

This is a repository copy of Rising temperatures reduce global wheat production.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/85540/

Version: Accepted Version

Article:

Asseng, S, Ewert, F, Martre, P et al. (50 more authors) (2015) Rising temperatures reduce global wheat production. Nature Climate Change, 5 (2). pp. 143-147. ISSN 1758-678X

https://doi.org/10.1038/nclimate2470

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	Supplementary Materials
2	
3	Rising temperatures reduce global wheat production
4	S. Asseng, F. Ewert, P. Martre, R.P. Rötter, D.B. Lobell, D. Cammarano, B.A. Kimball, M.J. Ottman, G.W.
5	Wall, J.W. White, M.P. Reynolds, P.D. Alderman, P.V.V. Prasad, P.K. Aggarwal, J. Anothai, B. Basso, C.
6	Biernath, A.J. Challinor, G. De Sanctis, J. Doltra, E. Fereres, M. Garcia-Vila, S. Gayler, G. Hoogenboom,
7	L.A. Hunt, R.C. Izaurralde, M. Jabloun, C.D. Jones, K.C. Kersebaum, AK. Koehler, C. Müller, S. Naresh
8	Kumar, C. Nendel, G. O'Leary, J. E. Olesen, T. Palosuo, E. Priesack, E. Eyshi Rezaei, A.C. Ruane, M.A.
9	Semenov, I. Shcherbak, C. Stöckle, P. Stratonovitch, T. Streck, I. Supit, F. Tao, P. Thorburn, K. Waha, E.
10	Wang, D. Wallach, J. Wolf, Z. Zhao, and Y. Zhu
11	Correspondance to: sasseng@ufl.edu
12	
13	
14	This PDF file includes:
15	Supplementary Materials and Methods
16	Supplementary Results
17	Supplementary Figures S1 to S17
18	Supplementary Lables S1 to S5 Supplementary Appendix Table SA1
20	Supponentary Appendix Table SAT

22 Supplementary Materials and Methods

Thirty wheat crop models, including 29 deterministic process-based simulation models and one statistical model, (Supplementary Table S1 and S2) were compared within the Agricultural Model Intercomparison and Improvement Project¹ (AgMIP; <u>www.agmip.org</u>), with two data sets from quality-assessed field experiments (sentinel site data).

27

28 Hot-Serial-Cereal (HSC)

- 29 One site was the Hot-Serial-Cereal (HSC) experiment with time-of-sowing and artificial infrared heating
- 30 treatments under field conditions using cv Yecora Rojo, characterized by low to no vernalization
- requirements and photoperiod sensetivity^{2, 3}. Individual field replicates were used from^{2, 3} for the simulations
- 32 which were previously not publicly available (therefore called a "blind" analysis).
- 33 All experiments were well watered and fertilized with temperature being the most important variable. A
- 34 model inter-comparison was carried out using standardized protocols and several steps of calibration.
- 35

Supplementary Table S1. Crop models (30) used in AgMIP Wheat study.

Model (version)	Reference	Documentation
APSIM-E	4-6	http://www.apsim.info/Wiki/
APSIM-Nwheat (V.1.55)	4, 7, 8	http://www.apsim.info
APSIM-Wheat (V.7.3)	4	http://www.apsim.info/Wiki/
AQUACROP (V.4.0)	9	http://www.fao.org/nr/water/aquacrop.html
CropSyst (V.3.04.08)	10	http://www.bsyse.wsu.edu/CS_Suite/CropSyst/index.html
DAISY (V.5.18)	11, 12	https://code.google.com/p/daisy-model/
DSSAT- CERES (V.4.0.1.0)	13-15	http://www.icasa.net/dssat/
DSSAT-CROPSIM (V4.5.1.013)	14, 16	http://www.icasa.net/dssat/
EPIC (V1102)	17-19	http://epicapex.brc.tamus.edu/
Expert-N (V3.0.10) - CERES (V2.0)	20-23	http://www.helmholtz-muenchen.de/en/iboe/expertn/
Expert-N (V3.0.10) – GECROS (V1.0)	22, 23	http://www.helmholtz-muenchen.de/en/iboe/expertn/

Expert-N (V3.0.10) – SPASS (2.0)	20, 22-25	http://www.helmholtz-muenchen.de/en/iboe/expertn/
Expert-N (V3.0.10) - SUCROS (V2)	20, 22, 23, 26	http://www.helmholtz-muenchen.de/en/iboe/expertn/
FASSET (V.2.0)	27, 28	http://www.fasset.dk
GLAM (V.2)	29, 30	http://www.see.leeds.ac.uk/research/icas/climate-impacts-group/research/glam/
HERMES (V.4.26)	31, 32	http://www.zalf.de/en/forschung/institute/Isa/forschung/oekomod/hermes
INFOCROP (V.1)	33	http://www.iari.res.in
LINTUL (V.1)	34, 35	http://models.pps.wur.nl/models
LOBELL	36	Request from dlobell@stanford.edu
LPJmL (V3.2)	37-42	http://www.pik-potsdam.de/research/projects/lpjweb
MCWLA-Wheat (V.2.0)	43-46	Request from taofl@igsnrr.ac.cn
MONICA (V.1.0)	47	http://monica.agrosystem-models.com
OLEARY (V.7)	48-51	Request from gjoleary@yahoo.com
SALUS (V.1.0)	52, 53	http://www.salusmodel.net
SIMPLACE (V.1)	54	Request from frank.ewert@uni-bonn.de
SIRIUS (V2010)	55-58	http://www.rothamsted.ac.uk/mas-models/sirius.php
SiriusQuality (V.2.0)	59-61	http://www1.clermont.inra.fr/siriusquality/
STICS (V.1.1)	62, 63	http://www.avignon.inra.fr/agroclim_stics_eng/
WHEATGROW	64-70	Request from yanzhu@njau.edu.cn
WOFOST (V.7.1)	71	http://www.wofost.wur.nl

Model	Phenology	Vernalization	Light Utilization	Respiration	Leaf growth	Canopy temperature	Senescence	Grain set	Grain growth	Grain N Uptake	Root growth	Cold Hardening
APSIM-E	Am	Am	Am	-	Am	-	An, Sm	-	Am	Am	Am	-
APSIM- Nwheat	Am	Am	Am	-	Am	-	Am, Ae, Af	Am	Am	Am	Sm	-
APSIM-wheat	Am	Am, Ax, An	Am	-	Am	-	Am, Af	Am	Am	Am	Sm	-
AQUACROP	Am	-	-	-	Am^1	-	Am	Ax, An	Am	-	Am	-
CropSyst	Am	Am	Am	-	-	Cm	Am, Ae, Af	Ah	-	-	-	Ah
DAISY	Sm, Am	Am	Am	Am	Am	-	-	Am	Am	Am	Sm	-
DSSAT-CERES	Am	Am	Am	-	Am	-	Am	Am	Am	Am	Am	-
DSSAT- CROPSIM	Am	Am	Am	-	Am	-	Am	Am	Am	Am	Sm	-
EPIC	Am	-	Am	Am	Am	-	Am, An	-	Am	Am	Sm	-
Expert-N – CERES	Cm, Ae, Af	Ax, Cm, An	Ax, An	-	Am	Ax, An	-	-	Ax, Am, An	Ax, Am, An	Cm	-
Expert-N – GECROS	Cx, Cn	Ax, An	Cx, Cn	Am	-	Ax, An	-	-	-	-	-	-
Expert-N – SPASS	Ax, An	Ax, An	Ax, An	Am	-	-	Am	-	-	Am	Sm	-
Expert-N – SUCROS	Ax, An	-	Ax, An	Am	-	-	Am	-	-	-	Ax, An	-
FASSET	Am	Am	Am	-	Am	-	Am	Am	Am	Am	Sm	
GLAM	Am	-	-	-	-	-	Ax	Am	-	-	-	-
HERMES	Am	Am	Am	Am	-	-	Am	-	Am	-	Am	-
INFOCROP	Ah ²	-	Am	-	Ah ³	-	Am, Af	Ax, An	Am ⁴	Am^4	-	-
LINTUL	Am	-	Am, An	-	-	-	Am	-	-	-	-	-
LOBELL	-	-	-	-	-	-	-	-	-	-	-	-
LPJmL	Am	Am	Am	Am, Sm	Am	Am	Am	_5	_5	-	Am ⁶	-
MCWLA- Wheat	Am	Am	Am	Am	Am	-	Am, Ae	Am, Ae	Am	-	Am	-

39 Supplementary Table S2. Consideration of temperature in wheat simulation models (For details see Alderman et al.⁷²).

MONICA	Sm, Am	Am	Am	Ax, An	-	-	Am	-	-	-	Am	-
OLEARY	Am	-	Am	-	-		Am	-	Am	-	Am	-
SALUS	Am	Am	Am	-	Am	-	Am, Ae, Af	Am	Am	Am	Sm	-
SIMPLACE	Am	Am	-	-	Am	-	Am	Ax, Ae	-	-	-	-
SIRIUS	Ah, Ch, Sh	Sh	Ah	-	Ah, Ch, Sh	Ah	Ah, Ch	Ch	Ch	Ch	Sh	-
SirusQuality	Sm, Cm	Sm, Cm	Cm	-	Cm	Cm	Cm	Cm	Cm	Cm	Am	-
STICS	Cm	Cm	Cm	-	Cm		Cm, Cf	Cm	Cx, Cn, Ce			-
WHEATGROW	Am	Am	Am	Am	Am	-	Am, Ae	Am	Am	Am	Am	
WOFOST	Am	-	Am	Am	Am	-	Am	-	Am	-	Am	-

Temperature:

A – Air

C – Canopy

S – Soil

Suffix:

m – daily mean

x – daily maximum

n – daily minimum

h – hourly

e – daily extreme maximum (>34 °C)

 $f - daily frost (< 2^{\circ}C)$

¹Canopy growth; ²Ah is interpolated from daily minimum and maximum temperatures; ³for initial growth and later dependent on biomass growth; ⁴also biomass
 dependent; ⁵The processes of grain set and growth is not modeled but only the carbon pool for the storage organs which is affected by air temperature; ⁶Temperature
 effects on the equilibrium evapotranspiration rate affect water stress (the ratio between calculations of atmospheric water demand and crop water supply), and thus plant
 root growth.

44

46 CIMMYT data

The second set was the International Heat Stress Genotype Experiment (IHSGE) carried out by
CIMMYT that included seven temperature environments, including time-of-sowing treatments⁷³.
These experimental data were also not publicly available and could therefore be used in a blind
test.

51 The International Heat Stress Genotype Experiment was a 4-year collaboration between CIMMYT and key national agricultural research system partners to identify important 52 physiological traits that have value as predictors of yield at high temperatures ⁷³. Experimental 53 54 locations were selected based on a classification of temperature and humidity during the wheat 55 growing cycle. "Hot" and "very hot" locations were defined as having mean temperatures above 17.5 and 22.5°C, respectively, during the coolest month. "Dry" and "Humid" locations were 56 57 defined as having mean vapor pressure deficits above and below 1.0 kPa, respectively. The present study used data from seven of the original 12 locations to represent a range of 58 59 temperatures (locations are included in Table S3). At Obregon and Tlaltizapan, Mexico normal and late sowing dates were used to provide contrasting temperature regimes at the same location. 60 Of the sixteen genotypes originally included in the experiment, two were selected for the present 61 study (cv Bacanora 88 and Nesser), which had low photoperiod sensitivity and low vernalization 62 requirements. These two cultivars were selected for their low photoperiod sensitivity and low 63 vernalization requirements to be comparable with the low to no vernalization requirements and 64 photoperiod sensitivity of cv Yecora Rojo in the HSC experiment. Variables measured in the 65 experiment included plants/m², biomass at 50% anthesis, days to 50% anthesis, days to 66 physiological maturity, final biomass, grain yield, spikes/m², grains/spike, and kernel weight at 67 68 maturity. Maturity dates for the late sown treatments for both cultivars at Tlaltizapan, Mexico were not available and therefore calculated using the average growing degree days from anthesis 69 70 to maturity of all other treatments as an estimate.

