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A master equation for a two-sided optical cavity
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Quantum optical systems, like trapped ions, are routinely described by master equations. The purpose of this paper
is to introduce a master equation for two-sided optical cavities with spontaneous photon emission. To do so, we use
the same notion of photons as in linear optics scattering theory and consider a continuum of travelling-wave cavity
photon modes. Our model predicts the same stationary state photon emission rates for the different sides of a laser-driven
optical cavity as classical theories. Moreover, it predicts the same time evolution of the total cavity photon number as the
standard standing-wave description in experiments with resonant and near-resonant laser driving. The proposed resonator
Hamiltonian can be used, for example, to analyse coherent cavity-fiber networks [E. Kyoseva et al., New J. Phys. 14,
023023 (2012)].
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1. Introduction

It is a mathematical fact that any function on a finite interval
can be written as a Fourier series. For example, any real-
valued function f (x) with x ∈ (0, d) can be expanded in a
series of exponentials,

f (x) =
∞∑

m=−∞
cm exp

(
im

2πx

d

)
, (1)

where the cm are complex coefficients with cm = c∗−m [1].
This is usually taken as the starting point when quantising
the electromagnetic field inside a perfect optical resonator
or inside a dielectric slab or a so-called open cavity [2–14].
Usually, a finite quantisation volume is considered and the
electromagnetic field observables are written as Fourier se-
ries of discrete sets of eigenfunctions. These eigenfunctions
are the basic solutions of Maxwell’s equations for the vector
potential of the electromagnetic field in Coulomb gauge.
The coefficients cm and c∗−m of these series are eventually
replaced by photon annihilation and creation operators cm

and c†
m , respectively. Subject to normalisation, the above-

described canonical quantisation procedure yields a har-
monic oscillator Hamiltonian of the form

Hcav =
∞∑

m=1

�ωm c†
mcm (2)

which sums over a discrete set of cavity frequencies ωm

(cf. Appendix 1 for more details). Equation (2) has been
probed successfully experimentally with the help of single
atoms passing through a resonator (cf. eg. Refs. [15–17]).
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Nevertheless, there is a problem. The standard
Hamiltonian Hcav cannot be used to analyse other rela-
tively straightforward experiments in a straightforward way.
For example, suppose a monochromatic laser field of fre-
quency ω0 drives a two-sided optical cavity from one side,
thereby populating its normal modes. Moreover, suppose
these modes are highly symmetric and couple equally well
to the free radiation field on the left and on the right side of
the resonator. Taking the above point of view, one expects
equal photon emission rates through both sides of the cavity.
But, this is not the case. Analysing a laser-driven optical
resonator, a so-called Fabry-Perot cavity, with Maxwell’s
equations shows that resonant laser light is transmitted
through the cavity with no reflected component (cf. eg.
Ref. [18] or Appendix 2). Off resonance, one part of the
incoming laser beam is transmitted, while the other part
is reflected. The corresponding transmission and reflection
rates Tcav and Rcav are in general different from each other.

Of course, the above problem has been noticed before
by other authors. Many different descriptions of the elec-
tromagnetic field between two mirrors exist in the liter-
ature. For example, taking a phenomenological approach,
Collett and Gardiner [19,20] introduced the so-called input-
output formalism. This formalism assumes a linear coupling
between the photon modes outside and the photon modes
inside the cavity and imposes boundary conditions for the
electric field amplitudes on the mirrors. In this way, it be-
comes possible to model the coherent scattering of light
through optical cavities in a way which is consistent with
Maxwell’s equations (cf. eg. Refs. [21,22]).
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In addition to the input-output formalism, there are sev-
eral modes-of-the-universe descriptions of optical cavities
[23–27]. These describe the electromagnetic field between
two mirrors in terms of the normal modes of a much larger
surrounding cavity, the universe. For example, Refs. [26,
27] apply a macroscopic quantisation procedure to obtain
a quasi-mode representation of the electromagnetic field.
Quasi-modes are non-orthogonal photon modes. Hence tun-
nelling between photon modes associated with the inside
and the outside of the resonator can occur, thereby allowing
for the leakage of photons through the cavity mirrors.

The purpose of this paper is to introduce an alterna-
tive model. In the following, we describe two-sided optical
cavities with spontaneous photon emission by a quantum
optical master equation. Master equations are routinely used
to model laser-driven atomic systems, like trapped ions.
As we shall see below, our approach is consistent with
classical theories. Whether the input-output formalism, uni-
verse models or quantum optical master equations describe
optical cavities most accurately eventually has to be decided
in the laboratory.

Before deriving our master equation, we notice that linear
optics scattering theory and cavity quantum electrodynam-
ics (QED) both employ different notions of photons. In
cavity QED, photons are the energy quanta of the discrete
modes of the electromagnetic field between two mirrors. In
contrast to this, linear optics scattering theory only uses
the term photon when referring to the energy quanta of
free radiation fields. Resonator mirrors are usually seen as
half-transparent mirrors which either transmit or reflect any
incoming photon without changing its frequency. Since the
mirrors affect their dynamics, the travelling-wave photons
are in general different from the energy quanta of the elec-
tromagnetic field between two mirrors.

