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STRONG UNIQUENESS FOR SDES IN HILBERT SPACES WITH
NONREGULAR DRIFT

BY G. DA PRATO1,∗, F. FLANDOLI2,†, M. RÖCKNER3,‡

AND A. YU. VERETENNIKOV§,¶,‖,4
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We prove pathwise uniqueness for a class of stochastic differential equa-
tions (SDE) on a Hilbert space with cylindrical Wiener noise, whose non-
linear drift parts are sums of the sub-differential of a convex function and a
bounded part. This generalizes a classical result by one of the authors to in-
finite dimensions. Our results also generalize and improve recent results by
N. Champagnat and P. E. Jabin, proved in finite dimensions, in the case where
their diffusion matrix is constant and nondegenerate and their weakly differ-
entiable drift is the (weak) gradient of a convex function. We also prove weak
existence, hence obtain unique strong solutions by the Yamada–Watanabe
theorem. The proofs are based in part on a recent maximal regularity result in
infinite dimensions, the theory of quasi-regular Dirichlet forms and an infinite
dimensional version of a Zvonkin-type transformation. As a main application,
we show pathwise uniqueness for stochastic reaction diffusion equations per-
turbed by a Borel measurable bounded drift. Hence, such SDE have a unique
strong solution.

1. Introduction. In a separable Hilbert space H , with inner product 〈·, ·〉 and
norm | · |, we consider the SDE

dXt = (AXt − ∇V (Xt) + B(Xt)
)
dt + dWt,

(1.1)
X0 = z,

where we assume:
(H1) A :D(A) ⊂ H → H is a self-adjoint and strictly negative definite operator

(i.e., A ≤ −ωI for some ω > 0), with A−1 of trace class.
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(H2) V :H → (−∞,+∞] is a convex, proper, lower-semicontinuous, lower
bounded function; denote by DV the set of all x ∈ {V < ∞} such that V is Gâteaux
differentiable at x.

(H3) For the Gateaux derivative ∇V we have for some ε > 0

γ (DV ) = 1,∫
H

(∣∣V (x)
∣∣2+ε + ∣∣∇V (x)

∣∣2)γ (dx) < ∞,(1.2) ∫
H

∥∥D2V (x)
∥∥
L(H)ν(dx) < ∞,

where γ is the centered Gaussian measure in H with covariance Q = −1
2A−1 and

ν is the probability measure on H defined as

ν(dx) = 1

Z
e−V (x)γ (dx), Z =

∫
H

e−V (x)γ (dx).

Clearly, γ and ν have the same zero sets. Here, the second assumption in (1.2)
means that there exists un ∈ FC2

b(H),n ∈ N, such that V = limn→∞ un in
L2(H, ν) and D2V := limn→∞ D2un in L2(H, ν;L(H)), where FC2

b(H) denotes
the set of all C2

b -cylindric functions on H (see below for the precise definition) and
L(H) the set of all bounded linear operators from H to H .

(H4) B :H → H is Borel measurable and bounded.
(H5) W is an (Ft )-cylindrical Brownian motion in H , on some pobability space

(�,F,P ) with normal filtration (Ft ), t ≥ 0.
Formally, W is a process of the form Wt = ∑∞

i=1 Wi
t ei where Wi

t are inde-
pendent real valued Brownian motions defined on a probability space (�,F,P )

and {ei}i∈N is a complete orthonormal system in H ; for every h ∈ H , the series
〈Wt,h〉 =∑∞

i=1 Wi
t 〈ei, h〉 converges in L2(�).

REMARK 1.1. Since A is strictly negative definite, we may assume V (x) ≥
ε|x|2, x ∈ H , for some ε > 0 and all x ∈ H . Otherwise, replace A by A + ω

2 I and
V by V + ω

2 |x|2 + | infx∈H V (x)|. In particular, without loss of generality we have
that |x|pe−V (x) is bounded in x ∈ H for all p ∈ (0,∞).

REMARK 1.2. (i) We note that if x ∈ DV by definition

lim
s→0

1

s

(
V (x + sh) − V (x)

)= 〈∇V (x),h
〉

for all h ∈ H where a priori the limit is taken in the Alexandrov topology on
(−∞,+∞], since V (x + sh) could be +∞ for some s. On the other hand, the
limit 〈∇V (x),h〉 ∈ R, so V (x + sh) ∈ R for s ≤ s0 for some small enough s0 > 0.

(ii) If {V < ∞} is open, then γ (DV ) = 1. Indeed, if {V < ∞} is open, then V

is continuous on {V < ∞}; see, for example, [20], Proposition 3.3. Since further-
more, V is then locally Lipschitz on {V < ∞} (see, e.g., [20], Proposition 1.6),
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it follows by the fundamental result in [4, 19]; see also [7], Section 10.6, that
γ ({V < ∞} \ DV ) = 0. But γ ({V < ∞}) = 1, since V ∈ L2(H,γ ).

It turns out that the condition on the second (weak) derivative in (1.2) in Hy-
pothesis (H3) is too strong for some applications (see Section 7 below). Therefore,
we shall also consider the following modified version of (H3):

(H3)′ V and ∇V satisfy (H3) with the condition on the second derivative of V

replaced by the following: there exists a separable Banach space E ⊂ H , continu-
ously and densely embedded, such that E ⊂ D(V ), γ (E) = 1 and on E the func-
tion V is twice Gâteaux-differentiable such that for all x ∈ E its second Gâteaux-
derivative V ′′

E(x) ∈ L(E,E′) (with E′ being the dual of E) extends by continuity
to an element in L(H,E′) such that∥∥V ′′

E(x)
∥∥
L(H,E′) ≤ �

(|x|E)
for some convex function � : [0,∞) → [0,∞). Furthermore, for γ -a.e. initial
condition z ∈ E there exists a (probabilistically) weak solution XV = XV (t), t ∈
[0, T ], to SDE (1.1) with B = 0 so that

E

∫ T

0
�
(∣∣XV (s)

∣∣
E

)
ds < ∞.(1.3)

Though (H3)′ is quite complicated to formulate, it is exactly what is fulfilled if
∇V is a polynomial. We refer to Section 7.1 below.

REMARK 1.3. We would like to stress at this point that the conditions on the
second derivative of V both in (H3) and in (H3)′ are only used to be able to apply
the mean value theorem in the proof of Lemma 5.2 below. For the rest of this paper,
we assume that (H1), (H2), (H4), (H5) and (H3) or (H3)′ are in force.

DEFINITION 1.4. A solution of the SDE (1.1) in H is a filtered probability
space (�,F, (Ft )t≥0,P ) on H , an H -cylindrical (Ft )-Brownian motion (Wt)t≥0
w.r.t. this space, a continuous (Ft )-adapted process (Xt)t≥0 on this space such
that:

(i) Xs ∈ DV for dt ⊗ P a.e. (s,ω) and
∫ T

0 |〈∇V (Xs), h〉|ds < ∞ with proba-
bility one, for every T > 0 and h ∈ D(A);

(ii) for every h ∈ D(A) and t ≥ 0, one has

〈Xt,h〉 = 〈z,h〉 +
∫ t

0

(〈Xs,Ah〉 + 〈B(Xs) − ∇V (Xs), h
〉)

ds + 〈Wt,h〉
with probability one.

If X is FW -adapted, where FW = (FW
t )t≥0 is the normal filtration generated

by W , we say that X is a strong solution.
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The Gaussian measure γ is invariant for the linear equation

dZt = AZt dt + dWt

while ν is invariant for the nonlinear equation

dXt = (AXt − ∇V (Xt)
)
dt + dWt .

They are equivalent, since V < ∞ (hence e−V > 0) at least on DV and γ (DV ) = 1.
Hence, the full measure sets in H are the same with respect to γ or ν. Our main
uniqueness result is the following.

THEOREM 1.5. There is a Borel set � ⊂ H with γ (�) = 1 having the fol-
lowing property. If z ∈ � and X, Y are two solutions with initial condition x

(in the sense of Definition 1.4), defined on the same filtered probability space
(�,F, (Ft )t≥0,P ) and w.r.t. the same cylindrical Brownian motion W , then X

and Y are indistinguishable processes. Hence, by the Yamada–Watanabe theorem
they are (probabilistically) strong solutions and have the same law.

The proof is given in Section 5. This result was first proved in [11] in the case
V = 0 (see also the more recent [12], where also the case V = 0, but with B

only bounded on balls was treated) with a rather complex proof based on the very
nontrivial maximal regularity results in Lp(H,γ ) for the Kolmogorov equation

(λ −LA,B)u = f

associated to the SDE, where LA,B is the operator formally defined as

LA,Bu(x) = 1
2 Tr
(
D2u(x)

)+ 〈Ax + B(x),Du
〉

on suitable functions u, for x ∈ D(A). Here, we present a much simpler proof
which covers also the case V �= 0, based on several new ingredients.

First, in order to perform a suitable change of coordinates (analogous to [11]
and [12]), we use the family of Kolmogorov equations

(λ + λi −LA,B,V )u = f

or in vector form

(λ − A −LA,B,V )U = F,(1.4)

where LA,B,V is the operator formally defined as

LA,B,V u(x) = 1
2 Tr
(
D2u(x)

)+ 〈Ax − ∇V (x) + B(x),Du
〉

on suitable functions u. The presence of the term λiu in the equation adds the
advantages of the resolvent of A [given by (λ − A)−1] to those of the elliptic
regularity theory (given by LA,B ). Moreover, we use the recent maximal regularity
results in L2(H, ν) for the Kolmogorov equation

(λ −LA,B,V )u = f
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proved in [13].
Second, thanks to the previous new Kolmogorov equation, we may apply a trick

based on Itô’s formula and the multiplication by the factor e−At (see below the
definition of At ) which greatly simplifies the proof.

Third, we use Girsanov’s theorem in a better form in the proof of the main
Lemma 5.2. The new proof of the lemma along with the previous two innovations
allow us to use only the L2 theory of the Kolmogorov equation, which is much
simpler.

Fourth, we heavily use the theory of classical (gradient type) Dirichlet forms on
infinite dimensional state spaces.

For more background literature in the finite dimensional case following the ini-
tiating work [23], we refer to [11, 12]. We only mention here the recent work [9],
where SDEs with weakly differentiable drifts are studied. In the case when in [9]
the diffusion matrix is constant and nondegenerate and if the weakly differentiable
drift is the (weak) gradient of a convex function, our results generalize those in
[9] from R

d to a separable Hilbert space as state space, and to the case when a
bounded merely measurable drift part is added. Finally, we mention the paper [8]
which concerns pathwise uniqueness for some Hölder perturbation of reaction-
diffusions equations studied in spaces of continuous functions instead of square
integrable function.

The organization of the paper is as follows: Section 2 is devoted to existence of
solutions and Section 3 to the regularity theory of the Kolmogorov operator (1.4)
above. The mentioned change of coordinates is performed in Section 4. Sections 5
and 6 contain the proof of our main Theorem 1.5. In Section 7, we present appli-
cations.

We end this section by giving the definition of Sobolev spaces and some nota-
tion. We consider an orthonormal basis {ek :k ∈ N} of H which diagonalizes Q

and set Qek = λkek and xk = 〈x, ek〉 for each x ∈ H , k ∈ N. We denote by Pn the
orthogonal projection on the linear span of e1, . . . , en. For each k ∈ N∪ {+∞}, we
denote by FCk

b(H) the set of the cylindrical functions ϕ(x) = φ(x1, . . . , xn) for
some n ∈N, with φ ∈ Ck

b(Rn).
For μ = γ or μ = ν, the Sobolev spaces W 1,2(H,μ) is the completion of

FC1
b(H) in the norm

‖ϕ‖2
W 1,2(H,μ)

:=
∫
H

(|ϕ|2 + ‖Dϕ‖2)dμ =
∫
H

(
|ϕ|2 +

∞∑
k=1

(Dkϕ)2

)
dμ.