All experiments were well watered and fertilized with temperature being the most important variable. Model inter-comparison was carried out using standardized protocols and one step of calibration. All sowing dates, anthesis and maturity dates, soil type characteristics and weather data were supplied to the modelers to simulate the CIMMYT experiments, but all other measurements were held back (blind).

77 Simulation outputs

- 78 The total-growing-season simulation outputs included: grain yield (t/ha), grains/ m^2 , kernel
- 79 weight, above-ground biomass at maturity (t/ha), anthesis date and maturity date.

80

81 Data analysis

82 The root mean square relative error (RMSRE) between observed and simulated yield is

83 calculated as:

84
$$\text{RMSRE}_{m} = 100 \times \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{y_{i} - \hat{y}_{m,i}}{y_{i}}\right)^{2}}$$
 (1)

where y_i is the observed value of the *i*th measured treatment, $\hat{y}_{m,i}$ is the corresponding value simulated by model *m*, and *N* is the total number of treatments.

87 The coefficient of variation (CV%) of *x* represents the variation between models, calculated as:

88
$$CV\% = \frac{\sigma}{x} * 100$$
 (2)

89 where σ is the standard deviation of the variable (x), e.g. across models and \bar{x} is their average.

90 The relative grain yield change in Fig. 1g and 3b was calculated as:

91
$$r_{k} = \frac{\bar{y}_{future,k} - \bar{y}_{baseline,k}}{\bar{y}_{baseline,k}} * 100$$
(3)

The box and whisker plots show the distributions. The horizontal line in each box represents the median response, the box delimits the 25th to 75th percentiles, and the whiskers extend from the 10th to the 90th percentile (Standard method). The Standard method uses a linear interpolation to determine the percentile values using the following approach; the data are sorted in increasing order from $x_1, x_2, ..., x_n$, then a parameter *i* is calculated as:

97
$$i = \frac{N*p_i}{100} + 0.5$$
 (4)

where *N* is the total number of observations and p_i is a given percentile value. If the value of *i* is an integer then the corresponding data point x_i is the percentile. k is the largest integer less than i, and f=i-k.

101 The percentile value (*v*) is then calculated as:

102
$$v = f * x_{k+1} + (1 - f) * x_k$$
 (5)

We calculated the variability of yield due to year, model or location in the global impact assessment. Consider variability due to year (an equivalent procedure was used for variability due to model and location). First, we calculated the standard deviation of yield over years, for each combination of model and location, giving 900 standard deviations:

107
$$\sigma_{i,j}^{(Year)} = \sqrt{\operatorname{var}(Y \mid M_i, L_j)} \quad i = 1, ..., 30 \quad j = 1, ..., 30 \quad (6)$$

108 where Y is yield and the notation $Y | M_i, L_j$ means yield for model M_i and location L_j . There 109 are 30 values of $Y | M_i, L_j$ for each M_i and L_j since there are 30 years. The standard deviation 110 above is the standard deviation over the 30 years. We then normalized those standard deviations 111 by dividing by overall average yield, \overline{Y} , giving 900 coefficients of variation:

112
$$CV(\%)_{i,j}^{(Year)} = \frac{\sigma_{i,j}^{(Year)}}{\overline{Y}} * 100 \ i = 1,...,30 \ j = 1,...,30$$
(7)

113 The box plots in Figure 3a for each temperature represent those 900 CV values.

114

115 Calibration steps for each model for HSC experiment

116 The simulations were carried out by individual modelers in a 'blind' test (individual replicates

117 were previously not publicly available (therefore called a "blind" analysis)) following AgMIP

118 protocols¹. Modelers had access to phenology and yield information of one treatment only (a

treatment in the normal temperature range). Modelers could use this information to calibrate the

cultivar (cv. Yecora for HSC experiment). For all other treatments, phenology, growth, LAI,
yield and yield components were not made available. All presented simulations were carried out
with these calibrated simulations. Only in a special exercise summarized in Table S4 and Figure
S4, different levels of information was made available to analyze the impact of information
availability on the model simulation results. Four steps with different levels of available
information for model calibrations were carried out. Note, cultivar Yecora Rojo was used in all
treatments in the HSC experiment for this special analysis.

127 A- Blind test: without calibration (modelers were supplied with daily weather data, crop

management, qualitative information on cultivar (rating of photoperiod sensitivity and

vernalization requirements), anthesis date and maturity date for one normal sowing date

130 treatment).

131 B- Blind test with calibrated phenology: In addition to "A", anthesis and maturity dates were

supplied for all treatments to allow phenology calibration for the single cultivar used across alltreatments.

C- Blind test with fixed phenology: Modelers were asked to fix their simulations to observed
phenology across all treatments (i.e. simulated phenology errors were excluded).

136 D- Blind test with calibrated highest yield (normal temperature range): In addition to "A" and

137 "B", yield data for one treatment (normal temperature range with highest yield treatment was

supplied. Models were allowed to be calibrated against yield data from one treatment only.

Blind test with calibrated highest yield (step D) was also applied to the CIMMYT data for each

140 of the two cultivars. Models were allowed to be calibrated against anthesis and maturity dates

141 and yield data from one treatment per cultivar only.

The individual model changes for each of these steps are shown in Supplementary AppendixTable SA1.

144

146 *Climate series*

- 147 Historical climate data were drawn from the AgCFSR climate dataset
- 148 (<u>http://data.giss.nasa.gov/impacts/agmipcf/</u>). AgCFSR combines retrospective analyses, gridded
- 149 meteorological station datasets, and remotely-sensed radiation and precipitation information to
- 150 form a coherent daily time series with all variables needed for agricultural modeling. 1981-2010
- temperature trends in AgCFSR are a manifestation of the gridded meteorological station datasets
- to which monthly values are pegged, and may therefore have slight positive or negative biases
- due to inconsistencies in station coverage and data availability over the period analyzed. The +2
- and +4 °C scenarios were created by adjusting each day's maximum and minimum temperatures
- upward by that amount and then adjusting vapor pressures and related parameters to maintain the
- 156 original relative humidity at the maximum temperature time of day.
- 157

158 *Calculation of seasonal mean temperature*

159 Seasonal mean air temperature used in Figure 1 was calculated from daily air temperature (T_t) ,

which was derived from the sum of eight contributions of a cosine variation between maximum
and minimum daily air temperatures⁷⁴.

162
$$T_{t} = \frac{1}{8} \sum_{r=1}^{r=8} (T_{h} - T_{b})$$
(8)

163 with

164
$$T_{\rm h}(r) = T_{\rm min} + f_r (T_{\rm max} - T_{\rm min})$$
 (9)

165 and

166
$$f_r = \frac{1}{2} \left(1 + \cos \frac{90}{8} (2r - 1) \right)$$
(10)

where r is an index for a particular 3-h period, $T_{\rm b}$ (°C) is the base temperature (0°C) and $T_{\rm h}$

168 (°C) is the calculated three hour temperature contribution to estimated daily mean temperature.

169 Negative contributions of $T_{\rm h}$ were treated as zero.

170

171 Global temperature impact assessment

Thirty locations from key wheat growing regions in the world, including the field experimental 172 sites of the CIMMYT experiment, were used for a global temperature impact assessment (Table 173 S3). These 30 locations were chosen from representative wheat growing regions with irrigated or 174 high rainfall wheat (simulated with no water or N limitations) representing about 70% of current 175 global wheat production⁷⁵. To carry out the global temperature impact assessment, with 176 exclusive focus on temperature, region-specific cultivars were used. Observed local mean 177 sowing, anthesis and maturity dates were supplied with qualitative information on vernalization 178 179 requirements and photoperiod sensitivity for each cultivar and modelers were asked to sow at the supplied sowing dates and calibrate their cultivar parameters against the observed anthesis and 180 maturity dates by considering the qualitative information on vernalization requirements and 181 photoperiod sensitivity. All model simulations were executed by the individual modeling groups. 182

183

184 Impact of temperature trend

Temperature trends (growing season mean temperature) were calculated based on 30 years
(1981-2010; Fig. S1) for each of the 30 global locations (Table S3, Fig. S1). The first eight
locations in Table S3 are identical to the experimental locations of the HSC and the CIMMYT
experiments. The reminder 22 locations were strategically chosen to represent irrigation and
high-rainfall regions of main wheat producing regions.

For the yield trend calculation, the 30-model ensemble median yield for each year was used to calculate the linear yield trend across the 30 years per location. The yield trend per year (slope of linear regression) was multiplied by 10 for a yield trend per decade, and expressed as a percentchange by dividing the trend by the mean yield across the 30-year period and multiplying by

194 100.

Supplementary Fig. S1. Measured growing season mean temperatures from 1981-2010 for each of the
30 global locations (Table S3) with linear trend line.

Disaggregating global temperature increase to regional temperature changes and extrapolating
to global wheat production

200

Local grain yield impacts were expressed as an impact per ^oC local temperature change based on 201 the +2°C impact simulations. Global temperature increase (mean global temperature change) was 202 203 disaggregated to regional temperature changes (Table S3, last column) via Figure 12-10 from the IPCC 2013 WG1 Report⁷⁶ as local temperature changes can be different to the global mean 204 temperature change⁷⁶ (Table S3). The disaggregated local temperature changes per ^oC global 205 206 mean temperature was then used to calculate the local temperature impact on grain yield and 207 expressed as "grain yield impact per °C global mean temperature change". The global wheat production impact was calculated using the following steps: 208 1) calculating the relative simulated mean yield impact for +2 °C of the 30 years (1981-2010) per 209 single model at each location, 210 2) calculating the absolute regional production loss per single model by multiplying the relative 211 212 yield loss from this model with the production represented at each location (using FAO country wheat production statistics of 2012 (www.fao.org)) and by multiplying with the specific local 213 214 temperature factor twice from Table S3 [to account for the temperature impact from the simulations being for +2 $^{\circ}$ C and the local factor being for +1 $^{\circ}$ C globally in Table S3]; this 215 assumes that the selected simulated location is representative for the entire wheat growing region 216 surrounding this location, 217 218 3) adding up all regional production losses to the total global loss per single model, 219 4) calculating the relative change in global production (global production loss divided by current global production) and then dividing this by two (to normalize the simulated +2 $^{\circ}$ C impact to an 220 impact per +1 °C change) per single model and 221 5) calculating the median, 25 and 75% tile relative global yield impact from the 30 model 222 223 ensemble. When using a different order of steps by first calculating the multi-model median before 224 225 aggregating to global production loss, the median global impact is the same in both approaches (-

6.0%). However, in the former approach used here, the 25 and 75% tiles are closer to the median

- 227 (-4.2% and -8.2% compared to -3.2% and -9.2% global production loss for 25 and 75% tiles in
- the latter mentioned approach, respectively).
- 229
- 230 Supplementary Table S3a. Locations, cultivars, growing season temperatures and local temperature
- changes per 1 °C of global temperature increase from key wheat growing locations in irrigated and high
- rainfall regions.