In the following, we adopt the same notion of photons
as in scattering theory. This means, we no longer use the
mathematical argument sketched in Equation (1) to quantise
the electromagnetic field between two mirrors. Instead, we
allow for a continuum of travelling-wave cavity photon
modes. More concretely, we use the same Hilbert space
when modelling the electromagnetic field inside an optical
cavity and when modelling a free radiation field. In the
following, aA(ω) denotes the annihilation operator of a
photon with frequency ω. The index A = L, R helps to
distinguish between left and right moving photons. For sim-
plicity, we restrict ourselves to only one polarisation degree
of freedom. Photons in different (ω, A) modes are assumed
to be in pairwise orthogonal states. Taking this approach
makes it easy to guarantee that photons do not change their
frequency when travelling through a resonator. Moreover,
it allows us to assign different decay channels to photons
travelling in different directions. This approach also enables
us to assume that a laser which enters the cavity from the
left excites only photons travelling right, as it should. A

similar approach to optical cavities has recently been taken
by Dilley et al. [28].

The effect of the cavity mirrors is to convert photons trav-
elling left into photons travelling right and vice versa until
they eventually leak out of the resonator. This is then taken
into account by postulating a cavity Hamiltonian Hcav with
a coupling term that is known to be the generator of a unitary
operation associated with the scattering of photons through
beamsplitters and other linear optics elements [13,29–31].
Photons which are not in resonance with one of the cavity
frequencies ωm in Equation (2) consequently experience
level shifts. As pointed out by Glauber and Lewenstein [7],
photons and the energy quanta of an optical cavity seem to
differ by some “virtual" excitation. Only when the distance,
d , between the cavity mirrors tends to infinity, the coupling
between photons travelling in different directions vanishes
and our proposed cavity Hamiltonian simplifies to the usual
free-space Hamiltonian.

The master equation which we derive in this paper con-
tains two free parameters – a coupling rate J (ω) and a
spontaneous cavity decay rate κ . These can be chosen such
that our model predicts the same stationary state light emis-
sion rates through the left and the right cavity mirror as
Maxwell’s equations. As we shall see below, both param-
eters depend on the photon round trip time. In addition,
J (ω) depends on the amount of constructive and destruc-
tive interference within the cavity. The proposed master
equation also predicts the same time-evolution of the total
number of photons inside the cavity as the usual discrete-
mode description for experiments with resonant and near-
resonant laser driving. This means, the theory which we
present here does not contradict already existing cavity
QED experiments (cf. eg. Refs. [15–17]).

One advantage of the travelling-wave model which we
propose here is that it makes it easy to analyse the spon-
taneous emission of photons through the different sides of
an optical resonator or the scattering of photons through
cascaded cavities [32,33]. It can also be used to describe the
scattering of single photons through the fibre connections
of coherent cavity networks. As long ago as 1997, Cirac
et al. [34] proposed a quantum internet by connecting distant
optical cavities via very long optical fibres. In the mean time,
much effort has been made to realise such schemes in the
laboratory [35–37]. Alternatively, cavities could be linked
via fibre connections of intermediate length [38–42]. For
example, Kyoseva et al. [42] proposed to create coherent
cavity networks with very high or even complete connectiv-
ity by linking several cavities via linear optics elements and
optical fibres, which are about 1m long. Using the approach
which we propose here, it is relatively straightforward to
analyse such networks analytically.

There are five sections in this paper. Section 2 postu-
lates a travelling-wave Hamiltonian for two-sided optical
cavities and introduces the corresponding master equation.
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Section 3 uses this equation to calculate the stationary state
photon scattering rates through the left hand and the right
hand side of this experimental setup. Section 4 compares
both rates with the stationary state scattering behaviour
predicted by classical electrodynamics and obtains analyt-
ical expressions for the coupling constant J (ω) and the
spontaneous cavity decay rate κ . Section 4 moreover shows
that the standard description of optical cavities is consis-
tent with our model for resonant and near-resonant laser
driving. In case of an infinitely long cavity, the proposed
cavity Hamiltonian becomes the usually-assumed free field
Hamiltonian. Finally, we summarise our findings in Section
5. Appendix. 1 and 2 contain background material.

2. A travelling-wave cavity Hamiltonian

In this section, we introduce a travelling-wave description
of the electromagnetic field inside an optical cavity. For
simplicity, we consider a so-called Fabry-Pérot or two-sided
optical cavity (cf. Figure 1) which consists of a dielec-
tric slab of arbitrary length d and has a refractive index
n > 1. An external monochromatic laser field with fre-
quency ω0 drives the resonator from the left. The main
reason for considering this relatively simple experimental
setup is that its stationary state behaviour can be modelled
easily with the help of Maxwell’s equations (cf. eg. Ref. [18]
and Appendix 2), since absorption in the cavity mirrors
remains negligible. Moreover, only a single polarisation,
namely the polarisation of the applied laser field, needs to
be taken into account. The generalisation of our results to
arbitrary cavity designs is straightforward [44].

