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Sunmazy

Fundamental relationships existing between the electrical network
problenm and least-syuares estimation theory are illustrated, and the
theorems of least-power associated with the eguilibrium conditions of
physical systems are shown to correspond to the mathematical concepts of
least-squares theory. Solution of the electrical network problem based
on ¥ron's method of tearing and interconncction is considered, and is shown
to incorporate an iterative technique similar to the algorithm developed
for sequential least-squares data fitting. A formulation of the multi-
machine power system problem is shown to incorporate inherently the form
of 2 least-power theorem associated with a potential Tunction related to
machine power losses and network power. 4 plecewise solution of the
transient problem is alse developed based on a sequential connsction of
generators to the network nodes. imilar methods will have application
Tor the decomposition of large-scale system problems which can be identi-
fied with dynamic blocks connected to the nodes of a network structure.

The techniques are also shown to apply Ffor analysis of the multivarisble
control system problem based on a sequential connection of control loops,
anhalogous to the interconnection of link admittances in Kron's method of
network tearing. Such analysis can simplify the procedure for control
design based on a sensitivity analysis or by the application of conventicmel
single-loop technigues. The physical significance of tearing and inter-
cormection in the multimachine and multivariable control system problem

and the resulting sequential formulations are illustrated in block diagram

form,




1. Introduction

The fundamental theory of linear multivariable systems concerned
with least-squares estimation and control can be shown to be asscciated
with concepts originating in electrical network theory, The equations of
mathematical physics concerned with heat and material flow, elasticity,
economics and biology also have a close correspondence with the algebraic
topological vroperties of electrical networks. The algebraic structure
of the network problem has been shown to be closely related to the
operational structure of the vector calculus1, and numerical solutions of
algebraic and differential equations and the dynamical equaticns of Lagrange
and Hamilton can be associated with electrical network53n Network asnaloguss
have also been used for representing dielectric and magnetic bodies in an
arbitrary impressed fieldg, and acoustical and mechaniscal aystemsh, and

[
physical analogues have been applied in economic theory” .

Electrical network theory is based on the elemental principles
of algebraic topology, with an algebraic structure relating the physical
variables in a topological structure or graph which defines the inter-
connection of the discrete network elements. The topological characteri-
stics are based on Kirchoff's voltage and current laws, and Ohm's law
introduces a transformation between the dual sets of physical variables
associated with the impedance elements. In general, the flow problems of
physical systems will involve a transformation between such sets of
variables, including across (potential) variables defined on the nodes
and through (current) variables defined on the oriented 1ink36. The
existence of mesh and incidence laws in a linear graph will then esteblish
the analcgy between physical systems and permit the use of similar tech-

niques based on a unified sslution7.

The paper illustrates the fundsmental concepts and principles of
electrical network theory which can be associated with the behaviour of
other physical systems. The equilibrium conditions of electrical networks
and other physical processes can be associated with a least-power theorem
which is analogous with the solution of the classical least-squares problemn,
The paper emphasises particularly the relationships existing between
electrical network theory and methods of least-sguares estimation which
have a wide application in the analysis of experimental data in many fields

of applied science.
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Methods of pilecewise analysis have been developed for solution
of the electrical network problem based on an interconnection of subnet-
works and links, as in Kron's method of tearingB. The technigues can be
used Tor reducing the compiexity of a wide range of large-scals system
problems, and thess are now shown to be analogous to the techniques
developed for sequential data fitting based on least-squares estimation
theory. Similar methods are developed for solution of the multimachine
power system problem and the existence of a least-power theorem is
illustrated. The techniques are also extended in order to formulate a
piecewise solution of the transient machine problem, and to investigate a
decomposition of the multivarisble control cystem problem using a seguential

interconnection of c¢ontrol loops.

