables computed from the spatially filtered 
sources. The data are presented in Table 2. Based on these results, 
the following analyses of group differences in variability were per-
formed using the spatially filtered data rather than the raw EEG.

grouP comParIson: Intra-PartIcIPant varIabIlIty
The extent to which the participants with ASD showed increased 
variability when compared with the neuro-typical participants was 
investigated with three 2 × 2 repeated measures ANOVAs with a 
within-subject factor of data source (CSD or ICA) and a between 
subjects factor of group (ASD or TD). The results of these  analyses 

In sum, three single variables were extracted for analysis – 
 variability of P1 amplitude, variability of P1 latency and maximum 
ITPC. The amplitude and ITPC time-courses were also compared 
on a point-by-point basis.

results
A positive going deflection was seen in the single-trials from all 
three sources of data. This is illustrated in Figure 2, which shows 
the single-trial amplitude across the epoch from a TD participant 
and a participant with ASD as measured from each source of data.

WhIch source of data shoWs the hIghest varIabIlIty?
The three measures of peak variability (see above), from all subjects, 
were entered into separate one-way ANOVAs with a within-subject 
factor of data source (raw EEG, CSD interpolated data, and back-
projected IC). All three ANOVAs showed a significant effect of data 
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Table 2 | Mean measures of variability as calculated from the three sources of data.

 Mean value per data source Statistical comparison Statistical comparison

 EEG CSD iCA EEG vs CSD EEG vs iCA

P1 amplitude variability 0.38 [0.34 0.42] 0.34 [0.30 0.37] 0.34 [0.29 0.39] t = 3.85, p = 0.001 [0.022 0.072] t = 1.89, p = 0.072 [0.004 0.083]

P1 latency variability 0.07 [0.05 0.08] 0.06 [0.04 0.07] 0.06 [0.04 0.07] t = 2.98, p = 0.007 [0.004 0.020] t = 2.58, p = 0.016 [0.002 0.022]

Max. α-band ITPC 0.77 [0.70 0.84] 0.81 [0.74 0.87] 0.81 [0.74 0.87] t = 4.4, p < 0.001 [0.019 0.053] t = 2.1, p = 0. 046 [0.001 0.072]

95% confidence for the variable mean and for the difference between the two variables are given in square brackets.
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Table 3 | results of statistical tests comparing measures of variability in the two groups of participants.

 Data source Group interaction 95% Ci of the 

    group difference

P1 amplitude variability F < 1, p = 0.792 F = 5.37, p = 0.030 F = 3.83, p = 0.063 [0.008 0.148]

P1 latency variability F < 1, p = 0.975 F = 5.40, p = 0.029 F < 1, p = 0.747 [0.003 0.047]

Max. α-band ITPC F < 1, p = 0.977 F = 4.67, p = 0.041 F < 1, p = 0.418 [0.006 0.256]

are shown in Table 3, and the data are plotted in Figure 3A. The 
participants with ASD showed, on average, greater variance than the 
neuro-typical participants. This was the case for both measures of 
P1 variability: amplitude variability, ASD mean = 0.38 [0.33 0.43], 
TD mean = 0.30 [0.25 0.35]; latency variability, ASD mean = 0.07 
[0.05 0.08], TD mean = 0.04 [0.03 0.06]; and also for the maxi-
mum α-band ITPC, ASD mean = 0.74 [0.66 0.83], TD mean = 0.87 
[0.78 0.96].

