
This is a repository copy of Mollow triplet for cavity-mediated laser cooling..

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/85560/

Version: Accepted Version

Article:

Kim, O and Beige, A (2013) Mollow triplet for cavity-mediated laser cooling. Physical 
Review A, 88 (5). 053417. ISSN 1050-2947 

https://doi.org/10.1103/PhysRevA.88.053417

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Mollow triplet for cavity-mediated laser cooling

Oleg Kim and Almut Beige
The School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom

(Dated: October 28, 2013)

Here we analyse cavity-mediated laser cooling for an experimental setup with an external trap
which strongly confines the motion of a particle in the direction of the cavity axis. It is shown that
the stationary state phonon number exhibits three sharp minima as a function of the atom-cavity
detuning due to a direct atom-phonon-photon coupling term in the system Hamiltonian. These
resonances have the same origin as the Mollow triplet in the resonance fluorescence of a laser-driven
atomic system. It is shown that a laser-Rabi frequency-dependent atom-cavity detuning yields the
lowest stationary state phonon number for a wide range of experimental parameters.

PACS numbers: 37.10.Rs,37.30.+i,37.10.Mn,42.50.Pq

I. INTRODUCTION

Laser sideband cooling allows to cool single, strongly-
confined atomic particles to very low temperatures [1].
Its discovery opened the way for experiments which test
the foundations of quantum physics and have applica-
tions ranging from quantum metrology to quantum com-
puting [2]. Unfortunately, laser sideband cooling cannot
be used to cool large numbers of trapped particles to
very low temperatures. Moreover, laser sideband cool-
ing cannot be used to cool particles with a very com-
plex level structure, like molecules, very efficiently [3].
Alternative cooling techniques therefore receive a lot of
attention in the literature. First indications that cavity-
mediated laser cooling allows to cool trapped particles to
low temperatures were found in Paris already in 1995 [4].
More systematic experimental studies of cavity-mediated
laser cooling have subsequently been reported by several
groups (cf. Refs. [5–13]).

The theory of cavity-mediated laser cooling of free par-
ticles was first discussed in Refs. [14, 15]. Later, Ritsch
and collaborators [16, 17] and others [18–20] developed
semiclassical theories to model cavity-mediated cooling
processes. In 1993, Cirac et al. [21] introduced a master
equation approach to analyse cavity-mediated laser cool-
ing in detail. Since the precision of calculations which
are based on master equations is easier to control than
the precision of semiclassical calculations, this approach
has been used by many authors to show a close analogy
between laser-sideband and cavity-mediated laser cooling
[22–27]. In this paper we use the same master equation
approach as in Refs. [25, 26, 28] and analyse the cooling
dynamics of the experimental setup in Fig. 1 with the
help of linear differential equations, so-called rate equa-
tions, for expectation values.

In the following, we assume that an external trap con-
fines the motion of a single particle in the direction of
the cavity axis. This case is a special case of the gen-
eral scenario considered in Refs. [24, 27]. As illustrated
in Fig. 1, the particle should be placed in a node of the
quantised standing wave cavity field mode. One way to
achieve this is to drive the cavity and to create a strong
optical lattice trapping potential. To initiate the cooling
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FIG. 1: (color online) Schematic view of the experimental
setup. It consists of a resonantly driven atomic particle which
is externally confined in the node of an optical cavity. Its
motion is quantised in the direction of the cavity axis.

process, a laser field with Rabi frequency Ω should drive
the particle from the side.

In cavity-mediated laser cooling, the reduction in the
mean phonon number of the trapped particle is due to
the continuous conversion of phonons into cavity pho-
tons. These phonons are permanently lost from the sys-
tem when cavity photons leak out of the resonator. The
result is a reduction of the kinetic energy of the trapped
particle, ie. cooling. One of the roles of the atomic par-
ticle in the cooling process is to facilitate the phonon-
photon conversion which needs to be accompanied by
certain electronic transitions. The purpose of the ap-
plied laser field is to populate the atomic states which
are involved in this process. Calculations which go be-
yond the scope of this paper have already shown that
resonant laser driving of the atomic 0–1 transition sup-
ports the cooling process best. We therefore assume in
the following zero laser detuning.

As we shall see below, the stationary state phonon
number mss of the experimental setup in Fig. 1 ex-
hibits three sharp minima as a function of the atom-
cavity detuning δ. The corresponding atom-cavity reso-
nances have the same origin as the Mollow triplet in the
resonance fluorescence of a laser-driven atomic system
[29, 30]. For relatively small spontaneous decay rates,
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they are simply given by

δ0 ≡ ν and δ± ≡ ν ± Ω . (1)

Although the experimental setup which we consider here
has already been discussed in the literature [24, 27], the
cooling potential of all three resonances has not yet been
analysed in the literature. For a relatively wide range
of experimental parameters, the previously unconsidered
resonance δ = δ+ yields a lower stationary state phonon
number than the optimal detuning δ = ν of laser side-
band cooling [2]. Our calculations show that this cooling
resonance is especially then of interest, when the sponta-
neous cavity decay rate κ is relatively large or when the
phonon frequency ν is relatively small.