2., Ilectrical network analogue for least-squares estination

Basic electrical network theory can be closely related to the
equilibrium problem associated with other physical systems based on
variational principles applied to an energy or potential function repressu-
ted by a quadratic function of the state coordinates. This relationship,
together with the existence of dual sets of variables, forms the basis for
an intrinsic analogue between electrical networks and other physical systems.
The existence of a least-power theorem in electrical network theory was
illustrated by Maxwella, and has also been considered by Jeans, Black and
Southwellg, and Ryder10. The theorsm states simply that the minimum valus
of a power function corresponds to a current distribution in the network
in accordance with Kirchoff's and Ohm's law. The rate of energy influx,
as a quadratic function of the variables of the linear network, is minimised
by solution of the network problem, and the absolute minimum corresponds to
the unique solution of the equilibrium problem. 4 principle of least
work related to strain enerzy, analogous to the lsast-power theorem in
electrical network theory, also exists as a free variational problem in
the analysis of equilibrium of statically loaded structuresf1. Similar
concepts based on the variation of an energy state function were also used
by Southwell for obtaining the approximate equilibrium soclution of systems

of linear egquations based on relaxation techniques,

For the static physical system defined in terms of generalised

coordinates (qi, i = 1..n) the equilibrium states can be associated with
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the stationary value of a derived state-function”. Thus the virtusl
work of aprlied forces {Q,) assumed as an exact differential of an energy
d

(potential) function V(g .,qﬁ) can he stated in the vector form
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The existonce of a potential function used in least-power
theorems applied to physical systems is analogous mathematically to the
gquadratic form of residuals used in the methods of least-squares sstime-
tion59. Tn the electrical network anslogue of least-squares theory,
total power associated with the complete general network containing inter-
nal sources corresponds to the square of the residual error, and similar
forms of solution exist for the networl variables and for the 'best!'
estimate of the system states. Franksen5 also shows that the optimal
solution of a quadratic programming problem with linear constraints which
satisfies the Kuhn-Tucker conditions are statements of Kirchoff's mesh
law for meshes including an ideal rectifier. Kron12 discusses the
exigtence of an analogy between the theory of regressiom used in curve-
fitting and the steady-state solution of electrical networks obtained by
tearing and interconnection. A hypothetical intersection network is
proposed gs an estimating model from which regression coefficients for
curve fitting a given function and also divided differences can be obtained
by & process of tearing and piecewise solution of the network equaticns,
The existence of the analogy and its relationship to the leasti-squares
estimation problem outlined in Section 8.3 is now developed by cousidering
the interconnection of a number of primitive networks represented by the
voltage equations

¥ = 57 (3)

where Z is a diagonal impedance matrix for the primitive network, The
primitive elements are interconnected using the transformations of egns
97 and 98 which give the general solutions for mesh currents and node-to-

m

datum voltages of egns 99 and 101 in Section 8.1. ne constraints

introduced with the topological relations ensure a unigue solution to the
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network proulen with nositive definite conditions {ohmicress) * 7, These

golublons cr: analogous to the least-syuare solution of eqn 13% of Section
8.3 f'or state estiunotion,with the weasurement matrixz H corresponding to
the branch-mesh matrix ¢ (and branch-node-pair matrix A), the weighting
matrix ¥V corvesponding to the primitive impedance uatrix Z {and admittance

matrix Y), and the observed measurement vector y corvesponding +o currents

i~ Ye (and voltages e - Zi), and estimates X to currents i' (ond voltages
e'). The least-squares fitting of data may thus be considered os a
process which introduces physical structure into the abstract probienm
which is analogous Lo the topological characteristics of an electrical
network or linear graph.

By cowmparison with the least-squares formulation the network

sblution relates to the minimisation of the scalar norm of weighted sguared

Fal

residuals, oi network power function
‘ oy . vy O o= e
t z — . i H il = v [ th A
Pﬁ & & - I)-ci iy = %EYeifZ = eYe = e'’(AYA)e' (L)

which is associated with the potential function V{(g) of egn 1. The

solution of egn 99 can thus be obtained bty a minimisation of the scalar
function P” with respect to basic mesh currents i', thus illustrating the
existence of a least-power or least-squares type theorem in the general
elect:ical network problem. Similarly, the solution of egn 101 in the
network problem corresponds to the minimisation of a {dual) potenticl
function

f'Y - 1% - 1'80c% 50 )4 (5)

with respect to node-to-datum voltages e'. The network mesh-curvent
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- solution is associsted with an 'estinmation error! of the form