Figure 3B illustrates amplitude variability in the two groups of 
participants at each time-point. Figure 3C illustrates α-band ITPC 
in the two groups of participants at each time-point. In order to 
compare these group time-courses, independent-samples t-tests 
were computed at each time-point. ITPC was significantly reduced 
(p < 0.05) in the participants with ASD between 160 and 271 ms 
after stimulus onset. Amplitude variability was significantly greater 
(p < 0.05) in the participants with ASD between 97 and 114 ms, 
between 185 and 194 ms, and between 283 and 300 ms after stimu-
lus onset.

grouP comParIson – P1 amPlItude and latency
Although not the main area of interest in this article, P1 latency 
and amplitude were compared between groups as this is the first 
study to report P1 amplitude calculated from single-trials rather 
than the average ERP in individuals with ASD. It has been suggested 
that individuals with ASD may show hyper-sensitivity in poste-
rior cortical areas associated with early visual perception (Mottron 
et al., 2006). As such, significantly greater P1 amplitude could be 
 predicted3. Given that individuals with ASD show increased latency 
jitter compared to TD participants (see above), the amplitude of the 
ERP could be artificially reduced in this population, masking any 
such effect. By contrast, computing P1 from the single-trials creates 
a variable that is immune to the effects of latency jitter. However, 
there was no group difference in P1 amplitude from any data source 
when calculated from either the ERP peak or the median of single-
trials (all t < 1. all p > 0.4). Figures 3D,E illustrate P1 amplitude 
when calculated as the peak of the ERP (Figure 3D) and the median 
amplitude of the single-trial peaks (Figure 3E). In addition these 
figures show variability as the SD of the single-trial peaks (3D) 
and the MAD of the single-trial peaks (3E). For comparison with 
previously published data, data from the raw EEG is presented in 
order to illustrate the difference in amplitude when calculated from 
the ERP and from the median of the single-trials.

Latency to peak was compared in the two groups using a repeated 
measures ANOVA with three levels: data source (EEG, CSD, or 
ICA), data type (ERP or median of single-trials) and group (ASD 

or TD). The only significant effect was the main effect of group, 
F(1,23) = 9.4, p < 0.01 which reflected the fact that latency to peak 
was faster, on average 18 ms faster, in the ASD group than the 
TD group, regardless of the data source or the data type. Table 4 
presents P1 amplitude and latency values in each group as calcu-
lated from the different sources of data. The table illustrates that, as 
expected, when calculated from the median of single-trials rather 
than the peak of the ERP, P1 amplitude is larger, whereas the latency 
of the peak does not differ.

Under some circumstances, ERP amplitude has been shown to 
decrease over multiple trials (e.g., Maurer et al., 2008). Therefore, 
in order to evaluate whether increased variability in the participants 
with ASD may reflect a larger habituation-effect, linear regressions 
of trial number against (IC) peak amplitude were computed for 
each participant. Mean slope size did not differ between groups 
however, indicating that this was not the case (TD mean β = −0.04 
[−0.13 0.05], ASD mean β = −0.06 [−0.15.03], t(23) < 1, p > 0.1.

data IntegrIty
Differences in data integrity between the two groups could conflate 
estimates of variability, therefore a number of analyses were carried 
out to ensure that data from both groups were of similar quality. 
The mean number of epochs analyzed did not differ between the 
two groups, TD = 58.6 [52 65], ASD = 53.3 [47 60], t(23) = −1.2, 
p = 0.241, suggesting that any differences in variability between the 
two groups are unlikely to arise from unequal number of epochs 
being submitted to analysis. There was no significant difference in 
the percentage variance accounted for by the selected ICs within the 
P1 time-window, TD = 70.7% [59.8 81.6], ASD group = 69% [58.6 
79.5], t(23) < 1, p = 0.822. Furthermore, there was no significant 
group difference in residual variability of the dipole fit, TD = 7.1% 
[5.7 8.6], ASD = 5.9% [4.5 7.3], t(23) = −1.28, p = 0.213), suggest-
ing that the quality of the ICA decomposition was similar between 
the two groups.

correlatIon WIth reactIon tIme
The experiment from which these data are taken required par-
ticipants to press a response key whenever they saw an oddball 
stimulus – a zebra. The groups did not differ in the number of 
responses made, TD = 34.3 [33.0 36.9], ASD = 34.5 [32.2 36.3], 
t(20) < 1, p = 0.657, in mean reaction time TD = 393.3 [363 413], 
ASD = 412.4 [378 431], t(20) = 1.37, p = 0.307, nor in the mean 
MAD estimate of reaction time variability, TD = 45.1 [34.4 52.5], 
ASD = 38.2 [28.2 48.1], t(20) < 1, p = 0.423. However, there was 
a significant relationship between reaction time variability and 
peak amplitude variability, r

s
(22) = 0.479, p = 0.024. (Behavioral 

data from three participants with ASD was unavailable due to a 
technical fault.)