The Sobolev spaces W 2,2(H,μ) is the completion of FC2
b(H) in the norm

‖u‖2
W 2,2(H,μ)

= ‖u‖2
W 1,2(H,μ)

+
∫
H

Tr
([

D2u
]2)

dμ

= ‖u‖2
W 1,2(H,μ)

+ ∑
h,k∈N

(Dhku)2 dμ.
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We denote the Borel σ -algebra on H by B(H) and by Bb(H) the set of all bounded
B(H)-measurable functions ϕ :H →R. We set for a function ϕ :H →R

‖ϕ‖∞ := sup
x∈H

∣∣ϕ(x)
∣∣.

I :H → H denotes the identity operator on H . For k ∈ N, Ck
b(H) denotes the set

of all ϕ :H → R of class Ck , which together with all their derivatives up to order
k are bounded and uniformly continuous. Furthermore, we reserve the symbol D

for the closure of the derivative for u ∈ FC1
b in L2(H,μ;H) for μ = γ or μ = ν.

For the Gâteaux derivative, we use the symbol ∇ . Since they coincide on convex
and Lipschitz functions u, in the sense that ∇u is a γ - or ν-version of Du, we shall
write ∇u, whenever we want to stress that we consider that special version.

2. Existence. In this section, we shall prove that under conditions (H1)–(H4)
from the Introduction, which will be in force in all of this paper, that the SDE (1.1)
has a solution in the sense of Definition 1.4. We start with the following proposition
showing that the gradient DV in L2(H,γ ;H) and the Gâteaux derivative ∇V

coincide γ -a.e.

PROPOSITION 2.1. We have V ∈ W 1,2(H,γ ) and

DV = ∇V, γ -a.e.

The proof of Proposition 2.1 requires a numbers of lemmas.

LEMMA 2.2. Let k ∈ Q1/2H . Then

lim
s→0

V (· + sk) − V (·)
s

= 〈∇V, k〉 in L2(H,γ ).

PROOF. Let x ∈ {V < ∞}. Then by convexity for s ∈ (0,1)

V (x + sk) ≤ sV (x + k) + (1 − s)V (x),

hence

V (x + sk) − V (x)

s
≤ V (x + k) − V (x).(2.1)

Since k ∈ Q1/2H , by the Cameron–Martin theorem (see, e.g., [10], Section 1.2.3)
the function on the right as a function of x is in L2(H,γ ), since by assumption
(H3) V ∈ L2+ε(H,γ ).

Furthermore for x ∈ DV taking the limit s → 0 in (2.1) we find that〈∇V (x), k
〉≤ V (x + k) − V (x).
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Replacing k by sk which is also in Q1/2H , and dividing by s, we obtain〈∇V (x), k
〉≤ V (x + sk) − V (x)

s
.(2.2)

But the left-hand side as a function of x is in L2+ε(H,γ ) by assumption (H3).
Hence, (2.1) and (2.2) imply the assertion of the lemma by Lebesgue’s dominated
convergence theorem, since γ (DV ) = 1. �

Before we proceed to Lemma 2.3 we need to introduce the following space:

D0 :=
{
u ∈ L2(H,γ ) :∃Fu ∈ L2(H,γ ;H) such that

(2.3)

lim
s→0

1

s

[
u(· + sei) − u(·)]= 〈∇Fu, ei〉 in L2(H,γ ),∀i ∈ N

}
.

Set D̃u := Fu for u ∈ D0. Then obviously FC2
b ⊂ D0 and Dϕ = D̃ϕ for all ϕ ∈

FC2
b .

LEMMA 2.3. (i) Let u ∈ D0, ϕ ∈ FC2
b and i ∈ N. Then∫

H

〈
D̃u(x), ei

〉
ϕ(x)γ (dx) = −

∫
H

u(x)
〈
Dϕ(x), ei

〉
γ (dx)

+ 2λi

∫
H

u(x)〈ei, x〉ϕ(x)γ (dx).

(ii) The operator D̃ :D0 ⊂ L2(H,γ ) → L2(H,γ ;H) is closable.

PROOF. (i) We have∫
H

〈
D̃u(x), ei

〉
ϕ(x)γ (dx)

(2.4)

= lim
s→0

1

s

[∫
H

u(x + sei)ϕ(x)γ (dx) −
∫
H

u(x)ϕ(x)γ (dx)

]
.

But by the Cameron–Martin theorem the image measure Tsei
(γ ) of γ under the

translation x �→ x + sei is absolutely continuous with respect to γ with density
(cf. [10], Section 1.2.3)

asei
(x) = e2sλi〈ei ,x〉−s2λi .

Hence, the difference of the two integrals on the right-hand side of (2.4) can be
written as∫

H
u(x)

[
ϕ(x − λiei) − ϕ(x)

]
asei

(x)γ (dx) +
∫
H

u(x)ϕ(x)
(
asei

(x) − 1
)
γ (dx).

Hence, letting s → 0 in (2.4) assertion (i) follows.
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(ii) Suppose un ∈ D0, n ∈ N, such that un → 0 in L2(H,γ ) and D̃un → F in
L2(H,γ ;H). Then for all ϕ ∈ FC2

b, i ∈N, by (i)∫
H

〈
F(x), ei

〉
ϕ(x)γ (dx) = lim

n→∞

∫
H

〈D̃un, ei〉ϕ(x)γ (dx) = 0.

Hence, F = 0. �

Let us denote the closure of (D̃,D0) again by D̃ and its domain by W̃ 1,2(H,γ ).
Clearly, since FC2

b ⊂ D0 with Dϕ = D̃ϕ for all ϕ ∈ FC2
b , it follows that

W 1,2(H,γ ) is a closed subspace of W̃ 1,2(H,γ ). But in fact, they coincide.

LEMMA 2.4. FC2
b is dense in W̃ 1,2(H,γ ), hence

W 1,2(H,γ ) = W̃ 1,2(H,γ )

and thus Du = D̃u for all u ∈ W 1,2(H,γ ).

PROOF. Let u ∈ W̃ 1,2(H,γ ) such that∫
H

〈D̃ϕ, D̃u〉dγ +
∫
H

ϕudγ = 0 ∀ϕ ∈FC2
b .(2.5)

Since ϕ(x) = (x1, . . . , xN) for some  ∈ C2
b(RN) and xi := 〈x, ei〉, 1 ≤ i ≤ N ,

we have that

〈D̃ϕ, D̃u〉 =
N∑

i=1

〈Dϕ,ei〉〈D̃u, ei〉

and that 〈Dϕ,ei〉 ∈ FC2
b . Hence, by Lemma 2.3, (2.5) is equivalent to

−
∫
H

(
2LOU − 1

)
ϕudγ = 0 ∀ϕ ∈FC2

b,(2.6)

where

LOUϕ(x) = 1
2 TrD2ϕ(x) + 〈x,ADx〉.

But (2.6) implies that u = 0, since it is well known that λ −LOU has dense range
in L2(H,γ ) for λ > 0. For the convenience of the reader we recall the argument:
The C0-semigroup generated by the Friedrichs extension of the symmetric opera-
tor (LOU,FC2

b) on L2(H,γ ) is easily seen to be given by the following Mehler
formula on bounded, Borel functions f :H →R

Ptf (x) =
∫
H

f
(
etAx + y

)
NQt (dy), t > 0,(2.7)

where NQt is the centred Gaussian measure on H with covariance operator

Qt :=
∫ t

0
e2sA ds, t > 0.
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Obviously, Pt(FC2
b) ⊂ FC2

b , and also(∫ ∞
0

e−λtPt dt

)(
FC2

b

)⊂ FC2
b .

But (
λ −LOU)−1 =

∫ ∞
0

e−λtPt dt

as operators on L2(H,γ ). Hence,(
λ −LOU)−1(FC2

b

)⊂ FC2
b

and so

FC2
b ⊂ (1 −LOU)(FC2

b

)
.

But FC2
b is dense in L2(H,γ ). �

Now we turn back to SDE (1.1).

PROOF OF PROPOSITION 2.1. By (H2) and Lemma 2.2, we have that V ∈
W̃ 1,2(H,γ ) with ∇V = D̃V , γ -a.e. Hence, Lemma 2.4 implies the assertion. �

Let us consider the case when in SDE (1.1) we have that B = 0, that is,

dXt = (AXt − ∇V (Xt)
)
dt + dW(t),

(2.8)
X0 = z,

where for convenience we extend ∇V :DV → H by zero to the whole space DV .
The case for general B then follows easily from Girsanov’s theorem.

To solve (2.8) in the (probabilistically) weak sense, we shall use [3], that is, the
theory of Dirichlet forms, more precisely the so-called “classical (gradient type)”
Dirichlet forms, which for the measure ν from the Introduction is just

Eν(u, v) :=
∫
H

〈
Du(x),Dv(x)

〉
ν(dx), u, v ∈ D(Eν) := W 1,2(H, ν).

But the whole theory has been developed for arbitrary finite measures m on
(H,B(H)) which satisfy an integration by parts formula (see [3, 17] and the refer-
ences therein) or even more generally for finite measures m for which D :FC∞

b ⊂
L2(H,m) → L2(H,m;H) is closable (see [1, 2, 17]). In particular, we can also
take m := γ . Let us recall the following result which is crucial for the theory of
classical Dirichlet forms which we shall formulate for ν, but holds for every m as
above. For its formulation, we need the notion of an “Eν-nest”: Let Fn ⊂ H , n ∈ N,
be an increasing sequence of closed sets and define for n ∈ N

D(Eν)|Fn := {u ∈ D(Eν) :u = 0, ν-a.e. on H \ Fn

}
.
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Then (Fn)n∈N is called an Eν-nest if

∞⋃
k=1

D(Eν)|Fn is dense in D(Eν),

with respect to the norm

Eν,1(u,u)1/2 := (Eν(u,u) + |u|2
L2(H,ν)

)1/2
, u ∈ D(Eν),

that is, with respect to the norm in W 1,2(H, ν).
Then the crucial result already mentioned is the following.

THEOREM 2.5. There exists an Eν-nest consisting of compact sets.

PROOF. See [21] and [17], Chapter IV, Proposition 4.2. �

Let us denote (Kn)n∈N this Eν-nest consisting of compacts. This theorem says
that (Eν,D(Eν)) is completely determined in a Kσ set of H . Then it follows
from the general theory that (Eν,D(Eν)) is quasi-regular, hence has an associate
Markov process which solves (SDE) (2.8) and this Markov process also lives on
this Kσ set

⋃∞
n=1 Kn, that is, the first hitting times σH\Kn of H \ Kn converge to

infinity as n → ∞.
The precise formulations of these facts is the contents of Theorems 2.6 and 2.8

below. We need one more notion: A set N ⊂ H is called Eν-exceptional, if it is con-
tained in the complement of an Eν-nest. Clearly, this complement has ν-measure
zero, hence ν(N) = 0 if N ∈ B(H).