2.1. Cavity photons

In the following, we model the electromagnetic field in-
side a dielectric slab of a finite length d using the same
Hilbert space as when modelling an infinitely long slab.
More concretely, we consider a continuum of photon modes
with bosonic annihilation and creation operators aA(ω) and
a†

A(ω) with A = L, R and ω ∈ (0,∞). In the following,

d

Figure 1. Schematic view of the experimental setup which we
consider in this paper. It consists of a laser-driven resonator (a
dielectric slab) of length d . Detectors monitor the stationary state
photon emission rate through both cavity mirrors.

we associate the corresponding photons with left- and right-
moving modes of frequency ω. Photons in different modes
are in general in pairwise orthogonal states. Annihilation
and creation operators consequently obey the commutator
relation

[aA(ω), a†
A′(ω′)] = δA,A′ δ(ω − ω′) (3)

with A, A′ = L, R. The Hilbert space for the description of
the dielectric slab in Figure 1 contains all the states which
are generated when applying the above photon creation
operators to the vacuum state. However, different from an
infinitely long dielectric slab, these photon modes exist only
inside the cavity.

Taking the same philosophy as linear optics scattering
theory, the cavity mirrors become semi-transparent mirrors
which transmit and reflect any incoming photon without
changing its frequency. This frequency conservation sug-
gests that a photon in the aR(ω)-mode either remains in this
mode or changes into the aL(ω)-mode. This is in the fol-
lowing taken into account by writing the total Hamiltonian
for the electromagnetic field inside the dielectric slab as

Hcav = Hfield + Hcoup, (4)

where Hfield is the harmonic oscillator Hamiltonian

Hfield =
∑

A=L,R

∫ ∞

0
dω �ω a†

A(ω)aA(ω) (5)

which describes the free energy of the photons inside the
resonator. Moreover, the coupling Hamiltonian

Hcoup = 1

2

∫ ∞

0
dω �J (ω) a†

L(ω)aR(ω) + H.c. (6)

describes the continuous conversion of photons travelling
left into photons travelling right and vice versa with the
(real) conversion rate J (ω).

The form of the above Hamiltonian might seem surpris-
ing, since it is usually assumed that a photon of frequency
ω has the energy �ω. However, this applies only to the free
field Hamiltonian Hfield in Equation (5). When diagonalis-
ing Hcav in Equation (4), we find that

Hcav =
∫ ∞

0
dω

(
�ω + 1

2
�J (ω)

)
a†
+(ω)a+(ω)

+
(

�ω − 1

2
�J (ω)

)
a†
−(ω)a−(ω), (7)

where the a±,

a± ≡ 1√
2

(aL ± aR) , (8)

denote standing-wave photon annihilation and creation op-
erators. This means, the energy quanta of the electromag-
netic field inside an optical cavity are its standing-wave
photons. In the presence of the cavity mirrors, these standing
wave photons can experience significant level shifts.
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2.2. Laser driving

We now turn our attention to the experimental setup illus-
trated in Figure 1. In the presence of an external laser field,
its Hamiltonian can be written as

H = Hcav + Hlaser (9)

with the first term being the cavity Hamiltonian in Equa-
tion (4) and with the second term taking the external laser
driving into account. As in Appendix 1, we treat the laser
field classically. In addition, we assume that a laser which
drives the cavity with frequency ω0 from the left only ex-
cites photons which are of the same frequency and which
move to the right. The interaction Hamiltonian for the cou-
pling of laser light (from the left) into the cavity hence
equals

Hlaser = 1

2
�� e−iω0t aR(ω0) + H.c. (10)

in the Schrödinger picture. Notice that this Hamiltonian is
the result of the presence of a laser field inside the cavity.
The laser Rabi frequency � in Equation (10) is, therefore,
a direct measure for the laser amplitude inside (but not
outside) the resonator.1

As long as only a single laser field with frequency ω0 is
applied, only photons in the aL(ω0) and in the aR(ω0) mode
become populated eventually. All other photon modes can
be ignored. Ignoring in addition the frequency dependence
of constants and operators, when it is obvious, and intro-
ducing the interaction picture with respect to

H0 =
∑

A=L,R

�ω0 a†
AaA, (11)

the Hamiltonian H in Equation (9) simplifies to the inter-
action Hamiltonian

HI = 1

2
��

(
aR + a†

R

)
+ 1

2
�J

(
a†

LaR + H.c.
)

. (12)

We now have a time-independent Hamiltonian to describe
a laser-driven two-sided optical cavity.

2.3. Cavity leakage

In order to take the possible leakage of photons through
the resonator mirrors into account, we add a system-bath
interaction term to the above Hamiltonian and then trace
out the bath-degrees of freedom on a coarse grained time
scale �t [3]. Since we distinguish between left and right
moving photons, it is now straightforward to assign different
decay channels to photons travelling in different directions.
Cavity photons in the aR-mode leave the cavity through
the right mirror. Analogously, photons in the aL-mode only
leak out through the left mirror. In the following, we denote
the corresponding spontaneous decay rate by κ . This decay
rate is the same for left and right moving photons due to the
symmetry of the experimental setup in Figure 1.