3Although, as discussed in the introduction, the late P1 complex analyzed here most 
likely reflects activity in extra-striate cortex rather than the primary visual cortex. 
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data than from the scalp EEG data, highlighting the benefits of 
applying spatial filtering techniques to EEG. Having validated the 
use of CSD and ICA in this study, measures of single-trial variability 
were compared between the participants with and without ASD, 
with the finding that intra-participant variability was significantly 
greater in the participants with ASD than in the control group.

These data suggest that previous reports of increased response time 
variability in those with ASD (Geurts et al., 2008) may be underpinned 
by variability within cortical dynamics associated with the ability to 

dIscussIon
The aim of this work was to establish whether those with ASD show 
greater variability across single-trial evoked EEG compared with 
neuro-typical individuals. A second aim was to compare single-trial 
EEG variability when extracted from spatially filtered data and 
from raw-scalp EEG data in order to select the most appropriate 
variables for group comparison. All three measures of peak vari-
ability – P1 amplitude, P1 latency, and maximum α-band phase 
coherence – were smaller when analyzed from the spatially filtered 

0

0.2

0.4

0.6

0.8

1

IT
P

C

0

0.15

0.25

0.35

0.45
P

ea
k 

am
pl

itu
de

 v
ar

ia
bi

lit
y

0

.02

.04

.06

.08

P
ea

k 
la

te
nc

y 
va

ria
bi

lit
y

ASD               TD ASD               TD ASD               TD

0 100 200 300 400 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time (ms)

11
 H

z 
IT

P
C

 

 
ASD
TD

-100 0 100 200 300 400 500

0.5

0.6

0.7

0.8

0.9

Time (ms)

M
ed

ia
n 

A
bs

ol
ut

e 
D

ev
ia

tio
n

 

 
ASD
TD

A 

B C

0

2

4

6

8

10

12

14

16

18

0

2

4

6

8

10

12

14

16

18

D E

M
ea

n 
am

pl
itu

de
 a

nd
 s

td
. d

ev
 (µ

V
)

M
ed

ia
nn

 a
m

pl
itu

de
 a

nd
 M

A
D

 (µ
V

)

P1 AMP Std. Dev

ASD
TD

ASD
TD

P1 AMP MAD

FiGurE 3 | Estimates of variability averaged across group. [(A) (normalized)] 
measures of peak variability. The left graph shows mean variation in the 
amplitude of the P1 peak, the middle graph shows mean variation in the latency 
of the P1 peak, and the right graph shows the mean maximum ITPC between 
100 and 170 ms. [(B) (normalized)] median absolute deviation in amplitude 
across trials at each time-point, averaged across participant groups. (C) ITPC at 

each time-point, averaged across participant groups. The black lines on the x-axis 
of plots (B) and (C) indicate time-points of group difference (p < 0.05). P1 
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it is perturbed by the stimulus, but neither time- nor phase-locked 
to it (induced activity). However, as the data presented above, and 
numerous other estimations of ITPC (e.g., Tallon-Baudry and 
Bertrand, 1999) illustrate, complete phase-locking across trials (i.e., 
ITPC = 1) is physiologically unrealistic. Therefore the boundary 
for defining whether stimulus-related activity should be consid-
ered to be evoked or induced is unclear. Rojas et al. (2008) point 
out that their data fit a model in which total (evoked + induced) 
stimulus-related γ-band power is equivalent in the participants with 
and without ASD, and that reduced inter-trial phase consistency, 
computationally, leads to a reduction of what is classed as evoked 
activity and an increase in what is classed as induced activity. Thus 
these authors conclude that the production of γ-band oscillations 
in response to external stimulation is no different in those with and 
without ASD, rather their data point toward dysfunction in the tim-
ing of γ-band oscillations in the participants with ASD.