ID	Location	Country	Cultivar	Latitude	Longitude	Growin	g Season ⁻	Temperature	
#	-	-	Name	Degree	Degree	Max	Min	Average	Delta⁺
1	Maricopa	USA	Yecora	33.06	-112.05	23.6	7.6	15.6	1.375
2	Obregon	Mexico	Tacupeto	27.33	-109.9	29.9	11.6	20.7	1.125
3	Toluca*	Mexico	Tacupeto	19.40	-99.68	21.2	7.5	14.4	1.125
4	Londrina	Brazil	Attila	-23.10	-51.13	25.6	14.1	19.9	1.125
5	Aswan	Egypt	Seri82	-24.10	32.90	29.4	13.1	21.3	1.375
6	Wad Medani	Sudan	Debeira	14.40	33.50	35.0	17.1	26.1	1.375
7	Dharwar	India	Debeira	15.43	75.12	30.6	18.2	24.4	1.000
8	Dinajpur	Bangladesh	Kanchan	25.65	88.68	27.9	14.6	21.2	1.125
9	Wageningen	The Netherlands	Aminda	51.97	5.63	13.9	5.6	9.8	1.125
10	Balcarce	Argentina	Oasis	-37.75	-58.30	20.3	7.8	14.0	0.875
11	Ludhiana	India	HD2687	30.90	75.85	25.9	10.9	18.4	1.125
12	Indore	India	HI1544	22.72	75.86	30.3	14.3	22.3	1.125
13	Madison	Wisconsin, USA	Brigadier	43.93	-89.40	12.8	1.7	7.3	1.625
14	Manhattan	Kansas, USA	Fuller	39.14	-96.63	17.9	5.2	11.5	1.375
15	Rothamsted	UK	Avalon	51.82	-0.37	13.4	5.8	9.6	0.625
16	Estrées-Mons	NE France	Bermude	49.88	3.00	13.1	5.9	9.5	1.125
17	Orleans	Central France	Apache	47.83	1.91	14.4	5.8	10.1	1.125
18	Schleswig	Germany	Dekan	54.53	9.55	11.0	4.8	7.9	1.125
19	Nanjing	China	NM13	32.03	118.48	16.7	8.3	12.5	1.125
20	Luancheng	China	SM15	37.53	114.41	15.7	4.7	10.2	1.375
21	Harbin	China	LM26	45.45	126.46	22.1	10.8	16.5	1.375
22	Kojonup	Australia	Wyall	-33.84	117.15	18.5	7.0	12.7	0.875
23	Griffith	Australia	Avocet	-34.17	146.03	20.6	7.4	14.0	1.125
24	Karaj	Iran	Pishtaz	35.91	50.90	14.7	3.6	9.1	1.125
25	Faisalabad	Pakistan	Faisalabad	31.42	73.12	26.5	11.8	19.1	1.375
26	Karagandy	Kazakhstan	Steklov	50.17	72.74	18.9	5.7	12.3	1.375
27	Krasnodar	Russia	Brigadier	45.02	38.95	15.3	7.3	11.3	1.125
28	Poltava	Ukraine	Brigadier	49.37	33.17	11.6	3.3	7.5	1.125
29	Izmir	Turkey	Basri	38.60	27.06	17.9	8.3	13.1	1.125
30	Lethbridge	Canada	ACR	49.79	-112.83	11.7	-1.0	5.3	1.125

233 *The CIMMYT experimental site used in the model-observation comparison for location #3 was Tlaltizapan, Mexico (Lat 19.68; Lon -99.12,

growing season mean temperature for maximum = 33.4 °C, minimum = 19.9 °C and average = 26.6 °C, about 100km north-east of Tuluca)

235 outside any wheat growing regions. Therefore, Tuluca, Mexico was chosen for the global impact study, as a location in a wheat growing area.

236 *Local temperature delta per location for each degree of global temperature increase after Figure 12-10 from the IPCC 2013 WG1 Report⁷⁶.

238 Supplementary Table S3b. Locations, cultivars, sowing date, anthesis date and maturity date from key

spring and winter wheat growing locations in irrigated and high rainfall regions.

ID	Location	Country	Cultivar	Sowing date	Mean 50%- anthesis date (+/- 1 week)	Mean physiological maturity (+/- 1 week)
1	Maricopa	USA	Yecora, SW, no/low vernalization requirement, no/low photoperiod sensitive	25 Dec	5 Apr	15 May
2	Obregon	Mexico	Tacupeto C2001 SW, low vernalization requirement, low photoperiod sensitive	1 Dec	15 Feb	30 Apr
3	Toluca	Mexico	Tacupeto C2001 SW, low vernalization requirement, low photoperiod sensitive	10 May	5 Aug	20 Sep
4	Londrina	Brazil	Atilla SW, low-medium vernalization requirement, low-medium photoperiod sensitive	20 Apr	10 Jul	1 Sep
5	Aswan	Egypt	Seri M 82 SW, low-medium vernalization requirement, low photoperiod sensitive	20 Nov	20 Mar	30 Apr
6	Wad Medani	Sudan	Debeira SW, low/ moderate vernalization requirement, low	20 Nov	25 Jan	25 Feb
7	Dharwar	India	Debeira SW, low/moderate vernalization requirement, low	25 Oct	15 Jan	25 Feb
8	Dinajpur	Bangla- desh	Kanchan SW, low vernalization requirement, low photoperiod sensitive	1 Dec	15 Feb	15 Mar
9	Wageningen	The Nether- lands	Aminda, WW, high vernalization requirement, high photoperiod sensitive	5 Nov	25 Jun	5 Aug
10	Balcarce	Argentina	Oasis, WW, high/moderate vernalization requirement, high/moderate photoperiod sensitive	5 Aug	25 Nov	25 Dec
11	Ludhiana	India	HD 2687 SW, no/low vernalization requirement, low /no	15 Nov	5 Feb	5 Apr

12	Indore	India	photoperiod sensitive HI 1544 SW, no/low vernalization	25 Oct	25 Jan	25 Mar
13	Madison	Wisconsin, USA	requirement, low /no photoperiod sensitive Brigadier WW, high vernalization requirement, high	15 Sep	15 Jun	30 Jul
14	Manhattan	Kansas, USA	photoperiod sensitive Fuller Medium vernalization, medium photoperiod	01 Oct	15 May	01 Jul
15	Rothamsted	UK	sensitivity Avalon	15 Oct	10 Jun	20 Aug
	/		WW vernalization requirement moderate/low daylength photoperiod sensitive			
16	Estrées-Mons	NE France	Bermude WW, high vernalization requirement (score: 2/9; ca. 50 days)	5 Oct	31 May	15 Jul
			 high photoperiod sensitivity (score: 2/9) Intermediate heading date (5.5/9) TKW = 47 g (score: 6/9) 			
17	Orleans	Central France	Apache WW High/moderate vernalization	20 Oct	25 May	7 Jul
			requirement (score: 4/9; ca. 40 days) Moderate photoperiod sensitivity (score: 3/9) - Early heading date (7/9)			
18	Schleswig	Germany	 TKW = 42 g (score: 5/9) Dekan WW, low photoperiod sensitivity, moderate or maybe high vernalization 	25 Sep	15 Jun	25 Jul
19	Nanjing	China	requirement NM13 WW, mid- vernalization requirement, moderate	5 Oct	5 May	5 Jun
20	Luancheng	China	photoperiod sensitivity SM15 WW High vernalization	5 Oct	5 May	5 Jun
	Llorb in	China	requirement, moderate photoperiod sensitivity LM26	5 Apr	15 Jun	25 Jul
21	Hardin	China	Svv Very low vernalization			

22	Kojonup	Australia	requirement, moderate to high photoperiod sensitivity Wyallkatchem SW, low vernalization requirement. Moderate	15 May	5 Oct	25 Nov
23	Griffith	Australia	photoperiod sensitivity Avocet SW, low vernalization requirement, moderate	15 Jun	15 Oct	25 Nov
24	Karaj	Iran	photoperiod sensitivity Pishtaz, SW Low vernalization requirement, photoperiod	1 Nov	1 May	20 Jun
25	Faisalabad	Pakistan	sensitivity Faisalabad-2008 SW, no vernalization requirement, low photoperiod	15 Nov	5 Mar	5 Apr
26	Karagandy	Kazakh- stan	Steklov24 SW, Low vernalization requirement, medium	20 May	1 Aug	15 Sep
27	Krasnodar	Russia	Brigadier WW, high vernalization requirement, high	15 Sep	20 May	10 Jul
28	Poltava	Ukraine	Brigadier WW, high vernalization requirement, high	15 Sep	20 May	15 Jul
29	Izmir	Turkey	Basri Bey SW, SW, medium vernalization requirement, medium photoperiod sensitivity	15 Nov	1 May	1 June
30	Lethbridge	Canada	ACR WW, high vernalization requirement, high photoperiod sensitive	10 Sept	10 Jun	25 July

Supplementary Fig. S2. Daily 30-year averages (1981-2010) from sowing date to mean maturity dates 247 for (**A**) T_{max} , (**B**) T_{min} and (**C**) mean temperatures. Maricopa (blue), seven CIMMYT locations (purple) 248 and all other locations (black).

Supplementary Fig. S3. (A to F) Observed values ± 1 standard deviation (s.d.) are shown by red
symbols with 30 simulated values shown by black lines (step D - calibrated highest yield). (A to C) HotSerial-Cereal experiment on *Triticum aestivum* L. cultivar Yecora Rojo with days-after-sowing (DAS),
time-of-sowing and infrared heat treatments. (D to F) CIMMYT multi-environment temperature
experiments on *T. aestivum* L. cultivar Bacanora with time-of-sowing treatments. Multi-model ensemble
medians are shown by green lines. Intervals between the 25th and 75th percentiles are shaded gray. Error

bars are not shown when smaller than symbol.

Supplementary Fig. S4. Relative grain yield change per ^oC temperature increase due to infrared heating for four treatments. Observed values ± 1 s.d. are shown by red symbols. Simulated outputs of 30 models are shown by box plots, where horizontal lines represent, from top to bottom, the 10th percentile, 25th

264 percentile, median, 75th percentile and 90th percentile, and dots represent outliers.

Supplementary Fig. S5. Observed mean (red circle) and 1 s.d. (red error bars) and simulated (black
lines) (calibrated for highest yield treatment (step D)) for (A) total biomass at maturity over mean season
temperature and (B) grain yield over days to maturity of the Hot-Serial Cereal experiment for sowing
dates and artificial heating. Multi-model ensemble median (green line) is shown. Space between 25th

percentile and 75th percentile is shaded grey. Error bars are not shown when smaller than symbol.

Supplementary Fig. S6. Observed (red symbols +/- 1 s.d.) and 30 simulated (black lines) (calibrated

yields. Multi-temperature environment experiments from CIMMYT, including time-of-sowing treatments

for cultivar Bacanora: (D) days to anthesis, (E) days to maturity and (F) grain yields and for cultivar

Nesser: (G) days to anthesis, (H) days to maturity and (I) grain yields. Multi-model ensemble median

(green line) is shown. Space between 25th percentile and 75th percentile is shaded grey. Error bars are not

shown when smaller than symbol.