: + -1 %
Ye = I, ~c(C’%¢) ¢z)(¥® ~ 1)

zW(YE-I) = Yi{YE - I) (6)

i
o
=y
o
H
~J
<

where I. represents a b-dimensionul w.it matrix, Similarly, the voltage

'egtimation error' of the form
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Propertiss of the dual matrices I, L are discussed in Section 8.1. The

tranasformed matrices Z' and ¥' of egqns 99 and 101 can also be identified




with the inverse of the ‘error' covariance matrix of eqn 137. The
leasv-sguares matrix H'VH may thus be given a physical interpretation

in terms of an interconnected neotwork, and the measurement nolse covarisnces
nay be assoclated with the primitive admittance and impedance elements,

The power functions combined with egns 6 and 7 respectively may alsc be
stated in the form

P, = (¥8 - I)tMYH{YE - 1)

il

%
(Y - 1) (¥E - 1) (8
g 2 e n i - (

which illustrate the correspondence of the network weighting forms M and

L with the least-squares loss function of Section 8.3,

The solution of the electrical network problem also introduces
the concept of a minimum-norm generalised inverse. Thus, the form of the
squared residuals (I - AA%) associated with a matrix A and its generalised
inverse At exists in egns 8 and 9 with the symmetrical weighting matrices

given Ly

M o= 2(I, -52) = ZY = (I, - cT) (10)
b D
i . 5 t
L = ¥(I, -#) = Y13 = ¥(I -4R") (11)

latrices T and R are defined in Section 8.1. Eqgns 10 and 11 are thus
associated with 'generalised inverses' of the for

4 .t - & :
ct (G B6) e = ot (12)

£t -
A iy % - g (13)
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of orders mxb and pxb respectively, and matrices (Eb - CTt) and (lb b ﬁRt)

are idempotent,

3. HNetwork tearing and seguential least-squares estimation

Kron's method of tearing5 simplifies the solution of the electri-
cal network problem by interconnecting the eguations of solution of smaller
subnetworks with transformations based on connection metrix elements
associated with the interconnecting links. The method decomposes the
system equations according to the network topology, and essentially reduces
the problem of matrix multiplication to the summation of vector and scalar
products.  With partitioning thus based on the network or graph structure
the component solutions can be interconnected directly with other sub-

e ;
systems, wron - also refers to the methods of regression and tearing




liberating hidden interral constraint variables, or regression coefficients

within a hypothetical 'intersection' systen vhich acts as an estimating
model for the unknown internal structure of the overall system, This
analogy between methods of regression and network analysis 1s based
essentially on the correspondence between the methods of solution es
discussed in Section 2. The iterative procedures involved in Kron's
method of tearing are now also shown to be directly analogous to the
sequential algorithms developed for least-squares estimation, identifica-—

tion and control.

3.1 Network tearing and interconnection. The validity and proof of

Kron's method of tearing and interconnection have been established by
15,16,13 van4n1?’18

detailed explanation of Hron's method and develops a piecewise solution

Roth using topological concepts gives a simple

for the mesh and nodal methods of analysis, Brenin also illusbrates the
technique based on elimination - backsubstitubtion, referred to by Roth as
K-partitioning. The process of tearing has also been considered ag a

generalisation of Thevenin's and Norton's theorems based on the inter-
g

connection of a set of 1ink31J, and Thevanin's theorem has been shown to

be analogous to Gaussian elimination for the sciution of linear equationsgo
Harrison21, in a discussion of Kron's methods of tearing, also develops an
iterative algorithm for obtaining an inverse admittance matrix in terms of

previously known quanitities and added interconnection links.