The data reported here provide evidence of reduced ITPC in 
the α-band in ASD. Together with the result of Rojas et al. (2008), 
these data indicate widespread dysfunction of neural timing in ASD, 
rather than a specific deficit of high-frequency γ-band oscillations 
as some authors have predicted. Reduced ITPC in ASD indicates 
that those with ASD are less able to synchronize the activity of 
stimulus-related cell assembly(ies) consistently across trials, and 
provide evidence for temporal disruptions in the organization and 
recruitment of cell assemblies. It is not clear whether this temporal 
disruption underpins, is caused by, or is unrelated to, postulated 
neural de-synchrony in ASD.

A number of possible etiologies of atypical neural oscillations in 
ASD have been suggested, including: a surfeit in local connectivity – 
especially in primary sensory areas (Belmonte et al., 2004); smaller 
and more dispersed cortical mini-columns leading to a reduction 
in inhibitory inter-neuronal activity (Casanova et al., 2002); an 
imbalance of cortical excitation and inhibition due to increased 
glutamergic/reduced GABAergic signaling (Rubenstein and 
Merzenich, 2003); and impairment in the inferior olive – a struc-
ture that that mediates electrical synapses and that drives neural 
synchrony, and has been found to be structurally atypical in some 
individuals with ASD (Welsh et al., 2005). No theory has yet linked 
any of these putative impairments with increased intra-participant 
variability in those with ASD. However within the literature on 
ADHD, intra-participant variability has been theoretically linked 
with inconsistent and inefficient neuronal transmission, which may 
arise from impairment in astrocytes, a type of glial cell that plays 
a critical role in fueling neuronal oscillations (Russell et al., 2006). 
Astrocyte impairment in ASD could therefore account for a range 
of features of ASD including neural de-synchrony, EEG single-
trial variability, and behavioral (response time) variability. Given 
the important role of glia in synapse formation and maintenance 
(Bolton and Eroglu, 2009) the suggestion that astrocyte impairment 
may be a critical factor in ASD is a tantalizing one. It is important 
to note however that, in addition to the theoretically formulated 
suggestions described above, a variety of neuronal characteristics 
(e.g., synaptic transmission, channel gating, fluctuation in trans-
mitter release, postsynaptic receptor activation, ion concentrations, 
membrane conductance) may contribute to variability of evoked 
EEG response (Sannita, 2006), therefore it is not currently possible 
to identify the precise source(s) of EEG variability.

synchronize the activity of stimulus-related cell assembly(ies) consist-
ently across trials. The experimental paradigm used here did not elicit 
a significant difference between response time variability in those with 
and without ASD. This may be because only a small number of trials 
(36) were available to ascertain variability, in contrast to Geurts et al. 
(2008) who used nearly twice as many (64 trials), or it may be because 
of the small group sizes and consequently reduced power of the analy-
ses performed here. Nevertheless, there was a significant relationship 
between response time variability and P1 amplitude variability. Note 
that P1 and the behavioral data were extracted from separate trials 
(the P1 was extracted from trials in which the eliciting stimulus was 
a Gabor patch with a spatial frequency content of 8 cycles/degree and 
the behavioral data were derived from trials in which the eliciting 
stimulus was a zebra), therefore it is not the case that specific trial-
by-trial variations in ERP amplitude are driving the variability in 
response time, rather it appears as though a common mechanism may 
underpin both behavioral variability and ERP amplitude variability.