Supplementary Fig. S7. Measured daily temperatures (T_{max} in red and T_{min} in blue) for same mean 289 seasonal temperature resulting in two different grain yields (4.7t/ha season _____ and 4.0 t/ha season - - -) 290 of the Hot-Serial Cereal experiment. Anthesis and maturity dates are indicated with vertical lines.

Supplementary Fig. S8. (A) Maximum and minimum and (B) mean daily temperatures for same growing season mean temperature of 28 °C for a Hot-Serial Cereal (HSC) experiment treatment with cv Yecora Rojo (growing season from sowing to pre-mature crop death at 28 days after sowing) and CIMMYT treatment with cv Bacanora (growing season from sowing to crop maturity at 96 days after sowing). Red vertical line indicates pre-mature death of crop in HSC treatment.

Supplementary Fig. S9. Observed (red symbols +/- 1 s.d.) and 30 simulated (black lines) for multi-

temperature environment experiments from CIMMYT experiment (cultivar Nesser), including time-of-

307 sowing treatments for (A) days to anthesis, (B) days to maturity and (C) grain yields. Multi-model

308 ensemble median (green line) is shown. Space between 25th percentile and 75th percentile is shaded grey.

309 Error bars are not shown when smaller than symbol.

Supplementary Table S4. Root Mean Square Relative Error (RMSRE %) of 30 crop simulation models

312 grouped in quartiles (shown in red shades with quartile boundaries supplied in table above red shades) for

simulated anthesis and maturity dates, and grain yields for **HSC** experiment: A- no calibration (Blind

test), B- calibrated cultivar parameters across phenology dates (Calibrated phenology), C - fixed to
 observed phenology (i.e. simulated phenology errors excluded) (Fixed phenology), and D- calibrated

cultivar for phenology and yield for highest observed yield treatment (Calibrated with highest observed

317 yield).

	RMSRE (%)												
Percentiles /		Days to	anthes	is		Days to	o matu	ırity		Grain	yield		
ensemble	A	В	С	D	А	В	С	D	A	В	С	D	
0%	4	3	0	3	4	3	0	3	20	21	21	24	
25%	8	7	0	7	9	6	0	6	34	35	31	33	
50%	13	9	0	10	13	11	0	10	48	45	44	44	
/5%	18	14	2	15	29	18	1	18	112	166	53	10/	
e median	/3	73	0	73	12	10	0	11	112	14	21	24	
			-				-						APSIM-E
													APSIM-Nwheat
													APSIM-W/beat
													CropSyst
				_									Daisy
													DSSAI-CERES
													DSSAT-CROPSIM
											_		EPIC
													Expert-N - CERES
													Expert-N - GECROS
													Expert-N - SPASS
													Expert-N - SUCROS
													FASSET
													GLAM
													HERMES
													INFOCROP
													LINTUL
													LOBELL
													L P.Iml
													MCWLA-Wheat
						_							
					_								
													SALUS
													SALUS
													SIMPLACE
					_								SIRIUS
													SiriusQuality
													STICS
													WHEATGROW
													WOFOST
													e.median
	Α	В	С	D	Α	В	С	D	Α	В	С	D	
		Days to a	anthesi	is	Da	ays to r	naturit	ty		Grair	n yield		
		0-25	%	1	25-50%	6	5	0-75%	6	75-2	100%		
			-		P	ercent	iles	/			• •		

Supplementary Table S5. Root Mean Square Relative Error (RMSRE %) of 30 crop simulation models

320 grouped in quartiles (shown in red shades with quartile boundaries supplied in table above red shades) for 321 simulated anthesis and maturity dates, and grain yields for CIMMYT experiments for cultivar Bacanora

322 and Nesser at seven locations.

325 Supplementary Fig. S10. RMSRE (%) for 30 simulation models without calibration (step A- Blind test), 326 calibrated cultivar parameters across phenology dates (step B- Blind test with calibrated phenology), 327 simulations fixed to observed phenology (i.e. simulated phenology errors excluded) (step C- Blind test with fixed phenology) and calibrated cultivar for phenology and yield for one normal range temperature 328 treatment with highest observed yield (step D- Blind test with calibrated highest yield) for (panel A) days 329 from sowing to anthesis, (panel B) sowing to maturity and (panel C) grain yield. In each box plot, 330 horizontal lines represent, from top to bottom, the 10th percentile, 25th percentile, median, 75th percentile, 331 90th percentile, and filled circles represent outliers, of 30 models. The RMSRE of the 30-model ensemble 332 333 median (when used as a new predictor) is shown in (C) as a green horizontal line indicating the lowest 334 errors.

Supplementary Fig. S11. Simulated relative yield changes due to increasing temperature for 1981 to
2010 and 30 locations. (A,B) 30-year average yield change per location and (C,D) individual year grain
yield changes per location with (A,C) +2 °C and (B,D) +4 °C temperature increase versus baseline
growing season mean temperatures per location and season, respectively.

Supplementary Fig. S12. Relative decadal yield trend based on simulated 30-year model ensemble
median annual yields versus local temperature trend between 1981 and 2010 for 30 global locations.
Regression line (full line) and zero lines (dotted lines) are shown.

Relative decadal yield trend (%)

Supplementary Fig. S13. Frequency distribution of relative decadal yield change (%/decade) based on
 simulated 30-year model ensemble median annual yields between 1981 and 2010 for 30 global locations.

Change in Temperature (°C)

Supplementary Fig. S14. Standard deviation (s.d.) for simulated grain yields across locations and years and uncertainty due to crop models. In each box plot, horizontal lines represent, from top to bottom, the 10^{th} percentile, 25^{th} percentile, median, 75^{th} percentile and 90^{th} percentile of 900 simulations for current climate (baseline) (grey), +2 °C (green) and +4 °C (red).

360

Supplementary Fig. S15. Measured mean (mean of six cultivars) wheat grain yield impact with
increased temperatures (optimum day/night temperature of 21/15 °C and high temperature stress of 36/30
°C) with and without water stress for (A) 16 days of high temperature stress starting from anthesis and (B)
for 16 days of high temperature stress during grain filling starting 21 days after anthesis. Note that g/spike
represents grain yield as the number of spikes was not affected by the temperature treatment. Numbers
indicate relative impacts due to increased temperatures. Re-calculated after Pradhan et al.⁷⁷.

Supplementary Fig. S16. Measured wheat grain yield impact for six cultivars with increased
temperatures (optimum day/night temperature of 21/15 °C and high temperature stress of 36/30 °C) with
and without water stress for (A) 16 days of high temperature stress starting from anthesis and (B) for 16
days of high temperature stress during grain filling starting 21 days after anthesis. Note that g/spike
represents grain yield as the number of spikes was not affected by the temperature treatment. Numbers
indicate relative impacts due to increased temperatures. Re-calculated after Pradhan et al.⁷⁷.

Supplementary Fig. S17. Measured mean wheat grain yield impact from increased temperatures for
high N supply (black bars, 489 kg N/ha of fertiliser) and low N supply (green bars, 87 kg N/ha of
fertiliser). Numbers indicate relative impacts due to increased temperatures. Re-calculated after Mitchell
et al.⁷⁸.

389 Supplementary References

- Rosenzweig, C. et al. The Agricultural Model Intercomparison and Improvement Project (AgMIP):
 Protocols and pilot studies. *Agricultural and Forest Meteorology* **170**, 166-182 (2013).
- Ottman, M.J., Kimball, B.A., White, J.W. & Wall, G.W. Wheat Growth Response to Increased
 Temperature from Varied Planting Dates and Supplemental Infrared Heating. *Agronomy Journal* 104, 7-16 (2012).
- Wall, G.W., Kimball, B.A., White, J.W. & Ottman, M.J. Gas exchange and water relations of spring
 wheat under full-season infrared warming. *Global Change Biology* **17**, 2113-2133 (2011).
- Keating, B.A. et al. An overview of APSIM, a model designed for farming systems simulation.
 European Journal of Agronomy 18, 267-288 (2003).
- 3995.Wang, E. et al. Development of a generic crop model template in the cropping system model400APSIM. European Journal of Agronomy 18, 121-140 (2002).
- 401 6. Chen, C., Wang, E. & Yu, Q. Modeling Wheat and Maize Productivity as Affected by Climate
 402 Variation and Irrigation Supply in North China Plain. *Agronomy Journal* **102**, 1037-1049 (2010).
- 403 7. Asseng, S. et al. Performance of the APSIM-wheat model in Western Australia. *Field Crops*404 *Research* 57, 163-179 (1998).
- 4058.Asseng, S. et al. Simulated wheat growth affected by rising temperature, increased water deficit406and elevated atmospheric CO2. Field Crops Research 85, 85-102 (2004).
- 4079.Steduto, P., Hsiao, T., Raes, D. & Fereres, E. AquaCrop-The FAO Crop Model to Simulate Yield408Response to Water: I. Concepts and Underlying Principles. Agronomy Journal 101, 426-437409(2009).
- 41010.Stockle, C., Donatelli, M. & Nelson, R. CropSyst, a cropping systems simulation model. European411Journal of Agronomy 18, 289-307 (2003).
- Hansen, S., Jensen, H., Nielsen, N. & Svendsen, H. Simulation of nitrogen dynamics and biomass
 production in winter-wheat using the Danish simulation model DAISY. *Fertilizer Research* 27,
 245-259 (1991).
- 41512.Hansen, S., Abrahamsen, P., Petersen, C.T. & Styczen, M. DAISY: model use, calibration, and416validation. *Transaction of the ASABE* 55, 1317-1335 (2012).
- 41713.Hoogenboom, G. & White, J. Improving physiological assumptions of simulation models by using
gene-based approaches. Agronomy Journal **95**, 82-89 (2003).
- 419 14. Jones, J. et al. The DSSAT cropping system model. *European Journal of Agronomy* 18, 235-265
 420 (2003).
- 421 15. Ritchie, J.T., Godwin, D.C. & Otter-Nacke, S. CERES-wheat: A user-oriented wheat yield model.
 422 Preliminary documentation (1985).
- 42316.Hunt, L.A. & Pararajasingham, S. CROPSIM-wheat a model describing the growth and424development of wheat. Canadian Journal of Plant Science **75**, 619-632 (1995).
- 42517.Kiniry, J. et al. EPIC model parameters for cereal, oilseed, and forage crops in the northern great-426plains region. Canadian Journal of Plant Science **75**, 679-688 (1995).
- 427 18. Williams, J., Jones, C., Kiniry, J. & Spanel, D. The EPIC crop growth-model. *Transactions of the*428 ASAE **32**, 497-511 (1989).
- 19. Izaurralde, R.C., McGill, W.B. & Williams, J.R. in Managing agricultural greenhouse gases:
 430 Coordinated agricultural research through GRACEnet to address our changing climate (eds.
 431 Liebig, M.A., Franzluebbers, A.J. & Follett, R.F.) 409-429 (Elsevier, Amsterdam, 2012).
- Priesack, E., Gayler, S. & Hartmann, H. The impact of crop growth sub-model choice on
 simulated water and nitrogen balances. *Nutrient Cycling in Agroecosystems* **75**, 1-13 (2006).
- 434 21. Ritchie, S., Nguyen, H. & Holaday, A. Genetic diversity in photosynthesis and water-use
 435 efficiency of wheat and wheat relatives. *Journal of Cellular Biochemistry*, 43-43 (1987).