If we describe the system in Figure 1 by a density matrix
ρI, then the corresponding left and right photon emission
rates IA are given by

IA = κ Tr
(

a†
AaAρI

)
(13)

with A = R, L. In other words, the photon emission proba-
bility density is the mean number of photons in the aA-mode
multiplied with κ . The quantum optical master equation of
Lindblad form which reflects this emission behaviour is
given by

ρ̇I = − i

�
[HI, ρI] +

∑
A=L,R

1

2
κ

(
2aAρIa

†
A

− a†
AaAρI − ρIa

†
AaA

)
. (14)

In the following, we use this equation to analyse the dy-
namics of the laser-driven optical cavity.

3. The time evolution of photon number expectation
values

In this section, we calculate the stationary state photon
emission rates I ss

L and I ss
R through the left and the right

cavity mirror, respectively. The sum of these is the total
photon emission rate

I ss
Tot ≡ I ss

L + I ss
R . (15)

To calculate these rates, we use rate equations, ie. linear
differential equation which describe the time evolution of
expectation values.

3.1. Time evolution of expectation values

To obtain the relevant rate equations, we notice that the
above master equation can be used to show that the ex-
pectation value 〈AI〉 of an observable AI in the interaction
picture evolves according to the differential equation

〈 ȦI〉 = − i

�
〈[AI, HI]〉 +

∑
A=L,R

1

2
κ 〈2a†

A AIaA

− AIa
†
AaA − a†

AaA AI〉. (16)

To find a closed set of rate equations, including equations
for the time evolution of the mean photon number in the aL
and in the aR mode, respectively, we need to consider the
expectation values

nL ≡ 〈a†
LaL〉, nR ≡ 〈a†

RaR〉,
k1 ≡ 〈aL + a†

L〉, k2 ≡ i〈aR − a†
R〉,

k3 ≡ i〈aLa†
R − a†

LaR〉. (17)

These five variables evolve according to the linear differ-
ential equations

ṅL = 1

2
Jk3 − κnL,
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ṅR = 1

2
�k2 − 1

2
Jk3 − κnR,

k̇1 = −1

2
Jk2 − 1

2
κk1,

k̇2 = � + 1

2
Jk1 − 1

2
κk2,

k̇3 = −�k1 − J (nL − nR) − κk3 (18)

which form a closed set.

3.2. Photon scattering rates

Using Equation (13), one can now show that the photon
emission rate IA with A = L, R is simply given by

IA = κnA. (19)

Proceeding as in Appendix 1 and setting all time derivatives
equal to zero, we obtain the stationary state photon numbers

nss
L = �2 J 2

(
J 2 + κ2

)2
, nss

R = �2κ2

(
J 2 + κ2

)2
. (20)

Substituting these into Equation (19) yields different sta-
tionary state photon emission rates for the different sides of
a laser-driven resonator,

I ss
L = �2 J 2κ(

J 2 + κ2
)2

, I ss
R = �2κ3

(
J 2 + κ2

)2
. (21)

The total stationary state photon emission rate I ss
Tot in Equa-

tion (15) hence equals

I ss
Tot = �2κ

J 2 + κ2
. (22)

One can easily check that ITot = κnTot with nTot ≡ nL+nR.
This means the total emission rate depends only on the total
cavity photon number, as it should.

3.3. Time evolution without laser driving

Before we compare the above photon emission rates with
the predictions of classical electrodynamics, we consider
the case when there is no external laser driving. When � =
0, then one can show that the time derivative of the total
number of cavity photons nTot equals

ṅTot = −κnTot (23)

without any approximations (cf. Eq. (18)).

4. Consistency of quantum and classical models

In the following, we compare the above predictions of a
quantum-optical master equation with the predictions of
classical scattering theory in Appendix 2 to find out, how
the spontaneous cavity decay rate κ and the photon coupling
rate J depend on the frequency ω of the respective photon
modes, the length of the dielectric slab d , and its refractive
index n. As we shall see below, κ and J are both a function

of the photon round trip time. In addition, the coupling rate
J depends on the amount of constructive and destructive
interference within the cavity. This section also discusses
the consistency of the derived master equation for a two-
sided optical cavity with alternative quantum optics models.
It is shown that for near resonant laser driving, our model
predicts exactly the same dynamics for the total number of
photons inside the cavity as the standard single-mode de-
scription and is, therefore, in good agreement with existing
quantum optics experiments [15–17].