THEOREM 2.6. There exists S ∈ B(H) such that H \ S is Eν-exceptional
[hence ν(H \ S) = 0] and for every z ∈ S there exists a probability space
(�,F,Pz) equipped with a normal filtration (Ft )t≥0, independent real valued
Brownian motions Wk

t , t ≥ 0, k ∈ N, on (�,F,Pz) and a continuous H -valued
(Ft )-adapted process Xt, t ≥ 0, such that Pz-a.s.:

(i) Xt ∈ S ∀t ≥ 0,
(ii)

∫
H EPz[

∫ t
0 |∇V (Xs)|2 ds]ν(dz) < ∞ and EPz[

∫ t
0 1H\DV

(Xs) ds] = 0
∀t ≥ 0,

(iii) 〈ek,Xt 〉 = 〈ek, z〉 + ∫ t
0 (〈Aek,Xs〉 + 〈ek,∇V (Xs)〉) ds + Wk

t , t ≥ 0, k ∈ N.

Hence (by density), we have a solution of (2.8) in the sense of Definition 1.4.
Furthermore, up to completing Ft w.r.t. Pz, (�,F), Xt, t ≥ 0, and (Ft ) can be
taken canonical, independent of z ∈ S and then

M := (�,F, (Ft )t≥0, (Xt)t≥0, (Pz)z∈S

)
,

forms a conservative Markov process, with invariant measure ν.
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PROOF. The assertion follows from [3], Theorem 5.7. �

For later use, we define the Borel set

HV :=
{
z ∈ H :EPz

[∫ T

0

∣∣∇V (Xs)
∣∣2 ds

]
< ∞

}
(2.9)

and note that by Theorem 2.6(ii) we have ν(HV ) = γ (HV ) = 1.
In fact, by the convexity of V we also have uniqueness for the solutions to (2.8).

We recall that the sub-differential ∂V of V is monotone (which is trivial to prove;
see, e.g., [20], Example 2.2a) and that for x ∈ DV , ∂V (x) = ∇V (x); see, for ex-
ample, [5], page 8. Hence, we have〈∇V (x) − ∇V (y), x − y

〉≥ 0, x, y ∈ DV .(2.10)

THEOREM 2.7. Let S be as in Theorem 2.6 and z ∈ S. Then pathwise unique-
ness holds for all solutions in the sense of Definition 1.4 for SDE (2.8). In partic-
ular, uniqueness in law holds for these solutions.

PROOF. The first assertion is an immediate consequence of the monotonic-
ity (2.10), since a part of our Definition 1.4 requires that the solutions are in DV

dt ⊗ P -a.e.; see, for example, [15], proof of the claim page 1008/1009 or [18],
Section 4, for details. The second assertion then follows by the Yamada–Watanabe
theorem (see, e.g., [22] which easily can be adapted to apply to our case here). �

THEOREM 2.8. Let M be as in Theorem 2.6 and let (Fn)n∈N be an Eν -nest.
Then

Pz

[
lim

n→∞σH\Fn = ∞
]
= 1,

for all z ∈ S \ N , for some Eν-exceptional set N , where for a closed set F ⊂ H

σH\F := inf{t > 0 :Xt ∈ H \ F }
is the first hitting time of H \ F .

PROOF. Since M is conservative its lifetime ζ is infinity. So, the assertion
follows from [17], Chapter V, Proposition 5.30. �

Below we shall use the following simple lemma.

LEMMA 2.9. Let (E,‖ · ‖) be a Banach space and V :E → (−∞,∞] a con-
vex function.

(i) Let K ⊂ E be convex and compact such that V (K) is a bounded subset
of R. Then the restriction of V to K is Lipschitz.
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(ii) Assume that V is lower semi-continuous and K ⊂ E compact such that
V (K) is an upper bounded subset of R. Then the restriction of V to K is Lipschitz.

PROOF. (i) The proof is a simple modification of the classical proof that a
continuous convex function on an open subset of E is locally Lipschitz (see [20],
Proposition 1.6). For the convenience of the reader, we give the argument:

Define

M = sup
x∈K

∣∣V (x)
∣∣

and

d := diam(K)
(:= sup

{‖x − y‖ :x, y ∈ K
})

.

Let x, y ∈ K . Set α := ‖x − y‖ and

z := y + d

α
(y − x).

Then ‖x − y‖ ≤ d , hence z ∈ K since K is convex. Furthermore,

y = α

α + d
z + d

α + d
x,

hence

f (y) ≤ α

α + d
f (z) + d

α + d
f (x),

so,

f (y) − f (x) ≤ α

α + d

(
f (z) − f (x)

)≤ 2M

d
‖x − y‖.

Interchanging x and y in this argument, implies the assertion.
(ii) This is an easy consequence of (i). Let K1 be the closed convex hull of K .

Then by Mazur’s theorem K1 is still compact and by convexity V (K1) is an upper
bounded subset of R. But V (K1) is also lower bounded, since V is lower semi-
continuous. Hence, by (i) V is Lipschitz on K1, hence on K . �

Now let us come back to our convex function V :H → (−∞,∞] satisfying
(H2) and (H3). We know by Proposition 2.1 that V ∈ W 1,2(H, ν) = D(Eν). Since
(Eν,D(Eν)) is quasi-regular, it follows by [17], Chapter IV, Proposition 3.3, that
there exists an Eν-nest (Fn)n∈N and a B(H)-measurable function Ṽ :H →R such
that

Ṽ = V ν-a.e. and Ṽ |Fn is continuous for every n ∈ N,(2.11)

where Ṽ |Fn denotes the restriction of Ṽ to Fn. By [17], Chapter III, Theorem 2.11,
(Fn ∩ Kn)n∈N is again an Eν-nest, where (Kn)n∈N is the Eν-nest of compacts from
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Theorem 2.5. Since ν(U) > 0 for every nonempty open set U ⊂ H , by [17], Chap-
ter III, Proposition 3.8, we can find an Eν-nest (F̃n)n∈N such that F̃n ⊂ Fn ∩Kn and
the restriction of ν to F̃n has full topological support on F̃n for every n ∈ N, that
is, ν(U ∩ F̃n) > 0 for all open U ⊂ H with U ∩ F̃n �= ∅. (Such an Eν set is called
regular.) Since we want to fix this special regular Eν-nest of compacts depending
on V below, we assign to it a special notation and set

KV
n := F̃n, n ∈ N.(2.12)

Now we can prove the following result which will be crucially used in Section 6.

PROPOSITION 2.10. (i) Let n ∈ N and KV
n as in (2.12). Then V |KV

n
is real val-

ued, continuous and bounded. Furthermore, V (x) = Ṽ (x) for every x ∈⋃∞
n=1 KV

n .
(ii) There exists SV ∈ B(H) such that H \ SV is Eν-exceptional, Theorem 2.6

holds with SV replacing S and for every z ∈ SV

Pz

[
lim

n→∞σH\KV
n

= ∞
]
= 1.(2.13)

PROOF. (i) Since KV
n ⊂ Fn, we have for Ṽ from (2.11), that V |KV

n
− Ṽ |KV

n

is lower semi-continuous on KV
n with respect to the metric on KV

n induced by
| · |. Hence, {V |KV

n
− Ṽ |KV

n
> 0} = KV

n ∩ U for some open subset U ⊂ H . Since

V |KV
n

= Ṽ |KV
n

ν-a.s., it follows, since (KV
n )n∈N is a regular Eν-nest that

V (x) ≤ Ṽ (x) for every x ∈ KV
n .

But Ṽ |KV
n

is continuous, hence bounded, because KV
n is compact, so V (KV

n ) is
an upper bounded subset of R, so by Lemma 2.9(ii) V |KV

n
is Lipschitz. But then

{V |KV
n

�= Ṽ |KV
n
} = KV

n ∩ U for some open subset U ⊂ H . Since (KV
n )n∈N is a

regular Eν-nest, we conclude that

V (x) = Ṽ (x) for every x ∈ KV
n .

Hence, assertion (i) is proved.
(ii) By Theorem 2.8, we know that there exists an Eν-nest (Fn)n∈N such that

Pz

[
lim

n→∞σH\KV
n

= ∞
]
= 1 ∀z ∈

∞⋃
n=1

Fn.

Then by a standard procedure (see, e.g., [17], page 114) one can construct the
desired set SV ∈ B(H). �

For the rest of this section, we fix SV as in Proposition 2.10.

COROLLARY 2.11. Let z ∈ SV and (Xt)t≥0 a solution to (2.8) on some prob-
ability space (�,F,P ) with normal filtration and cylindrical (Ft )-Brownian mo-
tion W = Wt, t ≥ 0. Then (2.13) holds with P replacing Pz.
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PROOF. This follows from the last part of Theorem 2.7. �

It is now easy to prove existence of (probabilistic) weak solutions to SDE (1.1)
and uniqueness in law

THEOREM 2.12. For every z ∈ SV , there exists a solution Y = Yt , t ∈ [0, T ],
to SDE (1.1) on some probability space (�′,F ′,P ′) in the sense of Definition 1.4
and this solution is unique in law. Furthermore, (2.13) holds with P ′ replacing Pz

and Y replacing X, where X = Xt, t ≥ 0, is the process from Theorem 2.6 and if
z ∈ SV ∩ HV [with HV as in (2.9)], then∫ T

0

∣∣∇V (Ys)
∣∣2 ds < ∞ P ′-a.s.(2.14)

PROOF. This is now an easy consequence of Theorems 2.6, 2.7 and Girsanov’s
theorem (see, e.g., [11], Appendix A1) which easily extends to the present case
since uniqueness in law holds for SDE (2.8). To prove the last part, we note that
by Girsanov’s theorem there exists a probability density ρ :� → (0,∞) such that(

ρ · P ′) ◦ Y−1 = Pz ◦ X−1.

Hence, Pz ◦ X−1 = ρ0P
′ ◦ Y−1, where ρ0 is the P ′ ◦ Y−1-a.s. unique function

such that ρ0(Y ) = EP ′ [ρ|σ(Y )] P -a.s. and σ(Y ) denotes the σ -algebra generated
by Yt , t ∈ [0, T ]. So, (2.13) and (2.14) follow, if ρ0 > 0P ′ ◦ Y−1-a.e. To show the
latter, we first note that

P ′ ◦ Y−1({ρ0 = 0})= P ′({
EP ′
[
ρ|σ(Y )

]= 0
})

.

But since

ρ = e− ∫ T
0 〈B(Ys),dWs〉−(1/2)

∫ T
0 |B(Ys)|2 ds

and W is σ(Y )-measurable by SDE (1.1), it follows that EP ′ [ρ|σ(Y )] = ρ. But
ρ > 0. �

3. Regularity theory for the corresponding Kolmogorov operator.

3.1. Uniform estimates on Lipschitz norms. First, we are concerned with the
scalar equation

λu −Lu − 〈B(x),Du
〉= f,(3.1)

where λ > 0, f ∈ Bb(H) and L is the Kolmogorov operator

Lu(x) = 1
2 Tr
[
D2u(x)

]+ 〈Ax − DV (x),Du(x)
〉
, x ∈ H.(3.2)

Since the corresponding Dirichlet form

EB(v,w) := 1

2

∫
H

〈Dv,Dw〉dν −
∫
H

〈B,Dv〉w dν + λ

∫
H

vw dν,
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v,w ∈ W 1,2(H, ν), is weakly sectorial for λ big enough, it follows by [17], Chap-
ter 1 and Section 3e in Chapter II, that (3.1) has a unique solution u ∈ L2(H, ν)

such that u ∈ D(L). We need, however, Lipschitz regularity for u and an estimate
for its ν-a.e. defined Gâteaux derivative in terms of ‖u‖∞. To prove this, we also
need the Kolmogorov operator associated to the linear equation that one obtains,
when B = V = 0, in SDE (1.1), that is, the Ornstein–Uhlenbeck operator

LOUu(x) = 1
2 Tr
[
D2u(x)

]+ 〈Ax,Du(x)
〉
, x ∈ H.(3.3)

As initial domains of L, LOU and L + 〈B,D〉, we take the set EA(H) defined
to consist of the linear span of all real parts of functions ϕ :H → R of the
form ϕ(x) = ei〈h,x〉, x ∈ H , with h ∈ D(A). It is easy to check that EA(H) ⊂
W 1,2(H,γ ) densely and EA(H) ⊂ W 1,2(H, ν) densely. Then rewriting the last
term in the above expression as 〈Ax,Du(x)〉, the above operators are well de-
fined for u ∈ EA(H). Below we are going to use results from [14] in a substantial
way with F := ∂V , the sub-differential of V , which is maximal monotone (see,
e.g., [5]) and which is in general multi-valued, but single-valued on DV ⊂ D(F)

because ∂V (x) = ∇V (x) for x ∈ DV .
Let us first check that assumptions (H1) and (H2) in there are satisfied.
First, Hypothesis 1.1 in [14] is satisfied since we are in the special case A = A∗

and C = I . Hypothesis 1.2(ii) is satisfied for L defined above, replacing N0 in [14]
with F0 := ∇V , since by integrating by parts we have∫

H
Lϕψ dν = −1

2

∫
H

〈Dϕ,Dψ〉dν ∀ϕ,ψ ∈ EA(H)

and thus, taking ψ = 1,∫
H
Lϕ dν = 0 ∀ϕ,ψ ∈ EA(H).(3.4)

Here, F0 is the minimal section of F in [14], and hence ∇V = F0 on D(V ) ⊂
D(F), so Hypothesis 1.2(iii) holds. Hypothesis 1.2(i) follows from Remark 1.1.