436 22. Biernath, C. et al. Evaluating the ability of four crop models to predict different environmental 437 impacts on spring wheat grown in open-top chambers. European Journal of Agronomy 35, 71-82 438 (2011). 439 23. Stenger, R., Priesack, E., Barkle, G. & Sperr, C. (Land Treatment collective proceedings Technical 440 Session, New Zealand, 1999). 441 24. Wang, E. & Engel, T. SPASS: a generic process-oriented crop model with versatile windows 442 interfaces. Environmental Modelling & Software 15, 179-188 (2000). 443 25. Yin, X. & van Laar, H.H. Crop systems dynamics: an ecophysiological simulation model of 444 genotype-by-environment interactions (Wageningen Academic Publishers, Wageningen, The 445 Netherlands, 2005). 446 26. Goudriaan, J. & Van Laar, H.H. (eds.) Modelling Potential Crop Growth Processes. Textbook With 447 Exercises (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994). 448 27. Berntsen, J., Petersen, B., Jacobsen, B., Olesen, J. & Hutchings, N. Evaluating nitrogen taxation 449 scenarios using the dynamic whole farm simulation model FASSET. Agricultural Systems 76, 817-450 839 (2003). 451 28. Olesen, J. et al. Comparison of methods for simulating effects of nitrogen on green area index 452 and dry matter growth in winter wheat. Field Crops Research 74, 131-149 (2002). 453 29. Challinor, A., Wheeler, T., Craufurd, P., Slingo, J. & Grimes, D. Design and optimisation of a large-454 area process-based model for annual crops. Agricultural and Forest Meteorology 124, 99-120 455 (2004).456 30. Li, S. et al. Simulating the Impacts of Global Warming on Wheat in China Using a Large Area Crop 457 Model. Acta Meteorologica Sinica 24, 123-135 (2010). 458 Kersebaum, K. Modelling nitrogen dynamics in soil-crop systems with HERMES. Nutrient Cycling 31. 459 in Agroecosystems 77, 39-52 (2007). 460 32. Kersebaum, K.C. Special features of the HERMES model and additional procedures for 461 parameterization, calibration, validation, and applications. Ahuja, L.R. and Ma, L. (eds.). 462 Methods of introducing system models into agricultural research. Advances in Agricultural 463 Systems Modeling Series 2, Madison (ASA-CSSA-SSSA), 65-94 (2011). 464 33. Aggarwal, P. et al. InfoCrop: A dynamic simulation model for the assessment of crop yields, 465 losses due to pests, and environmental impact of agro-ecosystems in tropical environments. II. 466 Performance of the model. Agricultural Systems 89, 47-67 (2006). 467 34. Spitters, C.J.T. & Schapendonk, A.H.C.M. Evaluation of breeding strategies for drought tolerance in potato by means of crop growth simulation. *Plant and Soil* **123**, 193-203 (1990). 468 469 35. Shibu, M., Leffelaar, P., van Keulen, H. & Aggarwal, P. LINTUL3, a simulation model for nitrogen-470 limited situations: Application to rice. European Journal of Agronomy 32, 255-271 (2010). Gourdji, S.M., Mathews, K.L., Reynolds, M., Crossa, J. & Lobell, D.B. An assessment of wheat 471 36. 472 yield sensitivity and breeding gains in hot environments. Proceedings of the Royal Society B-473 Biological Sciences 280 (2013). 474 37. Bondeau, A. et al. Modelling the role of agriculture for the 20th century global terrestrial carbon 475 balance. Global Change Biology 13, 679-706 (2007). Beringer, T., Lucht, W. & Schaphoff, S. Bioenergy production potential of global biomass 476 38. 477 plantations under environmental and agricultural constraints. Global Change Biology Bioenergy 478 3, 299-312 (2011). 479 Fader, M., Rost, S., Muller, C., Bondeau, A. & Gerten, D. Virtual water content of temperate 39. 480 cereals and maize: Present and potential future patterns. Journal of Hydrology 384, 218-231 481 (2010).

482 483 484	40.	Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W. & Sitch, S. Terrestrial vegetation and water balance - hydrological evaluation of a dynamic global vegetation model. <i>Journal of Hydrology</i> 286 , 249-270 (2004)
485	41.	Rost, S. et al. Agricultural green and blue water consumption and its influence on the global
480 487	42.	Müller, C. et al. Effects of changes in CO2, climate, and land use on the carbon balance of the
488 489		land biosphere during the 21st century. <i>Journal of Geophysical Research-Biogeosciences</i> 112 (2007).
490	43.	Tao, F., Yokozawa, M. & Zhang, Z. Modelling the impacts of weather and climate variability on
491		crop productivity over a large area: A new process-based model development, optimization, and
492 193	11	Tao E. Zhang Z. Liu J. & Vokozawa M. Modelling the impacts of weather and climate
494		variability on crop productivity over a large area: A new super-ensemble-based probabilistic
495		projection. Agricultural and Forest Meteorology 149 , 1266-1278 (2009).
496	45.	Tao, F. & Zhang, Z. Adaptation of maize production to climate change in North China Plain:
497		Quantify the relative contributions of adaptation options. European Journal of Agronomy 33,
498		103-116 (2010).
499	46.	Tao, F. & Zhang, Z. Climate change, wheat productivity and water use in the North China Plain: A
500		new super-ensemble-based probabilistic projection. Agricultural and Forest Meteorology 170,
502	47	Nendel C et al. The MONICA model: Testing predictability for crop growth soil moisture and
503	.,.	nitrogen dynamics. <i>Ecological Modelling</i> 222 , 1614-1625 (2011).
504	48.	Oleary, G., Connor, D. & White, D. A simulation-model of the development, growth and yield of
505		the wheat crop. Agricultural Systems 17, 1-26 (1985).
506	49.	OLeary, G. & Connor, D. A simulation model of the wheat crop in response to water and
507		nitrogen supply .1. Model construction. Agricultural Systems 52, 1-29 (1996).
508	50.	OLeary, G. & Connor, D. A simulation model of the wheat crop in response to water and nitrogen supply 2. Model validation. <i>Agricultural Systems</i> 53 , 21, 55 (1006).
509	51	Latta 1 & O'Leary G Long-term comparison of rotation and fallow tillage systems of wheat in
511	51.	Australia. <i>Field Crops Research</i> 83 , 173-190 (2003).
512	52.	Basso, B., Cammarano, D., Troccoli, A., Chen, D. & Ritchie, J. Long-term wheat response to
513		nitrogen in a rainfed Mediterranean environment: Field data and simulation analysis. European
514		Journal of Agronomy 33 , 132-138 (2010).
515	53.	Senthilkumar, S., Basso, B., Kravchenko, A.N. & Robertson, G.P. Contemporary Evidence of Soil
516	F 4	Carbon Loss in the US Corn Belt. Soil Science Society of America Journal 73 , 2078-2086 (2009).
517 519	54.	Angulo, C. et al. Implication of crop model calibration strategies for assessing regional impacts of climate change in Europe. Agricultural and Enrest Meteorology 170 , 32-46 (2013)
519	55	lamieson P Semenov M Brooking I & Francis G Sirius: a mechanistic model of wheat
520	55.	response to environmental variation. European Journal of Agronomy 8, 161-179 (1998).
521	56.	Jamieson, P. & Semenov, M. Modelling nitrogen uptake and redistribution in wheat. Field Crops
522		Research 68 , 21-29 (2000).
523	57.	Lawless, C., Semenov, M. & Jamieson, P. A wheat canopy model linking leaf area and phenology.
524		European Journal of Agronomy 22 , 19-32 (2005).
525	58.	Semenov, M. & Shewry, P. Modelling predicts that heat stress, not drought, will increase
520 527	50	vullerability of wheat in Europe. Sciencific Reports 1 (2011). Martre P. et al. Modelling protein content and composition in relation to crop nitrogen
528	55.	dynamics for wheat, European Journal of Aaronomy 25 , 138-154 (2006).
		· · · · · · · · · · · · · · · · · · ·

529	60.	Ferrise, R., Triossi, A., Stratonovitch, P., Bindi, M. & Martre, P. Sowing date and nitrogen
530		rerulisation effects on dry matter and nitrogen dynamics for durum wheat: An experimental and
531	C1	simulation study. Field Crops Research 117, 245-257 (2010).
532	61.	He, J., Stratonovitch, P., Allard, V., Semenov, M.A. & Martre, P. Global Sensitivity Analysis of the
533		Process-Based wheat Simulation Model SinusQuality1 Identifies Key Genotypic Parameters and
534		(2010)
535	62	(2010).
530	62.	Brisson, N. et al. STICS: a generic model for the simulation of crops and their water and hitrogen
537		(1998).
539	63.	Brisson, N. et al. An overview of the crop model STICS. <i>European Journal of Aaronomy</i> 18 , 309-
540		332 (2003).
541	64.	Cao, W. & Moss, D.N. Modelling phasic development in wheat: a conceptual integration of
542		physiological components. Journal of Agricultural Science 129, 163-172 (1997).
543	65.	Cao, W. et al. Simulating organic growth in wheat based on the organ-weight fraction concept.
544		<i>Plant Production Science</i> 5 , 248-256 (2002).
545	66.	Yan, M., Cao, W. & C. Li, Z.W. Validation and evaluation of a mechanistic model of phasic and
546		phenological development in wheat. Chinese Agricultural Science 1, 77-82 (2001).
547	67.	Li, C., Cao, W. & Zhang, Y. Comprehensive Pattern of Primordium Initiation in Shoot Apex of
548		Wheat. ACTA Botanica Sinica, 273-278 (2002).
549	68.	Hu, J., Cao, W., Zhang, J., Jiang, D. & Feng, J. Quantifying responses of winter wheat
550		physiological processes to soil water stress for use in growth simulation modeling. Pedosphere
551		14 , 509-518 (2004).
552	69.	Pan, J., Zhu, Y. & Cao, W. Modeling plant carbon flow and grain starch accumulation in wheat.
553		Field Crops Research 101 , 276-284 (2007).
554	70.	Pan, J. et al. Modeling plant nitrogen uptake and grain nitrogen accumulation in wheat. Field
555		Crops Research 97 , 322-336 (2006).
556	71.	Boogaard, H. & Kroes, J. Leaching of nitrogen and phosphorus from rural areas to surface waters
557		in the Netherlands. Nutrient Cycling in Agroecosystems 50, 321-324 (1998).
558	72.	Alderman, P. et al. Proceeding on Modeling wheat response to high temperature (CIMMYT,
559		CIMMYT, El Batan, Mexico, 19-21 June 2013, Mexico, D.F. CIMMYT, 2013).
560	73.	Reynolds, M.P., Balota, M., Delgado, M.I.B., Amani, I. & Fischer, R.A. Physiological and
561		morphological traits associated with spring wheat yield under hot, irrigated conditions.
562		Australian Journal of Plant Physiology 21 , 717-730 (1994).
563	74.	Weir, A.H., Bragg, P.L., Porter, J.R. & Rayner, J.H. A winter wheat crop simulation model without
564		water or nutrient limitations. <i>Journal of Agricultural Science</i> 102 , 371-382 (1984).
565	75.	Reynolds, M. & Braun, H. in Proceedings of the 3rd International Workshop of Wheat Yield
566		Consortium (eds. Reynolds, M. & Braun, H.) ix-xi (CIMMYT, CENEB, CIMMYT, Obregon, Sonora,
567		Mexico, 2013).
568	76.	Collins, M. et al. Long-term Climate Change: Projections, Commitments and Irreversibility.
569		Intergovernmental Panel on Climate Change, 108 (2013).
570	77.	Pradhan, G.P., Prasad, P.V.V., Fritz, A.K., Kirkham, M.B. & Gill, B.S. Effects of drought and high
5/1	70	temperature stress on synthetic hexaploid wheat. Functional Plant Biology 39 , 190-198 (2012).
5/2	/8.	Witchell, K.A.C., Mitchell, V.J., Driscoll, S.P., Franklin, J. & Lawlor, D.W. Effects of increased CO ₂
5/3		concentration and temperature on growth and yield of Winter-Wheat at 2 levels of hitrogen
5/4		application. <i>Plant cell and Environment</i> 10 , 521-529 (1993).