There are five sections in this paper. In Section II,
we introduce the master equations for the description of
the experimental setup shown in Fig. 1. We then use
this equation to obtain a closed set of rate equations,
ie. linear differential equations for the time evolution of
expectation values. These can be used to model the time
evolution of the mean phonon number m up to second
order in the Lamb-Dicke parameter η. Before doing so,
Section III uses a simple argument to identify the relevant
cooling and heating resonances. A detailed analysis of
the cooling process with analytical and numerical results
can be found in Section IV. Finally, we summarise our
findings in Section V.

II. THEORETICAL MODEL

Let us now have a closer look at the Hamiltonian of the
experimental setup shown in Fig. 1. In the usual dipole
and rotating wave approximation, it equals

H = ~ω0 σ+σ− + ~ν b†b + ~ωcav c†c

+~g sin
(

kcav · r
)

cσ+ + H.c.

+
1

2
~Ω σ+ e−iω0t + H.c. (2)

Here ~ω0, ~ν, and ~ωcav denote the energy difference
between the atomic ground state |0〉 and the excited state
|1〉, the free energy of a single phonon, and the free energy
of a cavity photon. Moreover, σ+ ≡ |1〉〈0| and σ− ≡
|0〉〈1|, while b and c are phonon and photon annihilation
operators with bosonic commutator relations,

[b, b†] = [c, c†] = 1 . (3)

The second line in Eq. (2) takes the atom-cavity interac-
tion at the position r of the trapped particle into account.
Here g is the atom-cavity coupling constant and kcav is
the wave vector of the cavity field. The third line de-
scribes the resonant driving of the particle with a laser
with Rabi frequency Ω and frequency ω0.

In this paper, we assume an external trap which con-
fines the motion of the particle in the direction of the
cavity axis. We denote the trap centre by R and the

displacement of the atom from the trap center by x such
that its position r is given by r = R + x. Considering
the center of mass motion of the trapped particle quan-
tised with the phonon annihilation operator b from above
yields

kcav · x = η(b + b†) . (4)

The Lamb-Dicke parameter η in this equation is a mea-
sure for the strength of the trapping potential. Usually,
one has

η ≪ 1 . (5)

For a wide range of particle positions r, the atom-phonon-
photon interaction is therefore only relatively weak. In
order to maximise it, we assume in the following that
R points at a node of the cavity field which implies
e−ikcav·R = ±1. Hence

sin
(

kcav · r
)

= ±η (b + b†) + O(η3) . (6)

Substituting this equation into Eq. (2) and going into the
interaction picture with respect to

H0 = ~ω0(σ
+σ− + c†c) , (7)

we obtain the time-independent interaction Hamiltonian

HI = ~ν b†b + ~δ c†c +
1

2
~Ω (σ− + σ+)

+~ηg (b + b†)(σ+c + σ−c†) + O(η3) (8)

in the usual Lamb-Dicke approximation. Here we ignored
the minus sign in Eq. (6), since this phase factor has no
real physical consequences [32].

The main difference between laser-sideband [1, 2] and
cavity-mediated laser cooling is that, in the latter case,
the atomic raising operator σ+ in the cooling Hamilto-
nian is replaced by the cavity photon creation operator
c†. Hence, the cooling efficiency depends strongly on the
spontaneous cavity decay rate κ and not only on the
spontaneous atom decay rate Γ. To model this, spon-
taneous photon emission is in the following taken into
account by the quantum optical master equation

ρ̇I = − i

~
[HI, ρI] +

1

2
κ

(

2cρIc
† − c†cρI − ρIc

†c
)

+
1

2
Γ

(

2σ−ρIσ
+ − σ+σ−ρI − ρIσ

+σ−
)

. (9)

In the following, we use this equation to analyse the cool-
ing process on a time scale proportional to η2. But before
doing so, let us have a closer look at the expected cooling
and heating resonances.