4.1. Consistency with classical electrodynamics

Below we list two conditions which guarantee the consis-
tency between our travelling-wave master equation and the
predictions of classical electrodynamics (cf.
Appendix 2):

(1) In the case of no laser driving, both models should
predict the same relative flux of energy out of the
cavity. Using the same notation as in Sections B.2
and 3.3, this condition applies when

İ (t)

I (t)
= ṅ(t)

n(t)
. (24)

(2) In the case of laser driving, the stationary state
photon emission rates I ss

L and I ss
R should have the

same dependence on ω0, d , and n as the classical
cavity reflection and transmission rates Rcav(ω0)

and Tcav(ω0). More concretely, we want that

I ss
L

I ss
Tot

= Rcav(ω0),
I ss

R

I ss
Tot

= Tcav(ω0). (25)

The ratios on the right-hand sides of these equa-
tions should not depend on the laser Rabi frequency
�, since there is no � in the classical model.

In the following, we use the above conditions to deter-
mine the two constants κ and J which we introduced in
Section 2.

For example, substituting Equations (B.12) and (23) into
Equation (24), we find that the energy-flux equality condi-
tion applies when

κ = − 2c

nd
ln r. (26)

In this equation, r is the Fresnel coefficient in Equation (B.3)
for the reflection of photons from the dielectric back into
the dielectric. The logarithm of r guarantees that κ = 0 for
r = 1. This means, for perfectly reflecting mirrors, light
stays forever inside the cavity. When r → 0, then κ → ∞,
and there is effectively no cavity.

To obtain an explicit expression for the coupling rate
J , we now have a closer look at Condition 2. Combining
Equations (21) and (22), one can easily show that
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I ss
L

I ss
Tot

= J 2

J 2 + κ2
,

I ss
R

I ss
Tot

= κ2

J 2 + κ2
. (27)

Comparing these two equations with Equation (B.8), and
using the above result for κ , we find that

J (ω0) = 4c

nd
· r ln r

1 − r2
sin

(
ω0

nd

c

)
(28)

up to an overall phase factor. The coupling rate J contains
an interference term, which implies that photons of certain
frequencies are more likely to be reflected by the cavity
mirrors than others. For example, for resonant laser light,
i.e. for a laser with an ω0 which is equal to one of the
frequencies ωm in Equation (A2), the photon coupling rate
J (ω0) becomes zero. This means, our model correctly pre-
dicts that resonant light does not get reflected within the
cavity.

Finally, let us consider the special case of highly reflect-
ing cavity mirrors. In this case, the Fresnel coefficient r is
very close to one. Hence

− 2 ln r = 1 − r2 (29)

to a very good approximation and Equations (26) and (28)
simplify to

κ = c

nd
(1 − r2),

J (ω0) = −2rc

nd
sin

(
ω0

nd

c

)
. (30)

The spontaneous decay rate κ of a two-sided optical cavity
and the photon coupling rate J depend only on the relative
resonator length d , its refractive index n, and the frequency
ω0 of the incoming light.

4.2. Consistency with the standard single-mode descrip-
tion for near-resonant laser driving

The previous subsection shows that the constants J and κ of
our travelling-wave master equation for a two-sided optical
cavity can be adjusted such that it is consistent with the
predictions of classical electrodynamics. However, there is
already a well-established standing-wave model for optical
cavities with external laser driving (cf. Appendix 1 for more
details). The purpose of this subsection is to show that
our model is moreover consistent with the predictions of
this model, at least for resonant and for near-resonant laser
driving. This means, our travelling-wave cavity Hamilto-
nian does not contradict already existing quantum optics
experiments which probe the field inside an optical cavity
with the help of atomic systems (cf. eg. Ref. [15–17]).

4.2.1. Resonant cavities

When the laser is on resonance, ie. whenω0 equals one of the
frequencies ωm in Equation (A2), then J in Equation (28)
becomes zero,

J (ω0) = 0. (31)

This means, there is effectively no coupling between left
and right travelling photons due to interference effects. For
example, nL remains zero, when the laser field populates
only right moving photon modes. Using Equation (18), one
can indeed show that

ṅL = −κnL (32)

in this case. Under these conditions, there is a relatively
simple closed set of rate equations which describe the time
evolution of nR. Equation (18) shows that

ṅR = 1

2
�k2 − κnR,

k̇2 = � − 1

2
κk2 (33)

without any approximations. Consequently, the stationary
state photon emission rates I ss

L , I ss
R , and I ss

Tot are given by

I ss
L = 0 and I ss

R = I ss
Tot = �2

κ
. (34)

This means, the total stationary state photon emission rate
I ss
Tot is exactly the same as the one we obtain when using

the quantum optical standard standing-wave description in
Appendix 1. We only need to identify the single-mode pho-
ton number n with nR and set the detuning � in
Equation (A13) equal to zero.

4.2.2. Near-resonant cavities

As we shall see below, the standard single-mode description
of optical cavities also holds to a very good approximation
for near-resonant laser driving, if we are only interested
in the time evolution of the total cavity photon number
nTot. To do so, we notice that the photon coupling rate J
in Equation (30) for near-resonant laser driving is to a very
good approximation given by

J = −2�, (35)

as long as the cavity mirrors are highly-reflecting and the
Fresnel coefficient r is close to unity. Here, � equals the
detuning �m in Equation (A5) of the applied laser field from
the nearest cavity resonance ωm .