The iterative procedures involved in Xron's method of tearing
and piecewise analysis can be explained simply by considering the inverse

nodal admittance matrix of eqn 121 in Section 8.1.5 in ths Torm

{Yl >—1 i ,'-_t-i fL i }-l‘tvl-'.‘mL)—J[ - (Z =1 ) i:‘;. V_'j. (1)!‘-)

= \.ssT.J.rvf‘
The network is torn into my!1 separate subnetworks consisting of a selected
tree and links, The effect of interconnecting the subnetworks and links
is then cobtaired by updating ths solufion matrix in accordunce with the
link or network changes. The mesh impedance mabtrix may also be

represented, using egn 94, in the partitioned form

t t
(7.8 ] = b — Iy,
4 = 0 Z0 = CT ATCE 4 ZL
v t 3
) g o (
A (B 1B@’A - A o MR o
where 7, represents the tree impedance matrix and Z. the impedance matrix

g

L

¢




“w B =

of the added m links. The form of eqn 121 may then be used for obtaining

the overall nod:1l solution matrix. The iumpsdance matrix Z, may represent

1
any network which is to be interconnected to, or augnented with, a set of
links specified by the matrices Z and AL. Links may be added successively
-

between tree branches or across sets of links to obtain a repeated updating.
Thus, the nodal solution matrix after adding the ith set of links across

nodes, without mutual coupling, is given by the augmented form of egn 1k,

~1 e - —f = =1
! = V[ ; i e \LY
(Y) = (Y, + A Tes) = (BTG4 (16)
(-im | FE
% =1 T
where A, = | A, | " i
i | _L?! | hLi !
Pt L -
L1 |

Link i is connected to the nodes associated with the ith branch, and the

branch~node matrix A_ .
LTi

partitioned link matrix A

defines the corresponding row components of the

L An iterative interconnection algorithm then

follows from eqns 121 or 126

...1 . s proy
1 1 1 1 (1

% )
ol /

. _f’* H ' 5

- I
{ vt 1 ! / '
(¥y) (¥i_,) faq) Apgltg + a,(Y A (Y5 )

With the addition of single links only scalar inversion is required for
updating the inverse pxp nodal adnittance matrix coumpared with the Ml

matrix inversion required when all links are connected simultaneously.

The effect of connecting an elemental change dyi across a palr of
nodes defined by the branch-node matrix row Ai nay also be obtained from the
additive form of egn 14. The resulting differential change in the nodal
solution matrix (Y')"1 = Z_, with respect to changes in the branch admittance

parameter, will then be given by

g t . =]
= { i A A
Zo i dZo = {(AYAE 4 li Qyi Mi)
7 - t —1 A t -1 b
= Dy Zohi[(ﬁyi) 4 hizo*i} Aizo (18)

requiring only scalar inversion with a single element change. Tith
differential changes included on all branch elements
o B -1 T T
4z, = -ZAT[(aY) .z AT Az (19)
B:r’auu'.zi1

considers the effect of a series change dzi in the element zy

= . Th
= 1/iyi e

equivalent to the parallel addition of the link element zp
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above relations apply similarly with dyi = mdzi/(ziz % zidzi). The
elemental change d¥, together with c hanges in supply voltages and currents,
will produce a difflerential change in the node-to-datum voltages of eqn
101, given by

-~
de! ~(Y')

At(ay)fx(a'*)"jﬂt(l-m) 0 (Y')'11at[a1 - Y(4E)~(ay)E1 (20)
and de = Ade' = ~M(dY)M(I-YE) + #[aI - Y(dE) - (d¥)E] (21)

Hatrix M is defined by eaqn 105 and has a significant role in both the
electrical network and least-squares estimation problems. It is also

associated with the propertises
MYM = K, M(ay)i = -du (22)

(iy - 1. )4 = 0, Mlay)A = ~{(ai)yA (23)

(i I )
Similar relations follow for the partial derivative of the mesh solution
matrix with respect to admittance changes of the ith branch, associated
with the ith row of the branch-mesh connection matrix Ci' Egns 20, 21
will have application in determining combinstions of element changes

required for reducing disturbance changes in the response variables.