III. EXPECTED COOLING AND HEATING

RESONANCES

Phonons have no spontaneous decay rate. To initiate
the cooling process, it is therefore important to convert
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them into particles with a non-zero spontaneous decay
rate, like cavity photons. One of the roles of the atomic
particle is to facilitate this conversion. By changing its
electronic state, the atomic particle supports the conver-
sion of a phonon into a cavity photon. When the photon
subsequently leaks out of the cavity, a phonon is perma-
nently lost which implies cooling. In order to make the
cooling process as efficient as possible, the detunings of
the experimental setup in Fig. 1 should be adjusted such
that cooling transitions become resonant. Moreover, all
heating transitions should be as off-resonant as possible.
For the experimental setup which we consider here, this
means that at least some of the bc†-terms in the Hamil-
tonian need to be in resonance, while resonance of b†c†

terms should be avoided.
In order to identify the relevant cooling and heating

resonances and to get more insight into the dynamics
induced by the Hamiltonian HI, we now change into a
dressed state picture. To do so, we diagonalise the laser
driving term, ie. the atomic operator σx = σ− + σ+,
in Eq. (12). The eigenvalues and eigenvectors of σx are
λ± = ±1 and

|λ±〉 =
1√
2

(

|0〉 ± |1〉
)

, (10)

respectively. Using this notation, we find that

σ± =
1

2

(

|λ+〉〈λ+| − |λ−〉〈λ−| ± |λ+〉〈λ−| ∓ |λ−〉〈λ+|
)

.

(11)

Consequently, the Hamiltonian HI in Eq. (8) can be writ-
ten as

HI = ~ν b†b + ~δ c†c +
1

2
~Ω (|λ+〉〈λ+| − |λ−〉〈λ−|)

+
1

2
~ηg (b + b†)(c + c†)

(

|λ+〉〈λ+| − |λ−〉〈λ−|
)

,

+
1

2
~ηg (b + b†)(c − c†)

(

|λ+〉〈λ−| − H.c.
)

. (12)

To remove all the terms in the first line of this equation
from HI, we now go into a further interaction picture and
obtain the interaction Hamiltonian H̃I,

H̃I =
1

2
~ηg

[

e−i(δ+ν)t bc + e−i(δ−ν)t bc† + H.c.
]

×
(

|λ+〉〈λ+| − |λ−〉〈λ−|
)

+
1

2
~ηg

[

e−i(δ+ν)t bc − e−i(δ−ν)t bc† − H.c.
]

×
(

eiΩt |λ+〉〈λ−| − H.c.
)

. (13)

To assure that at least one of the bc† terms in the above
Hamiltonian becomes time-independent, the atom-cavity
detuning δ needs to equal one of the three detunings δ0

and δ± in Eq. (1). These three resonances are the three
cooling resonances of the cooling process which we con-
sider here.

Moreover, all heating terms, ie. all b†c† terms, should
oscillate rapidly in time. This means, the atom-cavity
detuning δ should stay away as far as possible from the
three detunings

µ0 ≡ −ν and µ± ≡ −ν ± Ω . (14)

These are the three heating resonances of the cooling pro-
cess. One can easily check that the distance between any
neighboring cooling or heating resonances equals the laser
Rabi frequency Ω, ie. |δ0 − δ±| and |µ0 − µ±|. The same
applies for the resonances of a laser-driven atomic two-
level system inside a quantised field [29]. This means, the
δ resonances in Eq. (1) and the µ resonances in Eq. (14),
respectively, form a so-called Mollow triplet.

IV. DETAILED ANALYSIS OF THE COOLING

PROCESS

The discussion in the previous section tells us for which
atom-cavity detunings we can expect relatively efficient
cooling of the trapped particle, as long as the sponta-
neous decay rates κ and Γ remain relatively small. To
learn more about the cooling process and to study the
effect of relatively large spontaneous decay rates, we now
analyse the above described cooling process in more de-
tail. To do so, we introduce a closed set of rate equations.
These are linear differential equations for the time evo-
lution of expectation values. Using the master equation
(9), one can show that the time evolution of the expecta-
tion value of an arbitrary operator AI in the interaction
picture is given by

〈ȦI〉 = − i

~
〈[AI, HI]〉 +

1

2
κ

〈

2c†AIc − AIc
†c − c†cAI

〉

+
1

2
Γ

〈

2σ+AIσ
− − AIσ

+σ− − σ+σ−AI

〉

. (15)

Here we are especially interested in the time evolution of
the mean phonon number

m ≡ 〈b†b〉 . (16)

Additional expectation values are taken into account in
order to obtain a closed set of rate equations which ac-
curately describe the experimental setup in Fig. 1 on a
time scale proportional to η2.

In the following, we assume that the atom-phonon-
photon interaction constant ηg is either much smaller
than the atom-cavity detuning δ, or much smaller than
the cavity decay rate κ, or much smaller than the phonon
frequency ν,

ηg ≪ δ, κ, or ν . (17)

As we shall see below, this condition guarantees that the
mean phonon number m evolves on a much slower time
scale than all other expectation values which are involved
in the cooling process. It guarantees that the time evolu-
tion of m is much slower than the inner dynamics of the
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atom-cavity-phonon system. No conditions, other than
Eq. (17), need to be imposed for the following calcula-
tions to apply.