The first result we now deduce from [14] is the following.

PROPOSITION 3.1. (L,EA(H)) is closable on L2(H, ν) and its closure
(L,D(L)) is m-dissipative on L2(H, ν).

PROOF. This is a special case of [14], Theorem 2.3. �

For later use, we need to replace EA(H) in Proposition 3.1 above by FC2
b (de-

fined in the Introduction of this paper). We need the following easy lemma.

LEMMA 3.2. Let ϕ ∈ C2
b(Rd). Then there exists a sequence ϕn,n ∈ N, each

ϕn consisting of linear combinations of functions of type x → cos〈a, x〉Rd , a ∈ R
d ,

such that supn∈N{‖ϕn‖∞ + ‖Dϕn‖∞ + ‖D2ϕn‖∞} < ∞ and

lim
n→∞ϕn(x) = ϕ(x), lim

n→∞Dϕn(x) = Dϕ(x), lim
n→∞D2ϕn(x) = D2ϕ(x),
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for all x ∈ R
d .

PROOF. First assume that ϕ ∈ C∞
b (Rd) with compact support. Then we have

ϕ(x) =
∫
Rd

ei〈x,ξ 〉
Rd ϕ̂(ξ) dξ, x ∈ R

d,

where ϕ̂ is in the Schwartz test function space, with the corresponding integral
representations for Dϕ and D2ϕ.

Discretizing the integrals immediately implies the assertion since x �→ (1 +
|x|2)ϕ̂ is Lebesgue integrable. Replacing ϕ by χnϕ where χn,n ∈ N, is a suitable
sequence of localizing functions (bump functions), the result follows for all ϕ ∈
C∞

b (Rd) by regularization through convolution with a Dirac sequence. �

As an immediate consequence of Proposition 3.1 and Lemma 3.2, we get the
following.

PROPOSITION 3.3. (L,FC2
b) is closable on L2(H, ν) and the closure

(L,D(L)) is the same as that in Proposition 3.1, hence it is m-dissipative on
L2(H, ν). Furthermore,

Lu = LOUu − 〈∇V,Du〉 ∀u ∈ FC∞
b .

Since (L,D(L)) is an m-dissipative operator on L2(H, ν) by Proposition 3.1,
every λ > 0 is in its resolvent set, hence (λ − L)−1 exists as a bounded operator
on L2(H, ν). The following is one of the main results in [14].

THEOREM 3.4. Let λ > 0 and f ∈ Bb(H). Then there exists a ν-version of
(λ −L)−1f denoted by Rλf , which is Lipschitz on H , more precisely∣∣Rλf (x) − Rλf (y)

∣∣≤√π

λ
‖f ‖∞|x − y| ∀x, y ∈ H.(3.5)

PROOF. We first notice that H0, defined in [14] to be the topological support
of ν, in our case is equal to H , since ν has the same zero sets as the (nondegenerate)
Gaussian measure γ on H . Hence, the assertion follows from the last sentence
of [14], Proposition 5.2. �

REMARK 3.5. In fact, each Rλ is a kernel of total mass λ−1, absolutely con-
tinuous with respect to ν and (Rλ)λ>0 forms a resolvent of kernels on (H,B(H)).
We refer to [14], Section 5, for details.

Now we are going to solve (3.1) for each f ∈ Bb(H) if λ is large enough, and
show that the solution u ∈ L2(H, ν) has a ν-version which is Lipschitz continuous,
with Lipschitz constant dominated up to a constant by ‖f ‖∞.

First, we need the following.
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LEMMA 3.6. Let g :H → R be Lipschitz. Then g ∈ W 1,2(H,γ ), hence also
in W 1,2(H, ν) and ‖Dg‖∞ ≤ ‖g‖Lip (= Lipschitz norm of g). Furthermore, Dg =
∇g, γ -a.e. where ∇g is the Gâteaux derivative of g which exists γ -a.e.

PROOF. By the fundamental result in [4, 19] the set Dg of all x ∈ H where
g is Gâteaux-(even Fréchet-) differentiable has γ measure one. Let ∇g denote
its Gâteaux derivative. Since |∇g| ∈ L∞(H,μ), it follows trivially that g ∈ D0
defined in (2.3). Hence, by Lemma 2.4 the assertion follows. �

LEMMA 3.7. Consider the operator Tλ :L∞(H, ν) → L∞(H, ν) defined by

Tλϕ = 〈B,∇Rλϕ〉, ϕ ∈ L∞(H, ν).

Then for λ ≥ 4π‖B‖2∞
‖Tλϕ‖L∞(H,ν) ≤ 1

2‖ϕ‖L∞(H,ν) ∀ϕ ∈ L∞(H, ν).

PROOF. We have by (3.5) and Lemma 3.6 that for ϕ ∈ L∞(H,μ)

‖Tλϕ‖L∞(H,ν) ≤ ‖B‖∞
√

π

λ
‖ϕ‖L∞(H,ν),

and the assertion follows. �

PROPOSITION 3.8. Let f ∈ Bb(H) and λ ≥ 4π‖B‖2∞. Then (3.1) has a
unique solution given by the Lipschitz function

u := Rλ

(
(I − Tλ)

−1f
)
.

This solution is Lipschitz on H with Lipschitz norm

‖u‖Lip ≤ 2
√

π

λ
‖f ‖∞.

PROOF. Since the operator norm of Tλ is less than 1
2 , the operator (I − Tλ)

−1

exists as a continuous operator on L∞(H, ν) with operator norm less than 2. Fur-
thermore, by Theorem 3.4 and Lemma 3.6

(λ −L)Rλ

(
(I − Tλ)

−1f
)− 〈B,DRλ

(
(I − Tλ)

−1f
)〉

= (I − Tλ)
−1f − Tλ

(
(I − Tλ)

−1f
)= f.

The final part follows from (3.5) �

Having established the result for the scalar equation (3.1) for λ ≥ 4π‖B‖2∞, we
may prove it for the vector equation (1.4), whose solution U has components ui

satisfying the equation

(λ + λi)u
i −Lui − 〈B(x),Dui 〉= f i,(3.6)
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where f i are the components of the vector function F :H → H . [U(x) =∑∞
i=1 ui(x)ei , F(x) =∑∞

i=1 f i(x)ei ].
We have by Proposition 3.8∣∣ui(x) − ui(y)

∣∣2 ≤ 4π

λ + λi

∥∥f i
∥∥2
∞|x − y|2 ≤ 4π

λ + λi

‖F‖2∞|x − y|2,
hence

∞∑
i=1

∣∣ui(x) − ui(y)
∣∣2 ≤ c(λ)2‖F‖2∞|x − y|2,

where c(λ) :=∑∞
i=1

4π
λ+λi

. This series converges and limλ→∞ c(λ) = 0. Moreover,

|U(x) − U(y)|2 =∑∞
i=1 |ui(x) − ui(y)|2, hence we have proved the following.

LEMMA 3.9. U(= Uλ) defined above satisfies∣∣U(x) − U(y)
∣∣≤ c(λ)‖F‖∞|x − y|, x, y ∈ H

with limλ→∞ c(λ) = 0.

3.2. Itô formula for Lipschitz functions. Below we want to apply Itô’s formula
to u(Xt), t ≥ 0, where u is as in Proposition 3.8 and (Xt)t≥0 are the paths of the
Markov process M from Theorem 2.6. Since u is only Lipschitz and we are on the
infinite dimensional state space H , this is a delicate issue. To give a technically
clean proof, we need a specific approximation of the solution u in Proposition 3.8
by functions un ∈FC2

b , n ∈ N. More precisely, we shall prove the following result.

PROPOSITION 3.10. Let λ > 0 and g ∈ Bb(H) ∩ D(LOU,C1
b,2(H)) (for the

definition of the latter see below). Set

w := Rλg.

Then there exists a sequence un ∈ FC2
b, n ∈ N, such that

sup
n∈N
(‖un‖∞ + ‖∇un‖∞

)≤ 2
√

π max
{
λ−1, λ−1/2}‖g‖∞,

(3.7)
lim

n→∞

∫
H

[∣∣LOU(w − un)
∣∣2 + ∣∣∇(w − un)

∣∣2 + (w − un)
2]dν = 0.

In particular, un → w as n → ∞ in L-graph norm [on L2(H, ν)] and

L = LOUw − 〈∇V,∇w〉.
For the proof, we need some more details from [14].
Define for λ > 0 and ϕ ∈ Bb(H)

R
(
λ,LOU)ϕ(x) =

∫ ∞
0

e−λtPtϕ(x) dt,(3.8)
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where Pt is defined as in (2.7). Then

R
(
λ,LOU)(C1

b,2(H)
)⊂ C1

b,2(H),

where C1
b,2(H) denotes the set of all ϕ ∈ C1

b(H) such that

sup
x∈H

|ϕ(x)|
1 + |x|2 < ∞ and sup

x∈H

|Dϕ(x)|
1 + |x|2 < ∞.

As in [14], we set

D
(
LOU,C1

b,2(H)
) := R

(
λ,LOU)(C1

b,2(H)
)
,

which by this resolvent equation is independent of λ > 0 and is a natural domain
for the operator LOU.

PROPOSITION 3.11. Let u ∈ D(LOU,C1
b,2(H)). Then there exists ϕn ∈

EA(H), n ∈ N, such that ϕn → u in ν-measure and for some C ∈ (0,∞)∣∣ϕn(x)
∣∣+ ∣∣Dϕn(x)

∣∣+ ∣∣LOUϕn(x)
∣∣≤ C

(
1 + |x|2) ∀x ∈ H,n ∈N.

In particular, u ∈ D(L) and ϕn → u in the graph norm of L on L2(H, ν) and

Lu = LOUu − 〈∇V,Du〉.