576 Appendix A

Model	Par	ameter			Simulation Step				
	#	Name	Unit	Definition	Α	B	C-min	C-max	D
APSIM-E	1	shoot_lag	°Cday	Time lag before linear coleoptile growth starts (deg days)	40	56	20	150	56
	2	shoot_rate	°Cday/mm	Growing deg day increase with depth for coleoptile (deg day/mm depth)	1.5	2.1	1.5	2.2	2.1
	3	tt_floral_initiation	°Cday	Thermal time between terminal spikelet and flowering	555	565	380	565	565
	4	vern_sens	-	Sensitivity to vernalization	1	1.1	0.2	1.5	1.1
	5	photop_sens	-	Sensitivity to photoperiod	1.2	1.1	0.5	1.5	1.1
	6	tt_start_grain_fill	°Cday	Thermal time of the duration of grain filling	660	600	20	900	600
	7	max_grain_size	g/grain	maximum grain size	0.05	-	0.05	0.05	0.045
APSIM-Nwheat	1	P5	°Cday	Thermal time grain filling	660	-	220	880	660
	2	PHINT	°Cday	Phyllochron	120	105	40	150	105
	3	Grno	kernel/g-stem	Coefficient of kernel number per stem weight at the beginning of grain filling	2.4	-	-	-	2.1
	4	Fillrate	kernel/g-stem	Maximum kernel growth rate	1.9	-	-	-	3
	5	Sowing	days	Moved sowing dates	-	-	0	12	-
APSIM-wheat	1	shoot_lag	°Cday	Thermal time germination to emergence where shoot elongation is slow	50	-	20	100	-
	2	tt_end_of_juvenile	°Cday	Thermal time end juvenile to floral initiation	425	-	280	515	-
	3	tt_floral_initiation	°Cday	Thermal time floral initiation to flowering	580	-	380	700	-
	4	startgf_to_mat	°Cday	Thermal time start grain fill to maturity	660	500	40	920	-
	5	tt_flowering	°Cday	Thermal time flowering	120	120	35	120	-
	6	grains_per_gram_stem	grain/g		24	-	-	-	29
	7	potential_grain_filling_rate	g/grain/day		-	0.0019	-	-	0.0022
AQUACROP	1	DAS to emergence	°Cday	Days from sowing to emergence	114	121	5	13	121
	2	DAS to flowering	°Cday	Days from sowing to flowering	1180	1288	43	121	1288
	3	DAS to maturity	°Cday	Days from sowing to maturity	1854	2064	58	176	2064
	4	DAS to maximum canopy cover	°Cday	Days from sowing to maximum canopy cover	-	-	-	-	700
CropSyst	1	Degree days to emergence	⁰ Cday	Degree-days to emergence	85	-	55	160	85
	2	Degree days to end vegetative growth	⁰Cday	Degree-days to end vegetative growth	840	760	690	1040	700
	3	Degree days to anthesis	°Cday	Degree days to anthesis	940	860	790	1140	860

Appendix Tables SA1. Models cultivar parameters.

	4 5 6	Degree days to begin grain filling Degree days begin canopy senescence Degree days maturity	⁰Cday ⁰Cday ⁰Cday	Degree-days to begin grain filling Degree-days to begin canopy senescence Degree-days to maturity	1050 1100 1510	960 1060 1435	925 1025 1150	1240 1340 1730	960 760 1435
DAISY	1	Em	$CO_2/m^2/hour$	Maximum assimilation rate	4	-	-	-	5
51101	2	SpLAI	m ² /g DM	Specific leaf area	0.031	-	-	-	0.039
	3	LeafAIMod	-	Specific leaf area modifier	(0 1) (2 1)	-	-	-	(0.0 1)
									(1.17 0.29) (2.0 0)
	4	Leaf	-	Fraction of shoot assimilate that goes to the leafs	(0.00 0.82) (0.25 0.70) (0.51 0.55) (0.60 0.50) (0.72 0.23) (0.83 0.01) (0.95 0.00)	-	-	-	(0.00 0.41) (0.87 0.95) (1 0.59) (1.25 0.00) (2.00 0.00)
	5	Stem	-	Fraction of shoot assimilate that goes to the stem	$\begin{array}{c} (2.00\ 0.00)\\ (0.00\ 0.18)\\ (0.25\ 0.30)\\ (0.51\ 0.45)\\ (0.60\ 0.50)\\ (0.72\ 0.77)\\ (0.83\ 0.99)\\ (0.95\ 1.00)\\ (1.51\ 0.00)\\ (2.00\ 0.00) \end{array}$	-	-	-	(0.00 0.59) (0.87 0.05) (1 0.40) (1.25 0.00) (2.00 0.00)
	6	E Leaf	-	Conversion efficiency, leaf	0.68	-	-	-	0.79
	7	E_Stem	-	Conversion efficiency, stem	0.66	-	-	-	0.69
	8	E SOrg	-	Conversion efficiency, storage organ	0.7	-	-	-	0.87
	9	ReMobilDS	-	Remobilization, Initial DS	1	-	-	-	1.3
	10	ReMobilRt	1/day	Remobilization, release rate	0.1	-	-	-	0.16
DSSAT-CERES	1	P1V	°C	Optimum vernalizing temperature	5	0.2	0	10	0.2
	2	P1D	%reduction/h near threshold	Photoperiod response	32	0.5	0.5	117	0.5
	3	Р5	⁰Cday	Grain filling (excluding lag) phase duration	608	663	300	876	663
	4	G1	grain#/g	Kernel number per unit canopy weight at anthesis	24	-	-	-	19.7
	5	G2	mg/grain	Maximum grain size	60	-	-	-	41
	6	G3	Mg/day	Standard, non-stressed mature tiller weight (including grain)	3	-	-	-	0.3
	7	PHINT	čday	Phyllocron	100	-	-	-	79
DSSAT-CROPSIM	1	GN_p_S	%	Standard grain nitrogen concentration	3	-	-	-	2.4
	2	P1	°Cday	Duration of phase (1); germinate	390	360	380	380	370
	3	P2	°Cday	Duration of phase (2); terminal spikelet	70	65	70	70	70

Expert-N – CERES	1	G1	#grain/g	Grains per unit stem weight at	24	-	-	-	32.45
	13	BN3	-	Nitrogen fraction in plant at maturity	0.015	-	-	-	0.01
	12	BN2	-	Nitrogen fraction in plant at 0.5 maturity	0.025	-	-	-	0.02
				emergence					
	11	BN1	-	Nitrogen fraction in plant at	0.066	-	-	-	0.046
	10	CNY	-	Nitrogen fraction in yield	0.03	-	-	-	-
	9	н	-	Harvest index	0.45	-	-	-	0.43
	8	WA	-	decimal is % of maximum LAI Potential growth rate per unit of intercented PAR	35	-	-	-	29.6
				Number before decimal is % of growing season, number after					
	7	DLAP2	<u>-</u>	Number before decimal is % of growing season, number after decimal is % of maximum LAI Second point on optimal LAI curve -	50.95	_	-	-	43.99
	6	DLAP1	-	declines First point on optimal LAI curve -	15.01	-	-	-	17.15
	5	DLAI	-	accelerates, <1 retards decline rate) Fraction of growing season when LAI	0.6	-	-	-	0.355
	4	RLAD	-	LAI decline parameter (1 is linear. >1	1	-	-	-	1.46
	3	DMLA	-	and maturity Maximum potential LAI	6	-	-	-	9.31
	2	PHU	°Cday	emergence Thermal time between emergence	1380	1300	1085	1540	1300
EPIC	1	GMHU	°Cday	Thermal time between sowing and	0	80	45	390	80
	15	VREQ	day	Vernalization required for maximum development rate	15	2	0	35	8
	14	VEFF	-	Vernalization effect (rate reduction	0	0.3	-	-	-
	13	TRGEM_1	°C	Optimal temperature (Topt1),germination and pre-	26	-	-	-	20
	12	TRGEM_0	°C	Base temperature, germination and pre-emergence growth rate	1	-	-3	-3	0
	11	PPS1	% reduction in	Photoperiod sensitivity as % drop in	50	65	0	68	65
	10	PHINT	°Cday	Phyllocron	80	100	100	100	100
	9	PGERM	Hydrothermal units	Phase duration, germination	10	-	20	15	8
	8	PEMRG	°Cday per cm depth in soil	Emergence phase duration	10	-	20	15	10
	7	P8	°Cday	Duration of phase (8); milk-dough	570	600	220	840	600
	6	P5	°Cdav	Duration of phase (5): heading	60	50	-	-	-
	4	P3 P4	°Cday	Duration of phase (3); pseudo-stem	210 185	170	175	1/5	170
	1	D2	°Cday	Duration of phase (2): pseudo stom	210	170	175	175	170

				anthesis					
	2	G2	mg/grain/d	Maximum grain filling rate	1.9	-	-	-	1.8
Expert-N – GECROS	1	LWLVR	1/day	Loss rate of leaf weight because of leaf senescence	0.01	-	-	-	0.03
	2	STEMNCMIN	g N/ g	Minimum N concentration in stems	0.01	-	-	-	0.0037
	3	LEAFNCMIN	g N/m	Minimum specific N concentration in leaves	0.35	-	-	-	0.261
	4	LNCI	g N/g	Initial leaf nitrogen concentration	0.054	-	-	-	0.06
	5	SLA	m²/g	Specific leaf area	0.028	-	-	-	0.0264
Expert-N – SPASS	1	LUE	g/J/m²	Light use efficiency	0.6	-	-	-	0.7
	2	G1	#grain/g	Number of grains per unit stem weight at anthesis	24	-	-	-	36
	3	G2	mg/grain/day	Maximum grain filling rate	1.9	-	-	-	1.6
	4	SpcLW	cm²/g	Specific leaf weight	500	-	-	-	433
	5	Rext	cm/day	Maximum root extension rate	3	-	-	-	1.63
Expert-N – SUCROS	1	LUE	g/J/m²	Light use efficiency	0.6	-	-	-	0.7
	2	G1	#grain/g	Number of grains per unit stem weight at anthesis	24	-	-	-	33
	3	SpcLW	cm²/g	Specific leaf weight	500	-	-	-	385
FASSET	1	TTSO	°Cday	Thermal time between sowing and crop emergence	250	204	75	355	204
	2	TTS1	°Cday	Thermal time between crop emergence and anthesis	445	371	275	565	371
	3	TTS2	°Cday	Thermal time between anthesis and end of grain filling	388	536	250	720	536
	4	MaxGAI	m²/m²	Maximum crop green leaf area index	7	-	-	-	8
	5	LAIDM	m²/g¹	Maximum ratio between LAI and DM in vegetative top part	0.011	-	-	-	0.015
	6	LAINratio	m²/g¹	Maximum ratio between LAI and N in vegetative top part	0.4	-	-	-	0.6
	7	MaxAlloctoroot	-	Maximum fraction of DM production that is allocated to the root	0.6	-	-	-	0.3
	8	MaxNO ₃ UpRate	g N/m/day	Maximum uptake rate for nitrate-N	0.00006	-	-	-	0.0001
	9	MaxNH₄UpRate	G N/m/day	Maximum uptake rate for ammonium-N	0.0006	-	-	-	-
GLAM	1	GCPLFL	°Cday	Thermal time from emergence to anthesis	1205	1261	905	1515	-
	2	GCFLPF	°Cday	Thermal time from anthesis to grain filling	176	184	132	221	-
	3	GCPFEN	°Cday	Thermal time duration of grain filling	509	442	34	729	-
	4	GCENHA	°Cday	Thermal time from end of grain filling to harvest maturity	96	82	6	135	-
	5	DLDTMXA	-	maximum change in LAI after anthesis	0.1	0.006	0.006	0.1	-
	6	DHDT	-	Rate of change in harvest index	-	-	-	-	0.0175
	7	P_TRANS_MAX	cm/day	Maximum value of potential	-	-	-	-	0.8