A. The relevant expectation values

As we shall see below, in order to obtain a closed set
of cooling equations, including one for the time evolu-
tion of the mean phonon number m up to order η2, we
need to consider the expectation values of certain mixed
operators Xijk of the form

Xijk ≡ BiΣjCk (18)

with the B, Σ, and C operators defined such that

(B0,Σ0, C0) ≡ (1, 1, 1) ,

(B1,Σ1, C1) ≡ (b†b, σ+σ−, c†c) ,

(B2,Σ2, C2) ≡ (b + b†, σ− + σ+, c + c†) ,

(B3,Σ3, C3) ≡ i(b − b†, σ− − σ+, c − c†) ,

(B4, C4) ≡ (b2 + b†2, c2 + c†2) ,

(B5, C5) ≡ i(b2 − b†2, c2 − c†2) . (19)

Using these operators, the Hamiltonian HI in Eq. (8)
becomes

HI = ~ν B1 + ~δ C1 +
1

2
~Ω Σ2

+
1

2
~ηg B2(Σ2C2 + Σ3C3) . (20)

In the following, we use this representation of the Hamil-
tonian, since the X operators obey relatively simple com-
mutator relations.

Moreover, we denote their expectation values by

xijk ≡ 〈Xijk〉 . (21)

Since all the operators Xijk are Hermitian, the variables
xijk are all real. To distinguish terms in different orders
in η more easily, we adopt the notation

xijk ≡ x
(0)
ijk + x

(1)
ijk + ... (22)

throughout the remainder of this manuscript, while the
mean phonon number m is written as

m ≡ m(0) + m(1) + ... (23)

and so on. The superscripts indicate the scaling of the
contribution of the respective variable in η.

B. Time evolution in zeroth order in η

First we have a look at the η = 0 case. This means,
we assume that there is no coupling between phonon,

photon, and atomic states. Hence the cavity remains in
its vacuum state and

〈Ck〉(0) ≡ 0 (24)

for k = 1, ..., 5. Analogously, or by using Eqs. (15) and
(20), one can show that

ṁ(0) = 0 . (25)

This tells us that there is no cooling in zeroth order in η.
Moreover we find that

〈Ḃ2〉(0) = −ν 〈B3〉(0) , 〈Ḃ3〉(0) = ν 〈B2〉(0) ,

〈Ḃ4〉(0) = −2ν 〈B5〉(0) , 〈Ḃ5〉(0) = 2ν 〈B4〉(0) . (26)

When solving these rate equations, we find that the
phonon coherences 〈B2〉(0) to 〈B5〉(0) oscillate around
zero on time scales given by the phonon frequency ν.
When analysing the cavity-mediated cooling process on
a much longer time scale, the above phonon coherences
can be adiabatically eliminated from the system dynam-
ics. Setting their time derivatives in Eq. (26) equal to
zero yields

〈Bi〉(0) ≡ 0 (27)

with i = 2, ..., 5. Notice that we only use this equation
to analyse the cooling dynamics of our system. In this
case, Eq. (27) is well justified, since the effective cooling
rate γc of the experimental setup which we consider here
(see below) scales as η2.

After introducing the short hand notation zj ≡ 〈Σj〉(0)
for expectation values of the electronic states of the
trapped particle, one can show that

ż1 =
1

2
Ω z3 − Γ z1 , ż2 = −1

2
Γ z2 ,

ż3 = Ω(1 − 2z1) −
1

2
Γ z3 (28)

in zeroth order in η. These expectation values reach a
stationary state relatively quickly. When analysing pro-
cesses on the time scale given by the cooling rate γc, these
too can be adiabatically eliminated and approximated by
their stationary state solutions. Doing so, we find that

(z1, z2, z3) =

(

Ω2

Γ2 + 2Ω2
, 0,

2ΓΩ

Γ2 + 2Ω2

)

. (29)

Before using these results to derive an effective cooling
equation for the mean phonon number m, we notice that

x
(0)
ijk = 〈Bi〉(0)〈Σj〉(0)〈Ck〉(0) (30)

when η = 0, since all three subsystems evolve indepen-
dently in this case.
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C. Time evolution in first order in η

Let us now have a closer look at the differential equa-
tions which describe the time evolution of m and the
xijk’s in first order in η. Using Eqs. (15) and (20) we
find for example that

ṁ(1) =
1

2
ηg

(

x
(0)
322 + x

(0)
333

)

. (31)

Unfortunately, Eq. (30) implies x
(0)
322 = x

(0)
333 = 0 which

yields

ṁ(1) = 0 . (32)

As in other laser cooling schemes of atomic particles, the
mean phonon number m changes only on the very slow
time scale given by η2. As we shall see below, we obtain
a non-zero time derivative of m, when we calculate x322

and x333 up to first order in η. Therefore, we now have
a closer look at these expectation values.