PROOF. Since convergence in measure comes from a metrizable topology, this
follows from [14], Lemma 2.2, Lebesgue’s dominatd convergence theorem, Re-
mark 0 and the fact that (L,EA(H)) is closable on L2(H, ν). �

Now let us recall the approximation procedure for ∂V , more precisely for its
sub-differential F := −∂V with domain D(F), performed in [14]. [We recall that
∇V is maximal monotone (see, e.g., [5]), hence we can consider its Yosida ap-
proximations.] For α ∈ (0,∞), we set

Fα(x) := 1

α

(
Jα(x) − x

)
, x ∈ H,

where

Jα(x) := (I − αF)−1(x), x ∈ H.

It is well known (see, e.g., [5]) that

lim
α→0

Fα(x) = F0(x) ∀x ∈ D(F),

(3.9) ∣∣Fα(x)
∣∣ ≤ F0(x) ∀x ∈ D(F),

where

F0(x) := inf
y∈F(x)

|y|.
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[Recall that F(x) = ∂V (x) is in general multi-valued unless x ∈ DV , when
∂V (x) = ∇V (x).] We need a further standard regularization by setting

Fα,β(x) :=
∫
H

eβBFα

(
eβB + y

)
N(1/2)B−1(e2βB−1)(dy),

(3.10)
α,β ∈ (0,∞),

where B :D(B) ⊂ H → H is a self-adjoint negative definite operator such that
B−1 is of trace class. Then Fα,β is dissipative, of class C∞ has bounded derivatives
of all orders and

Fα,β → Fα pointwise as β → 0(3.11)

(see [16], Theorem 9.19).
Now let us fix λ > 0 and consider the equation for v ∈ C2

b(H)

λu −LOUu − 〈Fα,β,Du〉 = v.(3.12)

Then by [14], page 268, there exists a linear map

R
α,β
λ :C2

b(H) → D
(
LOU,C1

b,2(H)
)∩ C2

b(H)

[in fact given by the resolvent of the SDE corresponding to the Kolmogorov oper-
ator on the left-hand side of (3.12)] such that R

α,β
λ v is a solution to (3.12) for each

v ∈ C2
b(H). In particular,∥∥Rα,β

λ v
∥∥∞ ≤ 1

λ
‖v‖∞, λ > 0, v ∈ C2

b(H).(3.13)

We also have by [14], (4.7), that

sup
x∈H

∣∣∇R
α,β
λ v(x)

∣∣≤√π

λ
‖v‖∞, λ > 0, v ∈ C2

b(H).(3.14)

Now the proof of Proposition 3.10 will be the consequence of the following two
lemmas.

LEMMA 3.12. Let αn ∈ (0,∞), n ∈ N, such that limn→∞ αn = 0. Then there
exists βn ∈ (0,∞), n ∈ N, such that for all v ∈ C2

b(H) we have that

lim
n→∞R

αn,βn

λ v = Rλv,

in L-graph norm [on L2(H, ν)].

PROOF (cf. the proof of [14], Theorem 2.3). Since D(F) ⊃ DV , so
ν(D(F)) ≥ ν(DV ) = 1, it follows by (3.9) and Lebesgue’s dominated convergence
theorem that

lim
n→∞

∫
H

|Fαn − ∇V |2 dν = 0.(3.15)
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Since by the definition of Fα,β we have that for each α > 0 there exists cα ∈ (0,∞)

such that ∣∣Fα,β(x)
∣∣≤ cα

(
1 + |x|) ∀x ∈ H,

it follows by (3.11) that for n ∈ N there exists βn ∈ (0, 1
n
), such that∫

H

∣∣Fαn,βn(x) − Fαn(x)
∣∣ν(dx) ≤ 1

n
.

Hence, by (3.15)

lim
n→∞

∫
H

|Fαn,βn − ∇V |2 dν = 0.(3.16)

Now let v ∈ C2
b(H). Then R

αn,βn

λ v ∈ C2
b(H)∩D(LOU,C1

b,2(H)), hence by Propo-

sition 3.11 and, because R
αn,βn

λ v solves (3.12), we have

(λ −L)R
αn,βn

λ v = v + 〈Fαn,βn − ∇V,∇R
αn,βn

λ v
〉
,(3.17)

consequently,

R
αn,βn

λ v = (λ −L)−1v + (λ −L)−1(〈Fαn,βn − ∇V,∇R
αn,βn

λ v
〉)
.(3.18)

But by (3.14) and (3.16)

lim
n→∞

∫
H

∣∣〈Fαn,βn − ∇V,∇R
αn,βn

λ v
〉∣∣2 dν = 0.

Hence, (3.17) and (3.18) imply the assertion, because (λ −L)−1 is continuous on
L2(H, ν) ad Rλv is a ν-version of (λ −L)−1v. �

LEMMA 3.13. Let λ,g and w be as in Proposition 3.10. Then there exist
un ∈ C2

b(H) ∩ D(LOU,C1
b,2(H)), n ∈ N, such that

sup
n∈N
(‖un‖∞ + ‖∇un‖∞

)≤ 2
√

π max
{
λ−1, λ−1/2}‖g‖∞,

and (3.7) holds for these un,n ∈N.

PROOF. Since C2
b(H) ⊂ L2(H, ν) densely, we can find vk ∈ C2

b(H), k ∈ N,
such that

sup
k∈N

‖vk‖∞ ≤ 2‖g‖∞

and

lim
k→∞

∫
H

|g − vk|2 dν = 0,



2006 DA PRATO, FLANDOLI, RÖCKNER AND VERETENNIKOV

hence by the continuity of (λ −L)−1,

lim
k→∞

∫
H

∣∣Rλ(g − vk)
∣∣2 dν = 0.

Therefore, Rλvk → Rλg in L-graph norm [on L2(H, ν)] as k → ∞. Hence, by
Lemma 3.12 we can choose a subsequence (kn)n∈N such that

R
αnk

,βnk

λ vk → Rλg in L-graph norm
(
on L2(H, ν)

)
as k → ∞.

Taking uk := R
αnk

,βnk

λ vk, k ∈ N, the assertion follows from (3.13) and (3.14), re-
calling that convergence in L-graph norm implies convergence in W 1,2(H, ν). �

PROOF OF PROPOSITION 3.10. Let u ∈ C2
b(H) ∩ D(LOU,C1

b,2(H)) and de-
fine un := u ◦ Pn ∈ FC2

b, n ∈ N. Then ‖un‖∞ ≤ ‖u‖∞ and ‖∇un‖∞ ≤ ‖∇u‖∞.
Furthermore, un → u, ∇un → ∇u and LOUun → LOUu pointwise on H as
n → ∞. Furthermore, LOUun → LOUu in L2(H,γ ), hence in L2(H, ν) as n →
∞. Now the assertion follows by Lemma 3.13. �

COROLLARY 3.14. Let f ∈ Bb(H),λ ≥ 4π‖B‖2∞ and u as in Proposi-
tion 3.8, that is,

u := Rλ

(
(I − Tλ)

−1f
)
.

Let un ∈ FC2
b ∩ D(LOU,C1

b,2(H)), n ∈ N, be as in Proposition 3.10 with g :=
(I − Tλ)

−1f [∈ Bb(H), with ‖g‖∞ ≤ 2‖f ‖∞ by the proof of Proposition 3.8].
Consider the Markov process

M := (�,F, (Ft )t≥0, (Xt)t≥0, (Pz)z∈SV

)
from Theorem 2.6, with SV defined in Proposition 2.10. Then there exists an Eν-
nest (F

λ,f
k )k∈N of compacts such that for every k ∈ N, F

λ,f
k ⊂ SV and some sub-

sequence nl → ∞:

(i) unl
(z) → u(z),

(ii) EPz

∫∞
0 e−λs |∇u − ∇unl

|2(Xs) ds = Rλ(|∇u − ∇unl
|2)(z) → 0,

(iii) EPz

∫∞
0 e−s |L(u − unl

)(Xs)|ds → 0,

uniformly in z ∈ F
λ,f
k . In particular, for all z ∈ ⋃∞

k=1 F
λ,f
k \ N with an Eν-

exceptional set N , we have that Pz-a.e. the following Itô formula holds:

u(Xt) − z −
∫ t

0
Lu(Xs) ds =

∫ t

0

〈∇u(Xs), dW(s)
〉 ∀t ≥ 0.(3.19)

PROOF. Since the convergence of all three sequences in (i)–(iii) takes place
in W 1,2(H, ν), the existence of such an Eν-nest and subsequence (nl)l∈N fol-
lows from [17], Chapter III, Proposition 3.5, and Theorem 2.5 above. By The-
orem 2.8 for z ∈ ⋃∞

k=1 F
λ,f
k \ N , for some Eν -exceptional set N we know that
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Pz[⋃∞
k=1{τH\Fλ,f

k

> t}] = 1 for all t ≥ 0. So, fix z ∈ ⋃∞
k=1 F

λ,f
k \ N . Then by

the classical Itô formula on finite dimensional Euclidean space and by Theo-
rem 2.6(iii), we have Pz-a.s.

unl
(Xt ) − z −

∫ t

0

(
LOUunl

− 〈∇V,∇unl
〉)(Xs) ds

(3.20)

=
∫ t

0

〈∇unl
(Xs), dW(s)

〉 ∀t ≥ 0.

Fix t > 0. Then on {τ
H\Fλ,f

k

> t} we have by (ii) above that unl
(Xt ) → u(Xt) as

n → ∞ and by the last part of Proposition 3.3 and (iii) above

EPz

∫ t

0

∣∣(Lu − (LOUunl
− 〈∇V,∇unl

〉)(Xs)
)∣∣ds

≤ et
EPz

∫ ∞
0

e−s
∣∣L(u − unl

)(Xs)
∣∣ds → 0 as l → ∞,

and also that by Itô’s isometry and by (ii) above

EPz

∣∣∣∣∫ t

0

〈∇u(Xs) − ∇unl
(Xs), dWs

〉∣∣∣∣2
≤ EPz

∫ t

0

∣∣∇u(Xs) − ∇unl
(Xs)

∣∣2 ds

≤ eλt
∫ ∞

0
e−λs

EPz

(∣∣∇u(Xs) − ∇unl
(Xs)

∣∣2)ds

= eλtRλ

(|∇u − ∇unl
|2)(z) → 0 as l → ∞.

Hence, on
⋃∞

k=1{τH\Fλ,f
k

> t} we can pass to the limit in (3.20) to get (3.19). �

REMARK 3.15. By the same standard procedure already mentioned at the
end of the proof of Proposition 2.10, we can find S

λ,f
V such that H \ S

λ,f
V is Eν -

exceptional and Theorem 2.6, Proposition 2.10, Theorem 2.12 hold with S
λ,f
V re-

placing SV and for all z ∈ S
λ,f
V , (i)–(iii) in Corollary 3.14 hold and (3.19) holds

Pz-a.s.

3.3. Maximal regularity estimates. Let us first consider again the solution u

of the scalar equation (3.1). The following result is the main technical ingredient
of this paper, on the Kolmogorov equation; see [13], Proposition 4.2.

LEMMA 3.16. We have that u ∈ W 2,2(H, ν) and there is a constant C > 0
such that, for all λ ≥ 1,∫

H

∣∣Du(x)
∣∣2ν(dx) ≤ C

λ

∫
H

∣∣f (x)
∣∣2ν(dx),(3.21)
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H

∥∥D2u(x)
∥∥2
HSν(dx) ≤ C

∫
H

∣∣f (x)
∣∣2ν(dx).(3.22)

We then apply this result componentwise to equation (1.4).

THEOREM 3.17. Let U(x) =∑∞
i=1 ui(x)ei be the solution of equation (1.4)

with F(x) =∑∞
i=1 f i(x)ei , namely u = ui satisfies equation (3.6) with f = f i ,

for every i ∈ N. Then∫
H

∞∑
i=1

(
λi

∣∣Dui(x)
∣∣2 + ∥∥D2ui(x)

∥∥2
HS

)
ν(dx) ≤ C

∫
H

(∣∣F(x)
∣∣2 + ∣∣B(x)

∣∣2)ν(dx).