HERMES	1	TS1	°Cday	Thermal time between sowing and	140	165	80	295	140
				crop emergence					
	2	TS2	°Cday	Thermal time between crop	320	282	-	-	-
	2	T 00		emergence and double ridge			205	690	
	3	TS3	°Cday	Thermal time between double ridge	490	-	295	620	500
		TCE		and neading	220	440	225	620	110
	4	135	Cday	maturity	330	440	225	620	440
	5	Tbase1			1	0	-	-	-
	6	Tbase5			9	6	-	-	-
	7	mois	% avail. water	Soil moisture threshold in 0-10 cm	0	70	-	-	-
				layer where germination starts to be retarded (linear increase)					
	8	davl2	Hour	Davlength requirement for	0	15	-	-	-
				development between emergence					
				and double ridge					
	9	dlbase2	Hour	Daylength base for development	0	5	-	-	-
				between emergence and double					
				ridge					
	10	Lf_bio_ini	kg DM/ha	Leaf biomass at emergence	53	-	-	-	80
	11	rt_bio_ini	kg DM/ha	Root biomass at emergence	53	-	-	-	80
	12	SLA1	m ² /m ² /kg	Specific leaf area per dry weight at	0.002	-	-	-	0.0037
				emergence					
	13	SLA2	m²/m²/kg	Specific leaf area per dry weight at	0.0017	-	-	-	0.0025
				double ridge					
	14	part_lf2		Fraction of dry matter allocated to	0.6	-	-	-	0.7
				leaves at double ridge					
	15	part_st2		Fraction of dry matter allocated to	0.2	-	-	-	0.1
				stems at double ridge					
	16	part_lf3		Fraction of dry matter allocated to	0.5	-	-	-	0.15
				leaves at ear emergence					
	17	part_st3		Fraction of dry matter allocated to	0.37	-	-	-	0.75
		_		stems at ear emergence					
	18	part_rt3		Fraction of dry matter allocated to	0.13	-	-	-	0.1
				roots at ear emergence					m
INFOCROP	1	TTGERM	°Cday	Thermal time between sowing and	37	42	23	90	30
		TT (0		crop emergence	1000	1100	250	4500	
	2	IIVG	Cday	Thermal time between crop	1200	1120	350	1500	1100
	2	TTOP	8C-1	emergence and 50% flowering	075	1120	700	1220	1100
	3	TIGF	Cday	I nermal time for grain filling period	975	1120	730	1320	1100
				(50% HOWERING TO PHYSIOlogICal					
	Λ	POTGWT	mg/grain	Maximum notontial grain mass	66 5	19			
	4 5	GNOCE		Factor determining the grain number	30000	40	- 30000	-	-
	5		-	before anthesis	30000	-	30000	42000	30000
LINTUL	1	TSUM1	°Cdav	Thermal time from emergence to	1130	1100	-	-	-
				anthesis					

2	TSUM2	°Cday	Thermal time from anthesis to maturity	760		-	-	-	-
3	SLATB		Table with specific leaf area as a function of development stage (DVS)	0.00, 0.0022		-	-	-	0.00 <i>,</i> 0.0040,
				0.50,	0.0022	-	-	-	0.60, 0.0022.
				2.00,	0.0022	-	-	-	-
4	LAICR	-	Critical leaf area index for overshadowing	4		-	-	-	4.5
5	RUETB	g DM/MJ PAR	Light use efficiency table for biomass production as function of DVS	0.00,	3.00,	-	-	-	0.00, 3.30,
				1.00,	3.00,	-	-	-	-
				1.30,	3.00,	-	-	-	-
				2.00,	0.40	-	-	-	2.00, 0.40
6	FRTB	-	Table fraction of total dry matter to	0.00,	0.60,	-	-	-	0.00,
			roots as a function of DVS	,	,				0.50,
				0.40,	0.55,	-	-	-	0.50, 0.50,
				1.00,	0.00,	-	-	-	-
				2.00,	0.00	-	-	-	-
7	FLTB	-	Table fraction of above-gr. DM to leaves as a function of DVS	0.00,	1.00,	-	-	-	-
				0.33,	1.00,	-	-	-	-
				0.80,	0.40,	-	-	-	0.70,
									0.40,
				1.00,	0.10,	-	-	-	1.00, 0.30,
				1.01,	0.00,	-	-	-	-
				2.00,	0.00	-	-	-	-
8	FSTB	-	Table fraction of above-gr. DM to stems as a function of DVS	0.00,	0.00,	-	-	-	-
				0.33,	0.00,	-	-	-	-
				0.80,	0.60,	-	-	-	0.70, 0.60,
				1.00,	0.90,	-	-	-	1.00, 0.70,
				1.01,	0.15,	-	-	-	1.01, 0.05,
				2.00,	0.00	-	-	-	-
		-	Table fraction of above-gr. DM to storage organs as a function of DVS	0.00,	0.00,	-	-	-	-
				0.80,	0.00,	-	-	-	-
				1.00,	0.00,	-	-	-	-
				1.01,	0.85,	-	-	-	1.01,

									0.95,
					2.00, 1.00	-	-	-	-
	9	RDRLTB	1/day	Table of relative death rate of leaves as a function of daily mean temperature	-10., 0.00,	-	-	-	-
					10., 0.02,	-	-	-	-
					15., 0.03,	-	-	-	-
					30., 0.05,	-	-	-	30., 0.03,
					50., 0.09	-	-	-	-
	10	RDRRTB	1/d	Table relative death rate of stems as a function of DVS	0.00, 0.000,	-	-	-	-
					1.50, 0.000,	-	-	-	-
					1.5001, 0.020,	-	-	-	1.5001, 0.025,
					2.00, 0.020	-	-	-	2.00, 0.025
	11	DVSDLT	-	Development stage above which death of leaves starts in dependence of mean daily temperature	1	-	-	-	1.1
LOBELL	1	beta_intercept	day	Intercept of model to predict days to	246.7	174.3	-	-	-
	2	beta_gdd_105d	day / °Cd	heading Coefficient on degree days for first	-0.03905	-0.05193	-	-	-
	3	beta_dl_105d	°C	predict days to heading Coefficient on average day length for first 105 days after sowing, used to predict days to heading	-8.31896	-0.3399	-	-	-
	4	Tavg_veg	°C	Mean air temperature, vegetative stage	0.138721	-	-	-	-
	5	eval(tavg_veg ²)	°C	Quadratic term of mean air temperature, vegetative phase	-0.003574	-	-	-	-
	6	dtr_veg	°C	Diurnal temperature range, vegetative phase	0.103487	-	-	-	-
	7	tavg_rep	°C	Mean air temperature, reproductive phase	0.199767	-	-	-	-
	8	eval(tavg_rep ²)	°C	Quadratic term of mean air temperature, reproductive phase	-0.014297	-	-	-	-
	9	dtr_rep	°C	Diurnal temperature range, reproductive phase	-0.028752	-	-	-	-
	10	tavg_gf	°C	Mean air temperature, grain filling phase	-0.497589	-	-	-	-
	11	eval(tavg_gf ²)	°C	Quadratic term of mean air temperature, grain filling phase	0.007916	-	-	-	-
	12	dtr_gf	°C	Diurnal temperature range, grain filling phase	0.061284	-	-	-	-
	13	srad_veg	MJ/m²/d	Shortwave radiation, vegetative	0.021968	-	-	-	-

			phase						
14	srad_rep	MJ/m²/d	Shortwave radiation, reproductive phase	-0.013403	-	-	-	-	
15	srad_gf	MJ/m²/d	Shortwave radiation, grain filling phase	0.066979	-	-	-	-	
16	dl veg	hour	Davlength, vegetative phase	-1.006823	-	-	-	-	
17	dl rep	hour	Davlength, reproductive phase	0.54261	-	-	-	-	
18	dl øf	hour	Davlength, grain filling phase	-0.139909	-	-	-	-	
19	vpd veg	kPa	Vapor pressure deficit, vegetative	-0.001429	-	-	-	-	
15	100_100		phase	01002120					
20	vpd_rep	kPa	Vapor pressure deficit, reproductive phase	-0.005764	-	-	-	-	
21	vpd_gf	kPa	Vapor pressure deficit, grain filling phase	-0.004475	-	-	-	-	
22	vear	-	Growing season	0.028822	-	-	-	-	
23	tave vee:vod vee	-	Interaction between mean air	0.000061	-	-	-	-	
20	<u>9</u> <u>9</u> bo [_] <u>8</u>		temperature and vapor pressure	0.000001					
			deficit, vegetative phase						
24	tavg_rep:vpd_rep	-	Interaction between mean air	0.000461	-	-	-	-	
			temperature and vapor pressure						
			deficit, reproductive phase						
25	tavg_gf:vpd_gf	-	Interaction between mean air	0.000406	-	-	-	-	
			temperature and vapor pressure						
			deficit, grain filling phase						
26	eval(tavg_veg)^2:vpd_veg	-	Interaction between quadratic term	-0.0000012	-	-	-	-	
			of the mean air temperature and						
			vapor pressure deficit, vegetative						
			phase						
27	eval(tavg_rep)^2:vpd_rep	-	Interaction between quadratic term	-0.0000067	-	-	-	-	
			of the mean air temperature and						
			vapor pressure deficit, reproductive						
			phase						
28	eval(tavg_gf)^2:vpd_gf	-	Interaction between quadratic term	-0.0000088	-	-	-	-	
			of the mean air temperature and						
			vapor pressure deficit, grain filling						
			phase						
1	PHU	°Cday	Thermal time from sowing to	2022	2060	1600	2392	2060	
			maturity						
2	ps	hour	Saturating photoperiod, it controls	20	14	-	-	-	
			the calculation of the factor that						
			reduces the daily heat units as						
			response to photoperiod						
3	psens	-	Sensitivity to the photoperiod effect	1	0.8	-	-	-	
			[0-1](1 means no sensitivity), it						
			controls the calculation of the factor						
			that reduces the daily heat units as						
			response to photoperiod						