Taking the results in Eqs. (24), (27), (29), and (30)
into account, one can show that

ẋ
(1)
202 = −ν x

(1)
302 − δ x

(1)
203 − ηg

(

1 + 2m(0)
)

z3 −
1

2
γ0 x

(1)
202 ,

ẋ
(1)
203 = −ν x

(1)
303 + δ x

(1)
202 + ηg

(

1 + 2m(0)
)

z2 −
1

2
γ0 x

(1)
203

ẋ
(1)
302 = ν x

(1)
202 − δ x

(1)
303 + ηg z2 −

1

2
γ0 x

(1)
302

ẋ
(1)
303 = ν x

(1)
203 + δ x

(1)
302 + ηg z3 −

1

2
γ0 x

(1)
303 , (33)

and

ẋ
(1)
212 = −ν x

(1)
312 − δ x

(1)
213 +

1

2
Ω x

(1)
232 −

1

2
γ2 x

(1)
212 ,

ẋ
(1)
213 = −ν x

(1)
313 + δ x

(1)
212 +

1

2
Ω x

(1)
233 −

1

2
γ2 x

(1)
213 ,

ẋ312 = ν x
(1)
212 − δ x

(1)
313 +

1

2
Ω x

(1)
332 −

1

2
γ2 x

(1)
312 ,

ẋ
(1)
313 = ν x

(1)
213 + δ x

(1)
312 +

1

2
Ω x

(1)
333 −

1

2
γ2 x

(1)
313 . (34)

Moreover, one can show that

ẋ
(1)
222 = −ν x

(1)
322 − δ x

(1)
223 −

1

2
γ1 x

(1)
222 ,

ẋ
(1)
223 = −ν x

(1)
323 + δ x

(1)
222 + 2ηg

(

1 + 2m(0)
)

z1 −
1

2
γ1 x

(1)
223 ,

ẋ
(1)
322 = ν x

(1)
222 − δ x

(1)
323 + 2ηg z1 −

1

2
γ1 x

(1)
322 ,

ẋ
(1)
323 = ν x

(1)
223 + δ x

(1)
322 −

1

2
γ1 x

(1)
323 , (35)

and

ẋ
(1)
232 = −ν x

(1)
332 − δ x

(1)
233 + Ω

(

x
(1)
202 − 2x

(1)
212

)

−2ηg
(

1 + 2m(0)
)

z1 −
1

2
γ1 x

(1)
232 ,

ẋ
(1)
233 = −ν x

(1)
333 + δ x

(1)
232 + Ω

(

x
(1)
203 − 2x

(1)
213

)

− 1

2
γ1 x

(1)
233 ,

ẋ
(1)
332 = ν x

(1)
232 − δ x

(1)
333 + Ω

(

x
(1)
302 − 2x

(1)
312

)

− 1

2
γ1 x

(1)
332 ,

ẋ
(1)
333 = ν x

(1)
233 + δ x

(1)
332 + Ω

(

x
(1)
303 − 2x

(1)
313

)

+ 2ηg z1

−1

2
γ1 x

(1)
333 . (36)

Here the effective spontaneous decay rates γn are defined
such that

γn ≡ κ + n Γ . (37)

As we shall see below (cf. Eq. (39)), these equations in-
deed constitute a closed set of rate equations when com-
bined with the differential equation for the time evolution
of the mean phonon number m in second order in η.

D. An effective cooling equation

The previous two subsections have shown that there
is no time evolution of the mean phonon number m in
zeroth and first order in η (cf. Eqs. (25) and (32)). Going
an order higher in η and using again Eqs. (15) and (20)
yields

ṁ(2) =
1

2
ηg

(

x
(1)
322 + x

(1)
333

)

. (38)

To calculate the x-coherences in this equation, we employ
condition (17). This condition allows us to calculate the

coherences x
(1)
ijk in Eqs. (33)–(36) via an adiabatic elimi-

nation. Doing so and setting for example the time deriva-

tives of the coherences x
(1)
ijk with j = 2 in Eq. (35) equal

to zero, we obtain an expression for x
(1)
322. To calculate

x
(1)
333, the remaining 12 rate equations have to be taken

into account. Setting them equal to zero and substituting

the resulting expressions for x
(1)
322 and x

(1)
333 into Eq. (38),

we finally find that
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ṁ(2) =
2η2g2Ω2

Γ2 + 2Ω2

{

γ1

γ2
1 + ξ2

+

+

(

γ0γ1γ2 + γ−1ξ
2
+

) (

γ2
2 + ξ2

+

)

+ 4Ω2
(

γ0γ
2
2 + γ4ξ

2
+

)