As described in the Introduction, neurocortical dynamics result 
from the activation of partially distinct and interacting cell assem-
blies; the mechanism of communication within these cell assemblies 
is synchronous oscillations. A number of authors have suggested that 
ASD may be characterized by reduced neural synchrony, especially 
of high-frequency (γ-band) oscillations (e.g., see Brock et al., 2002), 
although evidence to support this position is mixed. While some 
studies have shown lower levels of evoked γ-band power in those 
with ASD (Wilson et al., 2007), more recent data indicates that while 
evoked γ-band power may be reduced in those with ASD, induced 
γ-band power is increased, and inter-trial γ-band phase coherence 
(ITPC) is reduced (Rojas et al., 2008). The concept of “evoked” or 
“induced” EEG is defined by whether or not single-trial activity is 
time- and phase-locked to a stimulus (evoked activity),or whether 

Table 4 | Mean P1 amplitude and latency in the two groups of 

participants.

 ASD TD

P1 AMPliTuDE

Back-projected IC data (μV)

 ERP Peak 3.17 [2.4 3.9] 3.06 [2.3 3.8]

 Median of single-trial peak 3.86 [3.1 4.7] 3.62 [2.8 4.5]

CSD interpolated data (μV/cm2)

 ERP Peak 7.34 [5.3 9.4] 7.62 [5.5 9.8]

 Median of single-trial peak 8.97 [6.7 11.2] 8.92 [6.5 11.3]

Raw EEG data (μV)

 ERP Peak 11.79 [8.9 14.8] 11.49 [8.4 14.6]

 Median of single-trial peak 15.17 [11.6 18.7] 13.89 [10.2 17.6]

P1 lATEnCy

Back-projected IC data (ms)

 ERP Peak 134 [124 144] 154 [143 163] 

 Median of single-trial peak 134 [125 142] 152 [142 161]

CSD interpolated data (ms)

 ERP Peak 132 [122 141] 153 [142 162]

 Median of single-trial peak 133 [124 141] 152 [143 161]

Raw EEG data (ms)

 ERP Peak 135 [126 144] 154 [144 162]

 Median of single-trial peak 136 [127 143] 153 [144 161]
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extra-striate cortex rather than primary visual cortex. As noted in the 
Introduction the earlier C1 deflection would be a more appropriate 
deflection with which to investigate variability in primary visual 
cortex, however this was not analyzed here as a number of partici-
pants with ASD failed to show a clear C1 deflection, either in the 
(averaged) ERP or in the single-trials. The specific reason for this is 
unclear, but is being addressed by on-going studies by our research 
group. Therefore, although the P1 deflection reported here does 
not tap the earliest stage visual processing, it was the most robust 
early deflection in the data, making it the best available candidate 
to investigate increased noise in the visual cortex in ASD. Future 
studies are required to establish whether areas of primary sensory 
cortex, generating earlier ERP deflections, show similar, or possibly 
greater, levels of variability in participants with ASD.

In addition to increased variability, the P1 peak in the participants 
with ASD occurred significantly sooner than in the control group. 
This finding, from these data, was reported previously (Milne et al., 
2009), so will not be dwelt on here. Nevertheless, reduced latency to 
peak is commensurate with the suggestion of local hyper-connec-
tivity in ASD which has been predicted by some to lead to increased 
cortical noise (see for example, Belmonte et al., 2004).