LPJmL

	4	harvest index	-	Ratio between grain yield and DM	-	-	-	-	0.45
	5	LAImax	m²/m²	Maximum leaf area index	-	-	-	-	8
	6	fphu_c	-	Parameter that defines the shape of the leaf development curve during	-	-	-	-	0.15
	7	fphu_k	0-	Parameter that defines the shape of the leaf development curve during growing season 2	-	-	-	-	0.4
	8	flaimax_k	-	Fraction of plant maximal LAI	-	-	-	-	0.97
	9	fphu_sen	-	Fraction of growing period at which LAI starts decreasing	-	-	-	-	0.5
	10	α-a	-	Factor to scale leaf-level biomass production to stand level	-	-	-	-	1
MCWLA-Wheat	1	RmaxVGP1	-	Maximum development rate per day from emergence to terminal spikelet initiation	0.018	0.016375	0.0155	0.0235	0.0165
	2	RmaxVGP2	-	Maximum development rate per day from terminal spikelet initiation to anthesis	0.019	0.0178	0.017	0.0495	0.0202
	3	RmaxRGP	-	Maximum development rate per day from anthesis to maturity	0.0305	0.03175	0.023	0.155	0.0298
	4	rmaxv1	-	Maximum daily development rate between emergence to terminal spikelet initiation	-	0.0165	-	-	-
	5	rmaxv2	-	Maximum daily development rate between terminal spikelet initiation to anthesis	-	0.0202	-	-	-
	6	rmaxr	-	Maximum daily development rate between anthesis to maturity	-	0.0298	-	-	-
	7	photos	-	Sensitivity to photoperiod	-	0.36	-	-	-
	8	Pc	-	Critical photopheriod	-	8	-	-	-
MONICA	1	pc_StageTemperatureSum[1]	°Cday	Thermal time between sowing and crop emergence	148	158.3	80	205	-
	2	pc_StageTemperatureSum[2]	°Cday	Thermal time between emergence and double ridge	284	-	-	-	-
	3	pc_StageTemperatureSum[3]	°Cday	Thermal time between double ridge and begin flowering	510	383.33	330	760	-
	4	pc_StageTemperatureSum[4]	°Cday	Thermal time between begin flowering and full flowering	200	150	200	200	-
	5	pc_StageTemperatureSum[5]	°Cday	Thermal time duration of grain filling	660	507.86	222	570	-
	6	pc_StageTemperatureSum[5]	°Cday	Thermal time duration of senescence	25	-	-	-	-
	7	pc_BaseTemperature[1]	°Cday	Base temperature between sowing and crop emergence	1	-2.96	1	1	-
	8	pc_BaseTemperature[2]	°Cday	Base temperature between emergence and double ridge	1	-	-	-	-

9	pc_BaseTemperature[3]	°Cday	Base temperature between double ridge and begin flowering	1	-1.22	1	1	-
10	pc_BaseTemperature[4]	°Cday	Base temperature between begin flowering and full flowering	1	5.34	1	1	-
11	pc_BaseTemperature[5]	°Cday	Base temperature during grain filling	0	6	9	9	-
12	pc_BaseTemperature[6]	°Cday	Base temperature during senescence	9	6	9	9	-
13	pc_DaylengthRequirement[1]	day	Daylength requirement between	0	-	-	-	-
14	pc_DaylengthRequirement[2]	day	Daylength requirement between emergence and double ridge	0	12.3	0	0	-
15	pc_DaylengthRequirement[3]	day	Daylength requirement between double ridge and begin flowering	0	16.67	0	0	-
16	pc_DaylengthRequirement[4]	day	Daylength requirement between begin flowering and full flowering	0	16.67	0	0	-
17	pc_DaylengthRequirement[5]	day	Daylength requirement during grain filling	0	-	-	-	-
18	pc_DaylengthRequirement[6]	day	Daylength requirement during senescence	0	-	-	-	-
19	pc_BaseDaylength[1]	day	Base daylength between sowing and crop emergence	0	-	-	-	-
20	pc_BaseDaylength[2]	day	Base daylength between emergence and double ridge	0	1.33	0	0	-
21	pc_BaseDaylength[3]	day	Base daylength between double ridge and begin flowering	0	1.33	0	0	-
22	pc_BaseDaylength[4]	day	Base daylength between begin flowering and full flowering	0	1.33	0	0	-
28	pc_SpecificLeafArea[1]	cm²/g	Specific leaf area at double ridge	0.002	-	-	-	0.0037
29	pc_SpecificLeafArea[2]	cm²/g	Specific leaf area at double ridge	0.0019	-	-	-	0.0015
30	pc_SpecificLeafArea[3]	cm²/g	Specific leaf area at double ridge	0.0018	-	-	-	0.0013
31	pc_SpecificLeafArea[4]	cm ² /g	Specific leaf area at double ridge	0.0017	-	-	-	0.0012
32	pc_SpecificLeafArea[5]	cm ² /g	Specific leaf area at double ridge	0.0016	-	-	-	0.0012
33	pc_SpecificLeafArea[6]	cm²/g	Specific leaf area at double ridge	0.0016	-	-	-	0.0012
1	BASE1	°C	Base temperature for sowing to crop emergence	3	0	-	-	-
2	BASE4	°C	Base temperature for sowing to anthesis	2	-	-	-	-
3	BASE5	°C	Base temperature for anthesis to maturity	8	8	-	-	4
4	DLB4	hour	Base photoperiod for sowing to anthesis	-10	0	-	-	-
5	EMMDD	°Cday	Thermal time between sowing and crop emergence	100	259	92	438	180
6	ANTHDL	°Cday	Photothermal time between sowing and anthesis	23700	15012	14158	16677	13800
7	MATDD	°Cday	Thermal time between anthesis and maturity	465	488	306	677	714
8	MINTE	kg/ha/mm	Minimum transpiration efficiency	25	-	25	25	58

OLEARY

	9	NTT	°Cday	Period to transfer nitrogen to grain	300	-	-	-	500
	10	GRMAX	mg/day	Maximum grain growth rate	2.8	-	-	-	2.5
	11	GXM	mg	Maximum potential grain dry mass	70	-	-	-	55
	12	PRES	%	Maximum proportion of biomass at	40	-	-	_	20
				anthesis that can be translocated to					
				grain					
	13	SLNOPT	g/m ²	Optimum specific canopy nitrogen	3	-	-	-	2.6
	14	EMOPTT	°C	Optimal temperature for emergence	-	-	-	_	20
				(additional parameter)					
	15	EMMAXT	°C	Maximum temperature for	-	-	-	_	22
				emergence (additional parameter)					
	16	ANOPTT	°C	Optimal temperature for anthesis	-	-	-	_	20
				(additional parameter)					
	17	ANMAXT	°C	Maximum temperature for anthesis	-	-	-	_	22
				(additional parameter)					
	18	MATDD2	°Cday	Thermal time between anthesis and	-	-	-	_	290
				maturity (additional parameter)					
	19	BASE55	°C	Base temperature for anthesis to	-	-	-	_	15
				maturity (additional parameter)					
SALUS	1	LEgg	leaf eq.	Leaf equivalents for grain growth	5.5	6.1	3.7	7.5	6.2
	2	phyll	°Cday	Phyllochron	120	104	79.5	132	102
SIMPLACE	1	PhotoresponseTable	_	Photoperiod reduction factor (for	0	0.4	-	-	-
				photoperiod < 8 hours/day)					
	2	PTTAnthesis	°Cday	Required photo-thermal time	289	584.2	725.7	538.3	584.2
				(between emergence to anthesis)					
	3	TTMaturity	°Cday	Required thermal time between	427	425.8	111.3	623.7	425.8
				anthesis and maturity					
	4	ILAI	-	Initial value of LAI	0.012	-	-	-	0.017
SIRIUS	1	TTBGEB	°Cday	Thermal time between beginning of	600	-	400	650	650
				grain filling and physiological maturity					
	2	TTEGMAT	°Cday	Thermal time between physiological	150	-	10	140	100
				maturity and harvest maturity					
	3	AreaMax	m²/m²	Potential maximum leaf surface area	0.004	-	0.005	0.005	-
	4	PHYLL	°Cday	Phyllochron	105	90	105	137	125
	5	AMNLFNO	leaf	Minimum possible leaf number	8	7	6.5	6.5	-
	6	AMXLFNO	leaf	Absolute maximum leaf number	24	18	-	-	-
	7	SLDL	leaf/h daylength	Daylength response in leaf	0	0.9	0.1	0.1	-
				production					
SiriusQuality	1	TTsoem	1/[°Cday]	Thermal time between sowing and	190	-	70	390	190
				crop emergence					
	2	SLDL	leaf/hour	Daylength response of leaf	0.8	0.79	0.49	4.4	0.79
			daylength	production					
	3	VAI	1/[°Cd]	Response of vernalization rate to	0	0.004	0	0	0.004
				temperature					
	4	VBBE	1/day	Vernalization rate at 0°C	0	0.02	0	0	0.02
	5	IntermTvern	°C	Intermediate temperature for	8	15.5	8	8	15.5
				vernalization to occur					

	6	MaxTvern	°C	Maximum temperature for	17	48.5	17	17	48.5
	7	PhyllSSLL	Phyllocron	Potential phyllochronic duration of the senescence period for the leaves	3.3	2.8	-	-	-
	8	PhyllSBLL	Phyllocron	produced before floral initiation Potential phyllochronic duration of the senescence period for the leaves	6	2.8	-	-	-
	9	PhyllMBLL	Phyllocron	produced after floral initiation Potential phyllochronic duration between end of expansion and beginning of senescence for the leaves produced after floral initiation	6	4	-	-	-
STICS	1	stlevamf	°Cday	Thermal time between emergence and end of juvenile phase	245	225	Fixed Anthesis and	Fixed Anthesis and	225
	2	stamflax	°Cday	Thermal time between end of juvenile phase and max LAI	390	290	Maturity Fixed Anthesis and	Maturity Fixed Anthesis and	235
	3	stlevdrp	°Cday	Thermal time between emergence and beginning of grain filling	940	563	Fixed Anthesis and	Fixed Anthesis and	563
	4	stdrpmat	°Cday	Thermal time between beginning of grain filling and maturity	755	824	Fixed Anthesis and	Fixed Anthesis and	824
	5	sensiphot	-	photoperiod sensitivity [0-1] (1 means no sensitivity)	0.8	0.1	Fixed Anthesis and	Fixed Anthesis and	0.1
	6	adens	-	Interplant competition parameter	-0.6	-0.6	Fixed Anthesis and	Fixed Anthesis and	-0.44
	7	durvieF	-	maximal lifespan of an adult leaf	205	-	Fixed Anthesis and Maturity	Fixed Anthesis and Maturity	175
WHEATGROW	1	IE		Intrinsic earliness	0.91	-	0.71	1.6	0.77
	2	PS		Photoperiod sensitivity	0.00015	-	-	-	-
	3	TS		Thermal sensitivity	0.95	-	0.01	0.98	0.93
	4	BFF		Basic filling factor	0.92	-	0.32	5	0.81
WOFOST	1	TSUM1	°Cday	Thermal time between crop emergence and anthesis	1220	1160	878	1334	-

2	TSUM2	°Cday	Thermal time between anthesis and maturity	770	856	448	1002	-
3	TDWI	kg/ha	Initial total crop DM	210	-	-	-	350
4	FLTB	kg/kg	fraction of above-ground DM to leaves as a function of DVS, at DVS 0.5	0.5	-	-	-	0.6
5	FLTB	kg/kg	Fraction of above-ground DM to leaves as a function of DVS, at DVS 0.646	0.3	-	-	-	0.45
6	FSTB	kg/kg	Fraction of above-ground DM to stems as a function of DVS, at DVS 0.5	0.5	-	-	-	0.4
7	FSTB	kg/kg	Fraction of above-ground DM to stems as a function of DVS, at DVS 0.646	0.7	-	-	-	0.55