(

γ2
0 + ξ2

+

) [(

γ2
1 + ξ2

+

) (

γ2
2 + ξ2

+

)

+ 8Ω2
(

γ1γ2 − ξ2
+

)

+ 16Ω4
]

}

(

1 + m(0)
)

− 2η2g2Ω2

Γ2 + 2Ω2

{

γ1

γ2
1 + ξ2

−

+

(

γ0γ1γ2 + γ−1ξ
2
−

) (

γ2
2 + ξ2

−

)

+ 4Ω2
(

γ0γ
2
2 + γ4ξ

2
−

)

(

γ2
0 + ξ2

−

) [(

γ2
1 + ξ2

−

) (

γ2
2 + ξ2

−

)

+ 8Ω2
(

γ1γ2 − ξ2
−

)

+ 16Ω4
]

}

m(0) (39)

with the parameter ξ± defined as

ξ± ≡ 2(δ ± ν) (40)

and with the γn defined as in Eq. (37).
Setting the time derivative ṁ(2) in Eq. (39) equal to

zero yields an analytical expression for the stationary
state phonon number mss of the proposed cooling pro-
cess in zeroth order in η. Unfortunately, this expression is
relatively complex and looking at it does not yield much
insight into the considered cavity-mediated laser cooling
process. In the following, we therefore only notice that
the time evolution of the mean phonon number m is to a
very good approximation given by a differential equations
of the form

ṁ = −γc m + c , (41)

where γc is an effective cooling rate and where c is a
constant. Taking Eqs. (25) and (32) into account and
comparing Eq. (41) with Eq. (39) confirms that both γc

and c scale as η2. The comparison also yields analytical

expressions for γ
(2)
c and c(2). In the following, we discuss

the dependence of γ
(2)
c and of the stationary state phonon

number m
(0)
ss ,

m(0)
ss = c(2)/γ(2)

c , (42)

on the different experimental parameters of the atom-
cavity system in Fig. 1.

E. Confirmation of the expected cooling and

heating resonances

Before doing so, let us have a closer look at Eq. (39).
Suppose that the laser driving is so weak that all the Ω2

terms in Eq. (39) become negligible. In this case, we find
that

m(0)
ss =

κ2 + 4(δ − ν)2

16δν
. (43)

This stationary state phonon number is exactly the same
as mss for laser sideband cooling of a trapped particle
in free space [1, 2, 28] but with Γ replaced by κ. For
relatively small cavity decay rates κ, it assumes its min-
imum when δ = δ0 with δ0 defined as in Eq. (1). Look-
ing only at the case of weak laser driving, one might

indeed conclude that there is only a single cooling reso-
nance and a very close analogy between laser sideband
and cavity-mediated laser cooling. Instead, this paper
illustrates that atom-cavity-phonon systems can exhibit
a much richer inner dynamics than systems with only
atom-phonon interactions.

Another interesting parameter regime is the one where
Ω, ξ± ≫ κ ,Γ. In this case, Eq. (39) simplifies to

ṁ(2) = η2g2

{

γ1

ξ2
+

+
γ−1ξ

2
+ + 4γ4Ω

2

ξ4
+ − 8Ω2ξ2

+ + 16Ω4

}

(

1 + m(0)
)

−η2g2

{

γ1

ξ2
−

+
γ−1ξ

2
− + 4γ4Ω

2

ξ4
− − 8Ω2ξ2

− + 16Ω4

}

m(0) . (44)

The corresponding stationary state phonon number m
(0)
ss

equals zero when ξ2
− = 4Ω2, ie. when δ equals either

δ− or δ+ in Eq. (1). This simple analysis confirms the
presence of the two additional laser-Rabi frequency de-
pendent cooling resonances δ±. However, notice that
the above constraint ξ− ≫ κ ,Γ excludes the case where
δ = ν. Hence this simple calculation returns only two of
the three cooling resonances.

We now return to Eq. (39) and use it to calculate the

stationary state phonon number m
(0)
ss for the experimen-

tal setup in Fig. 1 for concrete experimental parameters.

Fig. 2 shows m
(0)
ss as a function of the atom-cavity de-

tuning δ for a relatively wide range of parameters. To
illustrate that the predictions in Section III apply, even
for relatively large spontaneous decay rates, we choose
κ and Γ to be of about the same order of magnitude as
the phonon frequency ν and the atom-cavity detuning δ.
For relatively large laser Rabi frequencies Ω, we indeed
observe three distinct cooling resonances with sharp lo-
cal minima of the stationary state phonon number mss.
These are the atom-cavity detunings δ0 and δ± which we
defined in Eq. (1). In contrast to this and in good agree-
ment with the discussion in Section III, the stationary

state phonon number m
(0)
ss increases significantly, when

δ approaches one of the three heating resonances µ0 and
µ± in Eq. (14). Only, when Ω becomes much smaller
than ν, then the cooling resonances and the heating res-
onances, respectively, become all the same. In this case,
cooling occurs only for δ = ν and extreme heating occurs
for δ = −ν.
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FIG. 2: (color online) Logarithmic plot of the stationary state

phonon number m
(0)
ss as a function of the atom-cavity detun-

ing δ for three different Rabi frequencies Ω and ν = Γ, while
κ = Γ (upper figure) and κ = 10Γ (lower figure). This figure

has been obtained from Eq. (39) by setting ṁ(2) equal to zero
and clearly illustrates the presence of the cooling and heating
resonances which we identified in Eqs. (1) and (14).