There are a number of implications from this work for existing 
EEG studies in those with ASD. Consistent with previous reports, 
these data provide no evidence for difference in P1 amplitude in 
participants with ASD. Although there is one report of reduced P1 
amplitude in children/adolescents with pervasive developmental 
disorder, including ASD (Hoeksma et al., 2004), this may have been 
due to latency jitter, as ERP amplitude (when calculated from the 
peak of the averaged single-trials) is intrinsically related to latency 
variability. Conversely, the suggestion that individuals with ASD may 
have hyper-responsive visual cortices would predict increased P1 
amplitude in those with ASD, and increased latency jitter may mask 
this potential outcome. However, the data did not support this pre-
diction, as when P1 amplitude was calculated as the median of the 
single-trial peaks, there was still no group difference in P1 amplitude. 
The data reported here indicate that establishing degree of latency 
jitter within each participant is possible, and should be an essential 
part of ERP analysis if conclusions are to be drawn to regarding 
the origin of observed group differences. Before leaving this point, 
it is important to point out that a number of physiological factors 
contribute to ERP amplitude. Although ICA was able to isolate the 
signal associated with perceptual encoding from the total EEG, and 
therefore facilitate comparison of within-participant variables such 
as variability, it cannot address the potentially confounding factors of 
individual differences that may lead to differences in ERP amplitude 
between groups including differences in cortical convolution, posi-
tion of the calcarine sulcus, and/or conductivity of underlying tissue, 
etc. Given that there is some evidence of cortical folding abnormali-
ties in children with ASD (Nordahl et al., 2007), direct comparison of 
EEG amplitude or EEG power between experimental groups, without 
first normalizing the data, may not be a reliable technique.

When analyzing the data presented here, significant attempts 
were made to minimize potential confounds that could artificially 
inflate the estimates of variability in one group or another. Note 
that the within-subject estimates of variability reported here are 
normalized, thus validating group comparisons; note also that 
the two groups of participants were well matched as regards to 

Regardless of the precise source, increased EEG variability in those 
with ASD is evidence of increased intrinsic neural “noise” (Sannita, 
2006). Increased neural noise in ASD has been predicted by a number 
of authors (see Simmons et al., 2009), however, the data reported here 
represent the first empirical demonstration of increased neural noise 
in ASD. Increased neural noise has the potential to influence behavior 
in a variety of ways, and its impact on different levels of function, e.g., 
perception, cognition, and behavior, may not be consistent. Whilst an 
increased noise-to-signal ratio leads to reduced perceptual sensitivity 
in many cases, one type of noise – stochastic resonance – can amplify 
a signal, leading to increased sensitivity. Increased levels of neural 
noise have therefore been discussed in relation to atypical perception 
in ASD, and offered as a parsimonious explanation of data in which 
those with ASD show both hyper- and hypo-reactivity to perceptual 
stimuli and enhanced and impaired perceptual sensitivity measured 
with psychophysical tasks (Simmons et al., 2009).

Increased neural noise is less likely to have an advantageous 
effect on cognitive task performance however, as it may lead to a 
number of sub-optimal outcomes including a general decrease in 
response times and greater response time variability, more errors 
in tasks with more than one possible response, and the need for 
increased repetitions of a task to achieve the same outcome as those 
with lower levels of noise. Furthermore, noise-related reduction 
in task performance would be evidenced by impairments across 
many domains and tasks, rather than in isolated tasks, and it would 
also lead to increased inter-participant variability. This descrip-
tion of data is very similar to that represented by the literature 
on cognitive function in ASD. Increased neural noise is therefore 
a plausible, and parsimonious, explanation both for the array of 
cognitive tasks in which participants with ASD have been shown 
to perform more poorly than those without ASD, and for the sig-
nificant inter-individual variability present in those with ASD. In 
support of this position are two demonstrations where reduced 
task performance can be accounted for by what may be termed 
“noise.” For example, thresholds for detecting coherent motion can 
be artificially inflated by transient lapses of attention (McAnally 
et al., 2001), and intra-individual response variability is a strong 
predictor of success in the Go No-Go task (Bellgrove et al., 2004), 
suggesting that lower sensitivity to coherent motion and failure 
to inhibit prepotent responses, both of which have been reported 
in those with ASD (see Ozonoff et al., 1994; Milne et al., 2002 
respectively), may arise due to increased neural noise rather than 
reflecting a specific impairment in either motion perception or in 
response inhibition, as is the current interpretation of these data 
(see also Baron-Cohen and Belmonte, 2005 for a similar argument).