Taking this and Equation (18) into account, we, more-
over, notice that a closed set of rate equations for the time
evolution of nTot is given by

ṅTot = 1

2
�k2 − κnTot,

k̇1 = −�k2 − 1

2
κk1,

k̇2 = � + �k1 − 1

2
κk2. (36)

These equations are exactly the same as the rate equations
in Equation (A11), if we replace the single-mode photon
number n by the total photon number nTot of the model
which we propose in this paper. In other words, the single
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mode description in Appendix 1 correctly predicts the total
photon emission rate I ss

Tot of a laser-driven optical cavity. In
agreement with Equation (A13), it equals

I ss
Tot = �2κ

4�2 + κ2
(37)

which is a Lorentzian function of �. However, the stan-
dard standing wave description of optical cavities cannot
predict the stationary state photon emissions rate through
the different sides of two-sided cavities. In contrast to this,
our standing-wave description of optical cavities (cf. Equa-
tion (21)) predicts that

I ss
L = 4�2�2κ(

4�2 + κ2
)2

, I ss
R = �2κ3

(
4�2 + κ2

)2
(38)

for near-resonant laser driving.

4.2.3. The free radiation field

Finally, let us have a closer look at the case where the
distance d of the cavity mirrors tends to infinity. From
Equations (26) and (28), we immediately see that

κ = J (ω0) = 0 (39)

in this case. This is exactly as one would expect. If the
resonator is infinitely long, then its photons remain inside
forever and never change their direction. One can easily
check that J ≡ 0 reduces the cavity Hamiltonian Hcav in
Equation (4) to the free field Hamiltonian Hfield in Equa-
tion (5), by construction.

5. Conclusions

There is a close analogy between excited atomic systems
and excited optical cavities. In both cases, a detector placed
some distance away from the source registers spontaneously
emitted photons. Like atoms, optical cavities have a spon-
taneous decay rate, which is usually denoted by κ . Atomic
systems with spontaneous photon emission are routinely
described by quantum optical master equations. The main
result of this paper is the justification of such a master equa-
tion for a laser-driven two-sided optical cavity, which allows
us to distinguish between photons leaking out through the
left and through the right side of the resonator. To obtain
such a master equation, we postulate the cavity Hamiltonian
Hcav in Equation (4). It allows us to assign different decay
channels to photons travelling in different directions and
guarantees that photons do not change their frequency when
travelling through a cavity.

The cavity Hamiltonian Hcav needs to be postulated such
that its predictions are consistent with those of classical
physics, whenever both theories apply. To justify its valid-
ity, we therefore apply it to a situation which can also be
analysed by taking a fully classical approach. We assume
that a two-sided optical cavity is driven by a monochro-
matic laser field with frequency ω0 (cf. Figure 1). We then

calculate the intensity of the transmitted and of the reflected
light using either classical electrodynamics (cf.Appendix 2)
or a quantum optical master equation which derives from
Equation (4). Both models are shown to yield the same sta-
tionary state reflection and transmission rates, if we choose
the cavity decay rate κ and the photon coupling rate J as
suggested in Equations (26) and (28).

The cavity Hamiltonian Hcav in Equation (4) acts on a
distinct, large Hilbert space with a continuum of photon
frequencies ω, which is usually only considered when mod-
elling free radiation fields. As in free space, we distinguish
left and right moving modes. In this way, we find that it
becomes possible to assume that a laser field which enters
the setup from the left excites only photons travelling right,
as it should. The cavity decay rate κ for the leakage of
photons through either side of the cavity depends, as one
would expect, on the refractive index n and the length d
of the dielectric slab (cf. Equation (26)). The effect of the
cavity mirrors is to change the direction of photons inside
the resonator. They convert left into right moving photons
and vice versa. The corresponding photon coupling rate J
in Equation (28) depends, like κ , on n and d but also on
the laser frequency ω0, thereby accounting for the amount
of constructive and destructive interference within the res-
onator.

As predicted by Maxwell’s equations, there is no conver-
sion of photons when the cavity is resonantly driven by an
applied laser field. In this case, J in Equation (28) becomes
zero. For near resonant laser driving, J becomes identical
to −2� with � being the respective laser detuning. In this
case one can show that the total cavity photon number nTot
evolves in the same way as the photon number n in the
usually assumed single-mode standing-wave description of
optical cavities (cf. Appendix 1). This means, the cavity
theory which we propose here does not contradict current
cavity QED experiments which probe the electromagnetic
field inside an optical resonator with the help of atomic
systems (cf. eg. Refs. [15–17]). But now that a new cavity
Hamiltonian is established, it can be used to describe phys-
ical scenarios which are beyond the scope of classical elec-
trodynamics. For example, the proposed master equation
can be used to describe cascaded cavities [32,33] and the
scattering of single photons through the fibre connections
of coherent cavity networks with and without complete
connectivity [42].