F. A comparison of the three cooling resonances

To find out how to best cool a trapped particle when
using the experimental setup in Fig. 1, we now compare

the stationary state phonon numbers m
(0)
ss and the effec-

tive cooling rates γ
(2)
c of the three cooling resonances δ0

and δ± with each other. When comparing the expressions

for ṁ(2) in Eqs. (39) and (41), we find that γ
(2)
c becomes

independent of η and g when dividing it by (ηg)2. The
following results therefore apply for any values of these
two parameters, as long as they fulfill the condition which
we specified in Eq. (17).

1. Dependence on the laser Rabi frequency

Fig. 3 shows the stationary state phonon number m
(0)
ss

and the cooling rate γ
(2)
c as a function of the laser Rabi

FIG. 3: (color online) Logarithmic plot of the stationary state

phonon number m
(0)
ss and the cooling rate γ

(2)
c as a function

of the laser Rabi frequency Ω, while ν = κ = Γ.

frequency Ω. As suggested by Eq. (39), we find that there
is no effective cooling, when the laser Rabi frequency Ω
becomes very small. In the limit Ω → 0, the cooling

rate γ
(2)
c tends for all three cooling resonances to zero.

Although the stationary state phonon number m
(0)
ss might

be relatively small, this case is of no interest, since the
stationary state is reached only after a very long time.

When Ω increases, also the cooling rate γ
(2)
c increases

rapidly. Naively one might expect that increasing the
laser Rabi frequency Ω further and further also increases
the cooling rate further. This is not the case. As shown
in Fig. 3, the cooling process saturates relatively quickly
and the stationary state phonon number remains more
or less constant for very large Ω.

When comparing all three cooling resonances, we see
that the atom-cavity detuning δ− yields the highest val-

ues of m
(0)
ss and is therefore of no practical interest. One

reason for this can be found in Eqs. (1) and (14). For
δ = δ−, there is always a heating resonance relatively
close by, which compensates some of the effects of the
resonant cooling transition. Another reason for the rel-

atively high values of m
(0)
ss for δ = δ− is that the ap-
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FIG. 4: (color online) Logarithmic plot of the stationary state

phonon number m
(0)
ss and the cooling rate γ

(2)
c as a function

of the phonon frequency ν for Ω = 3Γ and κ = Γ.

plied laser field creates a relatively large population in
the state |λ+〉 of the trapped particle, while the state
|λ−〉 remains less populated (cf. Eq. (29)). As one can
see from Eq. (13), for δ = δ−, the resonant annihilation
of a phonon and the creation of a cavity photon is accom-
panied by an atomic transition from the state |λ−〉 into
|λ+〉. When the average population in the state |λ−〉 is
relatively low, the atom is not well prepared to assist the
cooling process when δ = δ−.

In contrast to this, the system is in general well de-
tuned from all heating transitions, when the atom-cavity
detuning equals either δ0 or δ+. Moreover, for δ = δ+

and for δ = δ0, resonant cooling transitions are accom-
panied by a |λ+〉 → |λ−〉 and by a |0〉 → |1〉 or a |1〉 → |0〉
transition, respectively. Since the average population in
the state |λ+〉 and in the atomic states |0〉 and |1〉, re-
spectively, is relatively large (see again Eq. (29)), the
laser driving prepares the trapped particle well to facili-
tate the annihilation of a phonon and to assist the cooling
process when δ = δ+ or δ = δ0. Indeed, Fig. 3 shows that
the atom-cavity detuning δ+ yields the lowest stationary

state photon number m
(0)
ss for a relatively wide range of

laser Rabi frequencies Ω. For the concrete parameters in

FIG. 5: (color online) Logarithmic plot of the stationary state

phonon number m
(0)
ss and the cooling rate γ

(2)
c as a function

of the phonon frequency ν for Ω = 30Γ and κ = Γ.

Fig. 3, this applies when Ω lies roughly between 2 and
7 Γ. For larger values of Ω, we obtain the lowest station-
ary state phonon number when choosing δ = δ0 (sideband
cooling case).