Some authors have suggested that cortical hyper-excitability in 
ASD may be restricted to/more pronounced in, primary sensory 
areas (e.g., Rubenstein and Merzenich, 2003; Mottron et al., 2006). 
Therefore in order to evaluate these results in light of current theo-
ries it is necessary to consider where the neural generators of the P1 
deflection analyzed here might be. The location of the electrodes 
selected from the CSD data, and the estimated location of the equiva-
lent current dipole of the ICs suggests that the P1 analyzed here 
is generated in extra-striate cortex. This is commensurate with a 
number of papers that have localized the neural generators of the P1 
deflection to the extra-striate cortex (e.g., Di Russo et al., 2001; Ales 
et al., 2010). Therefore, these data provide evidence for variability in 

Milne Increase EEG variability in ASD

Frontiers in Psychology | Perception Science  March 2011 | Volume 2 | Article 51 | 10

http://www.frontiersin.org/perception_science/
http://www.frontiersin.org/perception_science/archive


Beckel-Mitchener, A., Courchesne, E., 
Boulanger, L. M., Powell, S. B., Levitt, P. 
R., Perry, E. K., Jiang, Y. H., DeLorey, T. 
M., and Tierney, E. (2004). Autism as a 
disorder of neural information process-
ing: directions for research and targets 
for therapy. Mol. Psychiatry 9, 646–663.

Bennetto, L., Pennington, B. F., and Rogers, 
S. J. (1996). Intact and impaired 
 memory functions in autism. Child 
Dev. 67, 1816–1835.

Bertone, A., Mottron, L., Jelenic, P., and 
Faubert, J. (2005). Enhanced and 
diminished visuo-spatial information 
processing in autism depends on stim-
ulus complexity. Brain 128, 2430–2441.

Berument, S. K., Rutter, M., Lord, C., 
Pickles, A., and Bailey, A. (1999). 
Autism screening questionnaire: 

diagnostic validity. Br. J. Psychiatry 
175, 444–451.

Bolton, M. M., and Eroglu, C. (2009). 
Look who is weaving the neural web: 
glial control of synapse formation. 
Curr. Opin. Neurobiol. 19, 491–497.

Brainard, D. H. (1997). The psychophysics 
toolbox. Spat. Vis. 10, 433–436.

Brock, J., Brown, C., Boucher, J., and 
Rippon, G. (2002). The temporal 
binding deficit hypothesis of autism. 
Dev. Psychopathol. 14, 209–224.

Casanova, M. F., Buxhoeveden, D. P., 
Switala, A. E., and Roy, E. (2002). 
Minicolumnar pathology in autism. 
Neurology 58, 428–432.

Castellanos, F. X., Sonuga-Barke, E. J. S., 
Scheres, A., Di Martino, A., Hyde, C., 
and Walters, J. R. (2005). Varieties of 

and Charman, T. (2006). Prevalence 
of disorders of the autism spectrum 
in a population cohort of children in 
South Thames: the special needs and 
autism project (SNAP). Lancet 368, 
210–215.

Baron-Cohen, S., and Belmonte, M. K. 
(2005). Autism: a window onto the 
development of the social and the 
analytic brain. Annu. Rev. Neurosci. 
28, 109–126.

Bellgrove, M. A., Hester, R., and 
Garavan, H. (2004). The  functional 
 neuroanatomical correlates of 
response variability : evidence 
from a response inhibition task. 
Neuropsychologia 42, 1910–1916.

Belmonte, M. K., Cook, E. H., Anderson, G. 
M., Rubenstein, J. L., Greenough, W. T, 

references
Ales, J. M., Yates, J. L., and Norcia, A. M. 

(2010). V1 is not uniquely identified 
by polarity reversals of responses to 
upper and lower visual field stimuli. 
Neuroimage 52, 1401–1409.

Allen, G., and Courchesne, E. (2001). 
Attention function and dysfunction in 
autism. Front. Biosci. 16, D105–D119.

APA. (1994). Diagnostic and Statistical 
Manual of Mental Disorders. Washington, 
DC: American Psychiatric Press.