Our approach might be criticised for being phenomeno-
logical instead of deriving its equations via a rigorous field
quantisation method, like macroscopic QED. The same crit-
icism has previously been applied to the input-output for-
malism.Awealth of work has been done to reconcile various
cavity QED theories (cf. eg. Refs. [11,14,43]). However,
macroscopic QED still contains several ad-hoc assump-
tions. It is not as rigorous as it might appear, since quantum
physics does not tell us, which Hilbert space to choose, how
to define photons in a gauge-independent way, and how to
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implement boundary conditions. For example, in this paper,
we implement boundary conditions by choosing constants
such that the stationary state of the laser-driven two-sided
cavity is consistent with Maxwell’s equations. But we do
not restrict the Hilbert space in which photons live. More
experiments are needed to decide which theory describes
optical cavities most accurately.
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Note

1. This is different from the input-output formalism, where the
laser Rabi frequency � is a measure for the laser amplitude
outside the cavity.
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Appendix 1. Predictions of the standard standing-wave
cavity Hamiltonian
In this appendix, we review the standard standing-wave descrip-
tion of the electromagnetic field between two mirrors and examine
some of its predictions. As we shall see below, this model is
only well suited for the description of certain aspects of the time
evolution of the total number of photons inside an optical cavity
and applies only for resonant or near-resonant laser driving.

A.1. The cavity-laser Hamiltonian
In the standard model, the Hamiltonian of the experimental setup
in Figure 1 is of the general form

H = Hcav + Hlaser . (A1)

The first term describes the free energy of the electromagnetic
field inside the resonator. The second term takes the external laser
driving into account. When quantising the electromagnetic field
in the way of most textbooks, one derives at the assumption that
the field only contains standing-wave photon modes of frequency
ωm with

ωm = mπ
c

nd
, (A2)

where m is a positive integer, c is the speed of light, n is the
refractive index of the medium inside the cavity, and d is the
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distance of the resonator mirrors. If cm is the corresponding pho-
ton annihilation operator, Hcav simply equals the Hamiltonian in
Equation (2). The laser field is usually treated as a classical field.
Denoting its Rabi frequencies by �n and its frequency by ω0, the
laser Hamiltonian equals

Hlaser =
∞∑

m=1

1

2
��m e−iω0t cm + H.c. (A3)

This Hamiltonian arises from a spatial overlap of the classical
driving field and the quantised field in the vicinity of the cavity
mirrors.

When changing into the interaction picture with respect to the
free Hamiltonian H0 = ∑∞

m=1 �ω0 c†
mcm and after applying the

usual rotating-wave approximation, we obtain the time-independent
interaction Hamiltonian

HI =
∞∑

m=1

1

2
��m

(
cm + c†

m

)
+ ��m c†

mcm (A4)

with the cavity-laser detuning �m defined such that

�m ≡ ωm − ω0. (A5)

For simplicity, we assume in the following that the frequency ω0
is relatively close to only one of cavity resonance frequencies ωm .
Then only one of the cavity modes has to be taken into account
and HI simplifies to

HI = ��
(

c + c†
)

+ �� c†c , (A6)

after neglecting the respective index m for operators and constants.
This Hamiltonian is often used in the literature when describing a
laser-driven optical cavity. However, notice that this model does
not distinguish whether the laser drives the cavity from the left or
from the right. Here the laser simply excites a single standing-wave
photon mode.

A.2. The corresponding master equation
The spontaneous leakage of photons through the cavity mirrors is
in the following taken into account via the usual quantum-optical
master equation

ρ̇I = − i

�
[HI, ρI] + 1

2
κ

(
2cρIc

† − c†cρI − ρIc
†c

)
, (A7)

where κ is the cavity decay rate and ρI denotes the density matrix
of the quantised cavity field. This equation can be derived by
coupling the c-mode to a continuum of free radiation field modes
outside the cavity, letting the system evolve over a short time �t ,
and tracing out the free radiation field to mimic the effects of a
photon-absorbing environment. Using the above standing-wave
description, it is not possible to assign different decay channels to
photons travelling in different directions.

A.3. Time evolution of expectation values
The most straightforward way of calculating the intensity of the
emitted light is to adopt a rate equation approach. Taking into
account that the expectation value of any observable AI in the
interaction picture equals 〈AI〉 = Tr(AIρI), we find that

〈 ȦI〉 = − i

�
〈[AI, HI]〉 − 1

2
κ 〈AIc

†c + c†cAI − 2c† AIc〉 .

(A8)

Here we are especially interested in the time evolution of the mean
photon number n,

n ≡ 〈c†c〉. (A9)

In order to obtain a closed set of rate equations, including one for
n, we also need to consider the expectation values

k1 ≡ 〈c + c†〉, k2 ≡ i〈c − c†〉. (A10)

Using Equation (A8), one can then show that n, k1, and k2 evolve
according to the linear differential equations

ṅ = 1

2
�k2 − κn,

k̇1 = −�k2 − 1

2
κk1,

k̇2 = � + �k1 − 1

2
κk2. (A11)

A.4. Stationary state photon emission rate
To obtain expressions for the stationary state of the laser-driven
resonator, we simply set the time derivatives in Equation (A11)
equal to zero. Doing so, we find for example that the stationary
state cavity photon number nss equals

nss = �2

4�2 + κ2
. (A12)

The corresponding stationary state photon emission rate equals
I ss = κnss which implies

I ss = �2κ

4�2 + κ2
. (A13)

As we shall see in Section 4.2, this emission rate describes the
leakage of photons through the left and the right cavity mirror.