2. Dependence on the phonon frequency

Let us now have a closer look at the dependence of the
cooling process on the phonon frequency ν. To do so,
we consider a relatively small and a relatively large value
of Ω, while keeping all other system parameters com-
parable to previous experimental parameters. As sug-
gested by Fig. 3, we choose Ω = 3 Γ (cf. Fig. 4) and
Ω = 30 Γ (cf. Fig. 5). In Fig. 5, we can easily identify
two phonon frequencies ν for which certain cooling reso-
nances (eg. δ−) becomes identical to one of the heating
resonances in Eq. (14). When this applies, the cooling

rate γ
(2)
c becomes very small (in some cases it even be-

comes negative which implies heating) and m
(0)
ss tends

to infinity. Moreover, in both figures, the atom-cavity
detuning δ− yields the highest stationary state phonon
numbers and is therefore of less practical interest than δ0
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FIG. 6: (color online) Logarithmic plot of the stationary state

phonon number m
(0)
ss and the cooling rate γ

(2)
c as a function

of the spontaneous cavity decay rate κ for Ω = 3Γ and ν = Γ.

and δ+. For relatively small phonon frequencies ν, the
lowest stationary state phonon number is achieved, when
the atom-cavity detuning equals δ+. For very strongly
confined particles, it is better to choose δ = δ0 (sideband
cooling case). As one would expect, we notice that higher
phonon frequencies allow to cool the trapped particle to
significantly lower temperatures.

3. Dependence on the spontaneous cavity decay rate

Finally, we discuss the dependence of m
(0)
ss and γ

(2)
c on

the spontaneous cavity decay rate κ. As in the previous
subsection, we choose Ω = 3 Γ (cf. Fig. 6) and Ω = 30 Γ
(cf. Fig. 7). For a relatively wide range of experimental
parameters, we find that the detuning δ+ yields the low-
est stationary state phonon number (cf. Figs. 6 and 7).
This is especially then the case, when the spontaneous
cavity decay rate κ is relatively large. Although this is
not illustrated here, we would like to add that the cool-
ing transitions become over-damped when κ becomes too
large. In this case, the cooling becomes very inefficient

and the stationary state phonon number m
(0)
ss increases

FIG. 7: (color online) Logarithmic plot of the stationary state

phonon number m
(0)
ss and the cooling rate γ

(2)
c as a function of

the spontaneous cavity decay rate κ for Ω = 30Γ and ν = Γ.

rapidly.

V. CONCLUSIONS

In this paper, we analyse cavity-mediated laser cooling
for an atomic particle with external confinement in the
direction of the cavity axis (cf. Fig. 1). The Hamiltonian
HI of this system contains an atom-phonon-photon in-
teraction term which gives rise to three sharp resonances
with a minimum stationary state phonon number. For
a wide range of experimental parameters, for example,
when the spontaneous cavity decay rate κ is relatively
large or when the phonon frequency ν is relatively small,
one should choose the atom-cavity detuning δ equal to
δ+ in Eq. (1) in order to minimise the stationary state
phonon number mss (cf. Figs. 3–7). This resonance de-
pends on the laser Rabi frequency Ω and is different from
the usually considered resonance δ0 for laser-sideband
cooling.

To obtain an effective cooling rate γc and an analyt-
ical expression for the stationary state phonon number
mss for the experimental setup which we consider in this
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paper (cf. Eq. (39)), we proceed as in Refs. [25, 26, 28].
Starting from the standard quantum optical master equa-
tion, we derive linear differential equations – so-called
rate or cooling equations – for the time evolution of ex-
pectation values. When taking a large enough number of
expectation values into account, we obtain a closed set of
equations, which can be used to analyse the time evolu-
tion of the mean phonon number m on a time scale given
by η2. The only assumption made in our calculations is
that the atom-cavity coupling constant g multiplied with
the Lamb-Dicke η is much smaller than at least one other
experimental parameters (cf. Eq. (17)). The condition
in Eq. (17) guarantees that the mean phonon number m
evolves on a much slower time scale than all the other rel-
evant expectation values and allows us to obtain Eq. (39)
via an adiabatic elimination.

Achieving very low stationary state phonon numbers
for a single trapped particle requires a relatively large
phonon frequency ν, while very large spontaneous decay

rates κ and Γ need to be avoided. Achieving relatively
large cooling rates moreover requires a relatively large
atom-cavity coupling constant g, since γc is proportional
to (ηg)2/Γ. To overcome this problem, it might be inter-
esting to study the cooling process of the experimental
setup in Fig. 1 when it contains many trapped particles
[33]. Using the same arguments as in Section III and
diagonalising the system Hamiltonian with respect to its
free energy and laser terms, one can show that many non-
interacting particles experience exactly the same Mol-
low triplet of heating and cooling resonances as a single
trapped particle.
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