PROOF. We apply the lemma and get∫
H

∣∣Dui(x)
∣∣2ν(dx) ≤ C

λ + λi

∫
H

(∣∣f i(x)
∣∣2 + ∣∣〈B(x), ei

〉∣∣2)ν(dx)

≤ C

λi

∫
H

(∣∣f i(x)
∣∣2 + ∣∣〈B(x), ei

〉∣∣2)ν(dx),∫
H

∥∥D2ui(x)
∥∥2
HSν(dx) ≤ C

∫
H

(∣∣f i(x)
∣∣2 + ∣∣〈B(x), ei

〉∣∣2)ν(dx).

Therefore, ∫
H

∞∑
i=1

(
λi

∣∣Dui(x)
∣∣2 + ∥∥D2ui(x)

∥∥2
HS

)
ν(dx)

≤ 2C

∫
H

(∣∣F(x)
∣∣2 + ∣∣B(x)

∣∣2)ν(dx) < ∞.

The proof is complete. �

REMARK 3.18. Consider the situation of Lemma 3.16 and let (ul)l∈N be the
sequence (unl

)l∈N from Corollary 3.14. Then it follows by Proposition 3.10 and
Corollary 3.14 that as n → ∞

fn := (λ −L)un + 〈B,Dun〉 → f in L2(H, ν).

Hence, by (3.22),

lim
n→∞

∫
H

∥∥D2(u − un)
∥∥2
HS dν = 0.

This will be crucially used to justify the application of mean value theorem in the
proof of Lemma 5.2 below.
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4. New formulation of the SDE. In this section, we fix U , ui as in Theo-
rem 3.17 with f i := 〈B,ei〉 and F := B . Let λ ≥ 4π‖B‖2∞ so large that c(λ) ≤
1
2‖B‖−1∞ where c(λ) is as in Lemma 3.9. Again, we write xi for 〈x, ei〉, ui(x) for
〈U(x), ei〉, and so on. Below we shall apply Corollary 3.14 with f replaced by Bi

and ui replacing u, for i ∈N.

REMARK 4.1. As the corresponding sets of allowed starting points S
Bi,λ
V , i ∈

N, are concerned, as in Remark 3.15, by a standard diagonal procedure we can find

SV ⊂⋂i∈N S
Bi,λ
V such that H \ SV is Eν-exceptional and Theorem 2.6, Proposi-

tion 2.10, Theorem 2.12 hold with this (smaller) SV and for all z ∈ SV (i)–(iii) in
Corollary 3.14 hold and (3.19) holds Pz-a.s.

Below we fix this set SV (⊂ H).

LEMMA 4.2. Let z ∈ SV and set

ϕ(x) = x + U(x), x ∈ H,

namely ϕi(x) = xi +ui(x) and let X be a solution of the SDE (1.1). Then for each
i ∈ N

dϕi(Xt) = (−λiX
i
t − DiV (Xt)

)
dt + (λ + λi)u

i(Xt ) dt
(4.1)

+ 〈Dui(Xt), dWt

〉+ dWi
t .

PROOF. Fix i ∈ N. Let us first prove the following.
Claim: We have Pz-a.e.

ui(Xt) = ui(z) +
∫ t

0

(
LOUui(Xs) − 〈∇V (Xs) − B(Xs),Du(Xs)

〉)
ds

(4.2)

+
∫ t

0

〈
Dui(Xs), dWs,

〉
ds, t ≥ 0.

Indeed, considering the set �0 of all ω ∈ � such that (4.2) holds, we have to prove
that P(�0) = 1. But by Girsanov’s theorem this is equivalent to (3.19) with ui

replacing u. Hence, the claim is proved.
As a consequence, we obtain that

dui(Xt) = Lui(Xt) dt + B(Xt) dt + 〈Dui(Xt), dWt

〉
= −Bi(Xt) dt + (λ + λi)u

i(Xt ) dt + 〈Dui(Xt), dWt

〉
and thus

dXi
t = (−λiX

i
t − DiV (Xt)

)
dt − dui(Xt)

+ (λ + λi)u
i(Xt ) dt + 〈Dui(Xt), dWt

〉+ dWi
t .
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Then

dϕi(Xt) = (−λiX
i
t − DiV (Xt)

)
dt + (λ + λi)u

i(Xt ) dt

+ 〈Dui(Xt), dWt

〉+ dWi
t . �

In vector form, we could write (4.1) as

dXt = (AXt − ∇V (Xt)
)
dt − dU(Xt) + (λ − A)U(Xt) dt + DU(Xt) dWt + dWt

and

dϕ(Xt) = (AXt − ∇V (Xt)
)
dt + (λ − A)U(Xt) dt + DU(Xt) dWt + dWt .

5. Proof of Theorem 1.5. Consider the situation described at the beginning
of Section 4 with SV being the set of all allowed starting points from Remark 4.1.
In particular, by our choice of λ we have

sup
x∈H

∥∥∇U(x)
∥∥
L(H) ≤ 1

2 .

LEMMA 5.1. For every x, y ∈ H , we have

1
2 |x − y| ≤ ∣∣ϕ(x) − ϕ(y)

∣∣≤ 3
2 |x − y|.

In particular, ϕ is injective and its inverse is Lipschitz continuous.

PROOF. One has

|x − y| ≤ ∣∣x + U(x) − y − U(y)
∣∣+ ∣∣U(x) − U(y)

∣∣
≤ ∣∣ϕ(x) − ϕ(y)

∣∣+ 1
2 |x − y|,

where we have used∣∣U(x) − U(y)
∣∣≤ sup

x∈H

∥∥DU(x)
∥∥|x − y| ≤ 1

2 |x − y|.

The claim follows. �

Let X and Y be two solutions with initial condition x, defined on the same
filtered probability space (�,F, (Ft )t≥0,P ) and w.r.t. the same cylindrical (Ft )-
Brownian motion W .

LEMMA 5.2. There is a Borel set � ⊂ SV with γ (�) = 1 having the fol-
lowing property: If z ∈ � and X, Y are two solutions with initial condition z

(in the sense of Definition 1.4), defined on the same filtered probability space
(�,F, (Ft )t≥0,P ) and w.r.t. the same (Ft )-cylindrical Brownian motion W , then

At,z < ∞
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with probability one, for every t ≥ 0, where the process At,z is defined as

At,z = 2
∫ t

0

|∇V (Xs) − ∇V (Ys)|
|ϕ(Xs) − ϕ(Ys)| 1ϕ(Xs) �=ϕ(Ys) ds

+ 2
∞∑
i=1

∫ t

0

(ui(Xs) − ui(Ys))
2

|ϕ(Xs) − ϕ(Ys)|2 1ϕ(Xs) �=ϕ(Ys) ds(5.1)

+
∞∑
i=1

∫ t

0

|Dui(Xs) − Dui(Ys)|2
|ϕ(Xs) − ϕ(Ys)|2 1ϕ(Xs) �=ϕ(Ys) ds.

PROOF. Let us first treat the case when (H3) holds. By the mean value theorem
and Lemma 5.1, we have for ν-a.e. z ∈ SV

At ≤ 4Nt,z,

where

Nt,z : = 2
∫ 1

0

∫ t

0

∥∥D2V
(
Zα

s

)∥∥
L(H) dα ds

+
∞∑
i=1

∫ 1

0

∫ t

0

(
2λi

∣∣Dui(Zα
s

)∣∣2 + ∥∥D2ui(Zα
s

)∥∥2
HS

)
dα ds,

where

Zα
t = αXt + (1 − α)Yt .

Let us briefly show why we can indeed use the mean value theorem here. We do it
separately for all three differences under the integrals in (5.1). However, we only
explain it for the last difference. The other two can be treated analogously. So, fix
i ∈ N. We want to prove that for γ -a.e. starting point z ∈ H we have P ⊗ dt-a.e.

Dui(Xs) − Dui(Ys) =
∫ 1

0
D2ui(αXs + (1 − α)Ys

)
(Xs − Ys) dα.(5.2)

We know by Corollary 3.14 and Remark 3.18 that there exists un ∈ FC2
b , n ∈ N,

such that for λ ≥ 4π‖B‖2∞ and all z ∈ SV

lim
n→∞EPz

[∫ ∞
0

e−λs
∣∣Dui − Dun

∣∣2(XV
s

)
ds

]
= 0(5.3)

and

lim
n→∞

∫
H

∥∥D2ui − D2un

∥∥2
HS dν = 0.(5.4)

Here, Pz is from the Markov process

M := (�,F, (Ft )t≥0,
(
XV

t

)
t≥0, (Pz)z∈SV

)
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in Corollary 3.14 [and we changed notation and used (XV
t )t≥0 instead of (Xt)t≥0

in Corollary 3.14 to avoid confusion with our fixed solution (Xt)t∈[0,T ] above].
Recalling that by Girsanov’s theorem both X and Y have laws which are equiv-

alent to the law of XV := XV
t , t ∈ [0, T ], it follows by (5.3) that as n → ∞∫ T

0

∣∣Dui(Xs) − Dun(Xs)
∣∣2 ds → 0,

∫ T

0

∣∣Dui(Ys) − Dun(Ys)
∣∣2 ds → 0,

in probability. If we can show that also∫ T

0

∫ 1

0

∥∥D2ui − D2un

∥∥
HS

(
αXs + (1 − α)Ys

)|Xs − Ys |dα ds → 0(5.5)

in probability as n → ∞, (5.2) follows, since it trivially holds for un replacing ui .
But the expression in (5.5) is bounded by

sup
s∈[0,T ]

|Xs − Ys |
∫ T

0

∫ 1

0

∥∥D2ui − D2un

∥∥
HS

(
αXs + (1 − α)Ys

)
dα ds

and by the continuity of sample paths

sup
s∈[0,T ]

|Xs − Ys | < ∞, P -a.s.

Furthermore, it follows from (5.4) and the proof of Lemma 6.1 and Corollary 6.2
below that for ν-a.e. z ∈ SV∫ T

0

∫ 1

0

∥∥D2ui − D2un

∥∥
HS

(
αXs + (1 − α)Ys

)
dα ds → 0

as n → ∞ P -a.s. Hence, (5.5) follows.
By assumption (1.2) in (H3) we know that∫

H

∥∥D2V (x)
∥∥
L(H)ν(dx) < ∞

and by Theorem 3.17 we know that∫
H

∞∑
i=1

(
λi

∣∣Dui(x)
∣∣2 + ∥∥D2ui(x)

∥∥2
HS

)
ν(dx) < ∞.

Thus, we may apply Corollary 6.2 below with

f (x) = ∥∥D2V (x)
∥∥
L(H) +

∞∑
i=1

(
2λi

∣∣Dui(x)
∣∣2 + ∥∥D2ui(x)

∥∥2
HS

)
and get that

∫ 1
0
∫ t

0 f (Zα
s ) dα ds < ∞ with probability one, for every t ≥ 0 and ν-

a.e. z ∈ SV , that is,

Nt,z < ∞
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with probability one, for every t ≥ 0, which completes the proof since At ≤ 4Nt,z.
Now let us consider the case when (H3)′ holds. Clearly, we then handle the

second and the third term in the right-hand side of (4.2) as above. For the first
term, the treatment is different, but simpler. Indeed, we have by (H3)′, Lemma 4.2
and by the mean value theorem that∫ T

0

|∇V (Xs) − ∇V (Ys)|
|ϕ(Xs) − ϕ(Ys)| 1ϕ(Xs) �=ϕ(Ys) ds

≤ 2
∫ T

0

∫ 1

0

∥∥V ′′
E

(
Zα

s

)∥∥
L(H,E′) dα ds

≤ 2
∫ T

0

[
�
(|Xs |E)+ �

(|Ys |E)]ds.