Appendix 2. Predictions of classical scattering theory
Consider the experimental setup in Figure 1 of a dielectric slab
of width d and refractive index n. If we assume normal incidence
and consider the idealized case, where we can ignore diffraction,
we can treat the system as one-dimensional. In the following, we
denote the permittivity of the dielectric slab by ε(x) such that

ε(x) =
{

n2 ∈ (0, d)
1 elsewhere.

(B.1)

Here the mirror surfaces are placed at x = 0 and x = d . More-
over, μ(x) is the permeability of the dielectrics. For simplicity we
assume in the following μ(x) ≡ 1.

B.1. Continuous laser driving
Suppose monochromatic laser light with frequency ω0 and wave
vector k0 = ω0/c enters the Fabry-Pérot cavity in Figure 1. One
can then use the standard Fresnel coefficients for radiation incident
from a vacuum region upon a dielectric of refractive index n,

r ′ = 1 − n

1 + n
and t ′ = 2

1 + n
, (B.2)

and those for the same physical situation but with the incident
wave from the other direction,

r = n − 1

n + 1
and t = 2n

n + 1
, (B.3)
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Figure B1. Transmission rate Tcav(ω0) in Equation (B.8) of a
Fabry-Pérot cavity which is driven by monochromatic light of
frequency ω0 for the refractive index n = 3 (dashed line) and
n = 20 (solid line). (The colour version of this figure is included
in the online version of the journal.)

to write the relative amplitude of the electric field which leaves
the cavity after having travelled m times across as

ET(x, m) = t ′rm−1 eimk0nd t. (B.4)

Here x = 0, when m is even and x = d , when m is odd, since light
that is ultimately reflected back into the direction of the incoming
laser beam has even m and light that is transmitted has odd m. The
above equation takes into account that the electric field amplitude
accumulates a phase factor eink0d every time it propagates the
length d of the cavity.

The electric field of the reflected light also has a contribution of
r ′ from the component of the light that does not enter the cavity.
The total reflection and transmission coefficients of the Fabry-
Pérot cavity for normal incidence are therefore given by

rcav(ω0) = r ′ +
∑

m even
ET(0, m),

tcav(ω0) =
∑

m odd

ET(d, m) (B.5)

which implies

rcav(ω0) = r ′ + t ′
∑

m even
rm−1 eimk0nd t ,

tcav(ω0) = t ′
∑

m odd

rm−1 eimk0nd t . (B.6)

When calculating these geometric series, we obtain

rcav(ω0) = r
e2ik0nd − 1

1 − r2 e2ik0nd
,

tcav(ω0) = 1 − r2

1 − r2 e2ik0nd
eik0nd . (B.7)

The overall cavity reflection and transmission rates Rcav(ω0) and
Tcav(ω0) are given by the modulus squared of the corresponding
relative amplitudes. Hence Rcav(ω0) = |rcav|2 and Tcav(ω0) =
|tcav|2 which implies

Rcav(ω0) = F sin2(k0nd)

1 + F sin2(k0nd)
,

Tcav(ω0) = 1

1 + F sin2(k0nd)
(B.8)

with r as in Equation (B.3). The factor

F = 4r2

(1 − r2)2
(B.9)

is known as the finesse of the cavity.
Figure B1 illustrates the dependence of the relative amplitude

of the transmitted light on its frequency ω0 and on the refractive
index n.As it should, we find that laser light with a frequency equal
to one of the cavity resonance frequencies ωm in Equation (A2)
does not get reflected by the cavity. This means, resonant light
travels through the resonator, as if it were not there. In general,
we find that the larger the refractive index n, the more the light
is affected by the dielectric. For relatively large n, there is almost
complete reflection for some frequencies ω0. For n close to 1,
travelling through the dielectric is almost like travelling through
the vacuum.

B.2. Time evolution without laser driving
Suppose no external laser field is applied and a single wave packet
bounces back and forth inside the two-sided cavity which is shown
in Figure 1. This wave packet is a superposition of plane waves.
Again, we assume that all waves in the packet experience the same
refractive index n, so that all parts of the wave packet travel with
the same speed. After m bounces, the intensity of the wave at a
fixed frequency ω0 equals

I (tm) = r2(m−1) I (0), (B.10)

where I (0) is the initial intensity of the wave and

tm ≡ m
nd

c
(B.11)

is the time it takes a wave packet to bounce m times through a
medium of length d and with refractive index n. To simplify a
later comparison with the predictions of a quantum model, we
notice that the intensity

I (t) = r2ct/nd I (0) (B.12)

assumes exactly the same value as I (tm) for t = tm .
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