Arieli, A., Sterkin, A., Grinvald, A., and 
Aertsen, A. (1996). Dynamics of 
ongoing activity: explanation of the 
large variability in evoked cortical 
responses. Science 273, 1868–1871.

Baird, G., Simonoff, E., Pickles, A., 
Chandler, S., Loucas, T., Meldrum, D., 

Note that the mean P1 peak amplitude variability, measured as 
the MAD estimate of the P1 peak amplitude from the raw EEG data 
in the TD group, was 0.37. This broadly concurs with existing data 
in which the coefficient of variation of VEP amplitude recorded in 
100 healthy adults from electrodes positioned above the occipital 
cortex was reported to be 0.41 (Klistorner and Graham, 2001). 
However, given that the MAD estimator is less influenced by outly-
ing data points than the coefficient of variation, estimates of vari-
ability from this statistic tend to be lower than from the coefficient 
of variation, so a direct comparison between these two statistics 
cannot be made. For comparison, the co-efficient of variation of P1 
amplitude in the TD group, based on the SD of these data was 0.58, 
i.e., higher than that reported by Klistorner and Graham (2001) – 
possibly reflecting developmental change in amplitude variability.

conclusIon
In conclusion, these data illustrate that analysis of single-trial EEG 
activity is less variable when the data are spatially filtered, either 
using ICA or CSD, prior to analysis. Therefore, when comparing data 
between different groups of participants, more accurate results are 
likely to be obtained if indices obtained from ICs of CSD interpolated 
EEG rather than raw channel indices are compared. Further to this, 
EEG variability across single-trials was significantly greater in the 
participants with ASD as compared to the TD control group. These 
data provide the first empirical demonstration of increased neural 
noise in those with ASD. Increased variability in neural activity may 
result in a number of negative consequences for individuals with ASD 
and may contribute to the substantial inter-individual variability that 
characterizes the literature on cognitive function in those with ASD.

acknoWledgments
I would like to thank all the participants and their families, who 
generously gave up their time to participate in this research. I am 
indebted to Scott Makeig, Arnaud Delorme, and others at SCCN 
for numerous, and invaluable, discussions about ICA. I would also 
like to thank Alison Scope for collecting the data presented here, 
Suzanna Laycock for stimulating discussions about neural noise 
and developmental disorders, and Mike X. Cohen for introducing 
me to CSD interpolation.
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However, as is outlined in the methodology, data is not reported 
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lyzed. The most likely reason for this is that only a small amount 
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recorded and available for ICA decomposition. The experiment 
was necessarily short given the age of the participants, but the 
quality of ICA decomposition would be greatly improved with 
longer recordings, therefore future work should aim to replicate 
the findings reported here with larger groups of participants and 
with longer data recordings.

Behavioral variability is not unique to those with ASD 
(Castellanos et al., 2005), therefore future research is required to 
establish the universality of increased EEG variability in ASD and 
in other developmental disorders (such as ADHD), and to establish 
whether increased variability is a general characteristic of brain 
pathology, or whether distinctive features of variability occur in 
different developmental disorders. Furthermore it is necessary to 
establish the extent to which increased EEG variability is an endur-
ing endophenotype of ASD, or whether it related either to external 
factors such as context or particular task requirements, or to inter-
nal factors such as cognitive state (e.g., awake, asleep, tired, alert). 
The presence of a significant correlation between EEG variability 
and response time variability provides preliminary evidence that 
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a small sample of participants. This relationship should be tested 
more rigorously in future studies in which larger groups of par-
ticipants are tested and different types of behavioral response tasks 
(such as simple reaction time, choice reaction time, response inhi-
bition, etc.) are performed. In addition, more detailed single-trial 
analyses should be performed in order to examine the temporally 
dynamic patterns of EEG fluctuations, and the relationship between 
EEG variability and cognitive task performance and both inter- and 
intra-participant variability needs to be clarified.
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