But again using Girsanov’s theorem we know that the laws of X and Y are equiv-
alent to that of XV , hence the last expression is finite P -a.e. �

We may now prove Theorem 1.5. Let z ∈ �. By Lemma 4.2,

d
(
ϕi(Xt) − ϕi(Yt )

)
= −(λi

(
Xi

t − Y i
t

)+ DiV (Xt) − DiV (Yt )
)
dt

+ (λ + λi)
(
ui(Xt) − ui(Yt )

)
dt + 〈Dui(Xt) − Dui(Yt ), dWt

〉
.

Hence, by Itô’s formula, we get

d
(
ϕi(Xt) − ϕi(Yt )

)2
= −2

(
ϕi(Xt) − ϕi(Yt )

)(
λi

(
Xi

t − Y i
t

)+ DiV (Xt) − DiV (Yt )
)
dt

+ 2
(
ϕi(Xt) − ϕi(Yt )

)
(λ + λi)

(
ui(Xt) − ui(Yt )

)
dt

+ 2
(
ϕi(Xt) − ϕi(Yt )

)〈
Dui(Xt) − Dui(Yt ), dWt

〉
+ ∣∣Dui(Xt) − Dui(Yt )

∣∣2 dt.

By definition of ϕ in Lemma 4.2, in the lines above there are the terms
−2(ui(Xt ) − ui(Yt ))λi(X

i
t − Y i

t ) and 2(Xi
t − Y i

t )λi(u
i(Xt ) − ui(Yt )) which can-

cel each other. Moreover, the term −2(Xi
t − Y i

t )λi(X
i
t − Y i

t ) is negative. Thus, we
deduce

d
(
ϕi(Xt) − ϕi(Yt )

)2 ≤ −2
(
ϕi(Xt) − ϕi(Yt )

)(
DiV (Xt) − DiV (Yt )

)
dt

+ 2λ
(
ϕi(Xt) − ϕi(Yt )

)(
ui(Xt) − ui(Yt )

)
dt

+ 2λi

(
ui(Xt) − ui(Yt )

)2
dt

+ 2
(
ϕi(Xt) − ϕi(Yt )

)〈
Dui(Xt) − Dui(Yt ), dWt

〉
+ ∣∣Dui(Xt) − Dui(Yt )

∣∣2 dt.
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Let At = At,z be the process introduced in Lemma 5.2. We have

d
(
e−At

(
ϕi(Xt) − ϕi(Yt )

)2)
≤ −2e−At

(
ϕi(Xt) − ϕi(Yt )

)(
DiV (Xt) − DiV (Yt )

)
dt

+ 2λe−At
(
ϕi(Xt) − ϕi(Yt )

)(
ui(Xt) − ui(Yt )

)
dt

+ 2e−At
(
ϕi(Xt) − ϕi(Yt )

)〈
Dui(Xt) − Dui(Yt ), dWt

〉
+ 2λie

−At
(
ui(Xt) − ui(Yt )

)2
dt

+ e−At
∣∣Dui(Xt) − Dui(Yt )

∣∣2 dt − e−At
(
ϕi(Xt) − ϕi(Yt )

)2
dAt

and thus, for every N > 0, summing the previous inequality for i = 1, . . . ,N , we
get

d
(
e−At

∣∣PN

(
ϕ(Xt) − ϕ(Yt )

)∣∣2)
≤ −2e−At 〈PN

(
ϕ(Xt) − ϕ(Yt )

)
,PN

(∇V (Xt) − ∇V (Yt )
)〉

dt

+ 2λe−At
〈
PN

(
ϕ(Xt) − ϕ(Yt )

)
,U(Xt) − U(Yt )

〉
dt

+ 2e−At

N∑
i=1

(
ϕi(Xt) − ϕi(Yt )

)〈
Dui(Xt) − Dui(Yt ), dWt

〉

+ 2e−At

N∑
i=1

λi

(
ui(Xt) − ui(Yt )

)2
dt

+ e−At

N∑
i=1

∣∣Dui(Xt) − Dui(Yt )
∣∣2 dt

− e−At
∣∣PN

(
ϕ(Xt) − ϕ(Yt )

)∣∣2 dAt .

Substituting dAt , taking expectation and using simple inequalities we get

E
[
e−At

∣∣PN

(
ϕ(Xt) − ϕ(Yt )

)∣∣2]
≤ 2λ

∫ t

0
E
[
e−As

∣∣ϕ(Xs) − ϕ(Ys)
∣∣∣∣U(Xs) − U(Ys)

∣∣]ds

+ 2
∫ t

0
E
[
e−As

∣∣ϕ(Xs) − ϕ(Ys)
∣∣∣∣PN

(∇V (Xs) − ∇V (Ys)
)∣∣]ds

− 2
∫ t

0
E

[
e−As

∣∣PN

(
ϕ(Xs) − ϕ(Ys)

)∣∣2
× 2|∇V (Xs) − ∇V (Ys)|

|ϕ(Xs) − ϕ(Ys)| 1ϕ(Xs) �=ϕ(Ys)

]
ds
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+
∫ t

0
E
[
e−Asgs

]
ds

−
∫ t

0
E

[
e−Asgs

|PN(ϕ(Xs) − ϕ(Ys))|2
|ϕ(Xs) − ϕ(Ys)|2 1ϕ(Xs) �=ϕ(Ys)

]
ds,

where for shortness of notation we have written

gs := 2
∞∑
i=1

λi

(
ui(Xs) − ui(Ys)

)2 +
∞∑
i=1

∣∣Dui(Xs) − Dui(Ys)
∣∣2.

By monotone convergence, we may take the limit as N → ∞ and deduce

E
[
e−At

∣∣ϕ(Xt) − ϕ(Yt )
∣∣2]

≤ 2λ

∫ t

0
E
[
e−As

∣∣ϕ(Xs) − ϕ(Ys)
∣∣∣∣U(Xs) − U(Ys)

∣∣]ds

+ 2
∫ t

0
E
[
e−As

∣∣ϕ(Xs) − ϕ(Ys)
∣∣∣∣∇V (Xs) − ∇V (Ys)

∣∣]ds

− 2
∫ t

0
E

[
e−As

∣∣ϕ(Xs) − ϕ(Ys)
∣∣2 2|∇V (Xs) − ∇V (Ys)|

|ϕ(Xs) − ϕ(Ys)| 1ϕ(Xs) �=ϕ(Ys)

]
ds

+
∫ t

0
E
[
e−Asgs

]
ds −

∫ t

0
E

[
e−Asgs

|ϕ(Xs) − ϕ(Ys)|2
|ϕ(Xs) − ϕ(Ys)|2 1ϕ(Xs) �=ϕ(Ys)

]
ds.

Notice that by Lemma 5.1, Xs = Ys if and only if ϕ(Xs) = ϕ(Ys). Hence, we may
drop the indicator function 1ϕ(Xs) �=ϕ(Ys) in all integrals in the above inequality.

Therefore, certain terms cancel in the previous inequality and we get

E
[
e−At

∣∣ϕ(Xt) − ϕ(Yt )
∣∣2]≤ 2λ

∫ t

0
E
[
e−As

∣∣ϕ(Xs) − ϕ(Ys)
∣∣∣∣U(Xs) − U(Ys)

∣∣]ds.

Using Lemmas 3.9 and 5.1, we get

E
[
e−At

∣∣ϕ(Xt) − ϕ(Yt )
∣∣2]≤ 2λC

∫ t

0
E
[
e−As

∣∣ϕ(Xs) − ϕ(Ys)
∣∣2]ds,

whence E[e−At |ϕ(Xt) − ϕ(Yt )|2] = 0 by Gronwall’s lemma, and thus ϕ(Xt) =
ϕ(Yt ) with probability one (since At < ∞ a.s.), for all t ≥ 0; the same is true for the
identity Xt = Yt since ϕ is invertible and finally X and Y are also indistinguishable
since they are continuous processes.

To complete the proof, we have to prove Corollary 6.2 below, which was used
in the proof of Lemma 5.2.

6. Main lemmata. Let SV as in Remark 4.1 and HV as in (2.9) and set

�V := SV ∩ HV .(6.1)
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LEMMA 6.1. Let f :H → [0,∞) be a Borel measurable function such that∫
H

f (x)γ (dx) < ∞.(6.2)

Then there is a Borel set � ⊂ SV ∩ HV with γ (�) = 1 having the following prop-
erty. Given any z ∈ � and any two solutions X,Y with initial condition z (as in the
statement of Theorem 1.5) for all T > 0 we have

P

(∫ 1

0

∫ T

0
f
(
Zα

s

)
ds dα < ∞

)
= 1,

where Zα
t = αXt + (1 − α)Yt .

PROOF. Step 1 (Estimates on OU process). A number T > 0 is fixed through-
out the proof. From the assumption on f , it follows that there is a Borel set
�f ⊂ H , with �c

f of γ -measure zero, such that

E

[∫ T

0
f
(
ZOU,z

s

)
ds

]
=
∫ T

0

(∫
H

f (x)ps,z(dx)

)
ds < ∞

for all z ∈ �f , where ps,z(dx) is the law at time s of the Ornstein–Uhlenbeck
process ZOU,z

s , that is, the solution of the equation

dZt = AZt dt + dWt, Z0 = z.(6.3)

Indeed, we have∫
H

(∫ T

0

(∫
H

f (x)ps,z(dx)

)
ds

)
γ (dz)

=
∫ T

0

(∫
H

∫
H

f (x)ps,z(dx)γ (dz)

)
ds

=
∫ T

0

(∫
H

f (z)γ (dz)

)
ds = T

∫
H

f (z)γ (dz).

This implies
∫ T

0 (
∫
H f (x)ps,z(dx)) ds < ∞ for γ -a.e. z.

Step 2 (Girsanov transform). Let �V as in (6.1) and �f be given as in step 1.
Let � = �V ∩ �f , of full γ -measure. In the sequel, z ∈ � will be given, thus we
avoid to index all quantities by z.

From Theorem 2.12, we have∫ T

0

∣∣∇V (Xs)
∣∣2 ds +

∫ T

0

∣∣∇V (Ys)
∣∣2 ds < ∞

for all T > 0, with probability one.
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Let us introduce the sequence {τn} of stopping times defined as

τn = τn
B ∧ τn

V,1 ∧ τn
V,2,

τ n
B := inf

{
t ≥ 0 :

∣∣∣∣∫ t

0
B(Xs) dWs

∣∣∣∣+ ∣∣∣∣∫ t

0
B(Ys) dWs

∣∣∣∣≥ n

}
∧ T ,

τn
V,1 := inf

{
t ≥ 0 :

∣∣∣∣∫ t

0

〈∇V (Xs), dWs

〉∣∣∣∣+ ∣∣∣∣∫ t

0

〈∇V (Ys), dWs

〉∣∣∣∣≥ n

}
∧ T ,

τn
V,2 := inf

{
t ≥ 0 :

∫ t

0

∣∣∇V (Xs)
∣∣2 ds +

∫ t

0

∣∣∇V (Ys)
∣∣2 ds ≥ n

}
∧ T

for n ≥ 1 (an infimum is equal to +∞ if the corresponding set is empty). All
stochastic and Lebesgue integrals are well defined and continuous in t , hence we
have τn = T eventually, with probability one. In order to prove the lemma, it is
sufficient to prove that E[∫ 1

0
∫ T ∧τn

0 f (Zα
s ) ds dα] < ∞ for each n.

Let us also introduce the stochastic processes

bα
s := αB(Xs) + (1 − α)B(Ys),

vα
s := α∇V (Xs) + (1 − α)∇V (Ys)

and the stochastic exponentials

ρα
t := exp

(
−
∫ t

0

〈
bα
s − vα

s , dWs

〉− 1

2

∫ t

0

∣∣bα
s − vα

s

∣∣2 ds

)
.

Denote

ρ
α,n
t := ρα

t∧τn = exp
(
−
∫ t

0

〈
1s≤τn

(
bα
s − vα

s

)
, dWs

〉− 1

2

∫ t

0
1s≤τn

∣∣bα
s − vα

s

∣∣2 ds

)
.

By Novikov’s criterium, this is a martingale (indeed
∫ T

0 1s≤τn |bα
s − vα

s |2 ds is a
bounded r.v. We may thus introduce the following new measures (and the corre-
sponding expectations)

Qα,n(A) := E
[
ρ

α,n
T 1A

]
.

Girsanov’s theorem implies that

W̃
n,α
t := Wt +

∫ t

0
1s≤τn

(
bα
s − vα

s

)
ds

= Wt +
∫ t∧τn

0

(
bα
s − vα

s

)
ds

is a new cylindrical Brownian motion.
Step 3 (Auxiliary process and conclusion). Recall also that Zα

t (with the new
notation) satisfies

dZα
t = AZα

t dt + (bα
s − vα

s

)
dt + dWt .
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Let us introduce the auxiliary process Z
α,n
t which solves, in the sense of Defini-

tion 1.4, the equation

Z
α,n
t = z +

∫ t

0
AZα,n

s ds +
∫ t

0
1s≤τn

(
bα
s − vα

s

)
ds + Wt.

It exists, by the explicit formula

Z
α,n
t = etAz +

∫ t

0
e(t−s)A1s≤τn

(
bα
s − vα

s

)
ds +

∫ t

0
e(t−s)A dWs,

where etA is the analytic semigroup in H generated by A (taking inner product
with the elements ek of the basis, it is not difficult to check that this mild formula
gives a solution in the weak sense of Definition 1.4). This process satisfies also

Z
α,n
t = z +

∫ t

0
AZα,n

s ds + W̃
n,α
t

by the definition of W̃
n,α
t , hence its law under Qα,n is the same as the Gaussian

law of ZOU
t under P . Moreover,

Z
α,n
t = Zα

t for t ∈ [0, τ n]
(indeed, by the weak formulation, the process Yt = Z

α,n
t − Zα

t verifies, pathwise,
on [0, τ n], the equation Y ′

t = AYt , Y0 = 0, in the weak sense of Definition 1.4 and
thus, taking inner product with the elements ek of the basis, one proves Y = 0).

Therefore,

E
Qα,n
[∫ T ∧τn

0
f
(
Zα

s

)
ds

]
= E

Qα,n
[∫ T ∧τn

0
f
(
Zα,n

s

)
ds

]

≤ E
Qα,n
[∫ T

0
f
(
Zα,n

s

)
ds

]

= E

[∫ T

0
f
(
ZOU

s

)
ds

]
=: C′ < ∞.

But

E
Qα,n
[∫ T ∧τn

0
f
(
Zα

s

)
ds

]
= E

[
ρ

α,n
T

∫ T ∧τn

0
f
(
Zα

s

)
ds

]

≥ CnE

[∫ T ∧τn

0
f
(
Zα

s

)
ds

]
,

where Cn > 0 is a constant such that ρ
α,n
T ≥ Cn: it exists because(

ρ
α,n
T

)−1 := exp
(∫ T ∧τn

0

〈
bα
s − vα

s , dWs

〉+ 1

2

∫ T ∧τn

0

∣∣bα
s − vα

s

∣∣2 ds

)
and τn includes the stopping of all these integrals. Therefore,

E

[∫ T ∧τn

0
f
(
Zα

s

)
ds

]
≤ C′

Cn
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and thus also

E

[∫ 1

0

∫ T ∧τn

0
f
(
Zα

s

)
ds dα

]
≤ C′

Cn

.

The proof is complete. �

The next corollary extends the previous result to the case when∫
H f (x)ν(dx) < ∞. Clearly,∫

H
f (x)ν(dx) ≤ 1

Z

∫
H

f (x)γ (dx)

but not conversely, without additional assumptions on V . Hence, Corollary 6.2
implies Lemma 6.1, but not conversely, in an obvious way. However, we may easily
deduce Corollary 6.2 from Lemma 6.1 by assumptions (H1)–(H3).

COROLLARY 6.2. Let f :H → [0,∞) be a Borel measurable function such
that ∫

H
f (x)ν(dx) < ∞.(6.4)

Then there is a Borel set � ⊂ SV ∩ HV with ν(�) = 1 [equivalently γ (�) = 1]
having the property stated in Lemma 6.1.

PROOF. Since
∫
H f (x)e−V (x)γ (dx) < ∞, we may apply Lemma 6.1 to the

function f (x)e−V (x) instead of f (x) and get, as a result, that there is a Borel set
� ⊂ SV ∩ HV with γ (�) = 1 having the following property: given any z ∈ � and
any two solutions X,Y as in the statement of Theorem 1.5, for all T > 0 we have

P

(∫ 1

0

∫ T

0
f
(
Zα

s

)
e−V (Zα

s ) ds dα < ∞
)

= 1,(6.5)

where Zα
t = αXt + (1 − α)Yt . Take z ∈ �. Since V (Zα

s ) ≤ V (Xt) + V (Yt ) (recall
that V ≥ 0 by Remark 1.1) and by Theorem 2.12,

P

( ∞⋃
n=1

{
σ

X,Y

H\KV
n

> T
})= 1,

where

σ
X,Y

H\KV
n

:= min
(
σX

H\KV
n
, σY

H\KV
n

)
and σX

H\KV
n
, σY

H\KV
n

are the first hitting times of H \ KV
n of X,Y , respectively, we

have by (6.5)∫ 1

0

∫ T

0
f
(
Zα

s

)
e−V (Xs)e−V (Ys) ds dα < ∞ on

∞⋃
n=1

{
σ

X,Y

H\KV
n

> T
}
,P -a.s.
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But for ω ∈ {σX,Y

H\KV
n

> T } and Mn := sup{V (z) : z ∈ KV
n }∫ 1

0

∫ T

0
f
(
Zα

s (ω)
)
ds dα ≤ e2Mn

∫ 1

0

∫ T

0
f
(
Zα

s (ω)
)
e−V (Xs)e−V (Ys) ds dα < ∞.

Hence,

P

(∫ 1

0

∫ T

0
f
(
Zα

s (ω)
)
ds dα < ∞

)
= 1. �

7. Applications.

7.1. Reaction–diffusion equations. Let H := L2((0,1), dξ), with dξ =
Lebesgue measure and A = −� with domain H 2(0,1)∩H 1

0 (0,1), that is, A is the
Dirichlet Laplacian on (0,1). Then clearly (H1) holds.

Let m ∈ [1,∞) and

V (x) :=
⎧⎨⎩
∫ 1

0

∣∣x(ξ)
∣∣m+1

dξ, if x ∈ Lm+1((0,1), dξ
)
,

+∞, else.
(7.1)

V obviously satisfies (H2). Now we are going to verify (H3)′ for this convex func-
tional. (Of course, then according to Remark 1.1 we subsequently replace this V

by V + ω
2 | · |2H .)

For the separable Banach space E in (H3)′, we take

E := L2m((0,1), dξ
)=: L2m.(7.2)

Then by elementary calculations for x ∈ E

V ′
E(x) = (m + 1)|x|m−1x ∈ H ⊂ L2m/(2m−1) = E′,(7.3)

V ′′
E(x)(h1, h2) = m(m + 1)

∫ 1

0

∣∣x(ξ)
∣∣m−1

h1(ξ)h2(ξ) dξ,(7.4)

for h1, h2 ∈ E. Obviously, the right-hand side of (7.4) is also defined for h1, h2 ∈
H and by Hölder’s inequality, continuous in (h1, h2) ∈ E × H with respect to the
product topology. Hence, for all x ∈ E

V ′′
E(x) ⊂ L

(
H,E′)

and furthermore (again by Hölder’s inequality)∥∥V ′′
E(x)

∥∥
L(H,E′) ≤ |x|m−1

E .

Equation (7.3) implies that E ⊂ DV . But our Gaussian measure γ = N−(1/2)A−1 is
known to have full mass even on C([0,1];R) because it is the law of the Brown-
ian Bridge, hence γ (E) = 1 and so, γ (DV ) = 1. Furthermore, then obviously by
Fernique’s theorem the first inequality in (1.2) is satisfied.
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It remains to verify (1.3), that is, for γ -a.e. initial condition z ∈ H

E

∫ T

0

∣∣XV (s)
∣∣m−1
E ds < ∞,(7.5)

where XV (t), t ∈ [0, T ], solves SDE (1.1) with B = 0. But the existence of such
a process for γ -a.e. z ∈ H follows from Theorem 2.5 in Section 2 above. That
this process satisfies (7.5) follows from results in [6]. Indeed, it follows by [6],
Theorem 3.6 and Proposition 4.1, and Fatou’s lemma that even

E

∫ T

0

∣∣XV (s)
∣∣2m
E ds < ∞

for (γ -a.e.) z ∈ E.
Hence, (H3)′ is verified and our main result, Theorem 1.5, applies to this case.

7.2. Weakly differentiable drifts. The main motivation to also consider condi-
tion (H3), that is, to assume that the (γ -weak) second derivative D2V of V exists
and is in L1(H,γ ;L(H)), was to make a connection between our results and those
in finite dimensions by [9]. As mentioned in the Introduction, our results general-
ize some of the results of [9] in the special case when H = R

d . In addition, since
we work with respect to a Gaussian measure (and not Lebesgue measure on R

d )
our integrability conditions are generically weaker than those in [9]. As far as the
infinite dimensional case is concerned, one might ask what are examples of such
functions V satisfying condition (H3). There are plenty of them and let us briefly
describe a whole class of such functions.

Let ϕ :H → [0,∞] be convex, lower semicontinuous, ϕ ∈ L2+δ(H,γ ) for
some δ > 0, and Gâteaux differentiable, γ -a.e., that is, γ (Dϕ) = 1. Define

V (x) := R
(
λ,LOU)ϕ(x), x ∈ H,(7.6)

with R(λ,LOU) defined as in (3.8), that is, it is the resolvent of the Ornstein–
Uhlenbeck operator LOU. Then it is elementary to check from the definition that
V :H → [0,∞] is also convex and lower semicontinuous.

Furthermore, V is in the L2(H,γ )-domain of LOU. Hence, by the maximal
regularity result of [13] (already recalled in Section 3.3 above) applied to the case
when U ≡ 0, we conclude that V ∈ W 2,2(H,γ ), in particular we have∫

H

∥∥D2V
∥∥2
HS dγ < ∞,

which is stronger than the second part of condition (1.2) in (H3).
Of course, one needs additional, but obviously quite mild bounds on ∇ϕ, to

ensure that γ (DV ) = 1 and ∇V ∈ L2(H,γ ). But then the class of V defined in
(7.6) satisfy (H3). To be concrete in choosing ϕ above, consider the situation of
Section 7.1. Then if we take ϕ := V as defined in (7.1), the new V given by (7.6)
satisfy (H3).
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