The above method of piecewise analysis may be applied for
obtaining the solution of any set of linear equations requiring the inverse
of a coefficient matrix corresponding to Z' or Y'., If the system is
partitioned or torn into constituent units in accordance with the systenm
structure then the added components used for updating the previous-stage
inverse solution will usually be of particularly simple form. The
methods of tearing and piecewise intercomnection appear to have been
applied only in steady-state problems17, although Kron22 has discussed
the possible tearing of a nonlinear block disgram system representation
with the nonlinear subsystem equations solved using conventional iterative
methods. The methods may also be extended for interconnecting the
transient solutions of interconnected subsystems, and also for the possible
sequential design of interacting multi-loop control systems as discussed

in Sections 4 and 5.

2%-29

3.2 BSequentigl least-squares estimation The sequential processing

of online data and the recursive updating of coefficients based on previous
parameter estimates avoids recurrent computation with matrix inversion when

additional observations are combined with 21l past data, thus reducing
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storage and computational requirements, particularly for estimation in

the dynamic system. This can be achieved by imbedding the fundamental

least-sguare solutions into the overall problem. Similar algorithms

associated with the appearance of additional observations were developsd

by Gauss (1823) and Plackett (1950)23,33n%1the results appear inherently
U’

in the Kalman-Bucy filtering equations g

Now using the measurement process of egn 131 and the solution

of eqn 133 for the static system, the optimal estimate for min Ji+1 when
the total measurement vector }i is augmented by a new measurement
Y3 1(_ Hy o x) at period ii+1 will be given by
-+
) ""t g = _'1“ gt
. 1 2
141 (B Vs By q) By Vs q¥s,, (2)
rhere H iy V.= Y3 © T ~, i |
X el Tde B F Tdef T | 7 Ta Sl
Lo 4t 4 ¢ il | SAsdy
” sl t wd =t ¢
= 1,V 1 1.V E Y 25
G Fi (HVH, « By 0V, 5y ) BTy + By Vs 4wy ) (25)
L4 2 3
Thus, in general, the optimal estimate X for min {1§0 s ixi%;viE

based on the observation dasta sequence %y . yk, y 1§ is

k b ko,
- - H 3 26
et (= V B el k+1) (2 Ho V¥ # Hk’l by 1T g (260
1=0 i=0
Now defi [ 1z:f(ﬁtv H )1"1 (27)
low define Pk = ‘ sVsH. ) (27
1=0
""1 t 1_1 A
Proq = [P +H T, Bl (28)
and using the matrix inversion identity of egn 126 gives
t -1 by
s [ 1 & o
Fig P = PRl (Vi + B Bl y) B By (29)

Now combining egns 26 and 28 and inciuding the sclution for §k from the
form of eqn 26 gives
Vi 1 . *rt ¢ (
= P (p ri v (30
ket 2t P St BtV e )
and then using egn 28

P ] t A -
- % +P H TV - H 31
et e * Pt Vi 1 T et Y (1)
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Egqns 29 and 31 represent the sequential algorithm for obtaining
an updated estimate at stage k+1 based on the previous-stage estimate,
tm:mmmanmecwmﬁmmemﬁﬁme1aﬁfﬁea@iﬁmmldﬂaym1.

If S is processed as single data the nxn matrix inversion is reduced
to the inversion of & scalar guantity. The estimate may also be specified

in the form
: t -1 t

& ; wilf A
: = % ST~ ( «H .x 2
Beoq = 5+ P (Vg + B Bl ) (g~ Hy®d) (52)

The form of egn 134 in the classical least-sguares solution may also be

identified in the sequential estimate by using eqn 131 in egn 26 to give

A ket
= b
et ok LR Y (53)
1=0
|
% ~1_t % ,
where B, = [E,‘(H_V,H,ﬂ BV, = P. HY. (34)
i a Jdd 3 i & el 101
3=0
ki
and IOBH; e X (35)
5 g9 n
1=0
latrix Bk 42 defined by egn 34, represents a weighting or filter-gain
+
matrix in eqn *., Also from egqns 28 and 34
-1
B = I
Pt * Bt n (36)

From eqn 33 the covariance-~of-error matrix
) 5 . + ke ke t
P = Bl(x - xk+1)(x - xk+1) ] ﬁ[(i?OBivi)(iﬁoBivi) T

and with an independent inter-sample noise sequence
e t k1 ¢
B B.v.v,B] = 5 BT (
Pl L 2 B;v,vB] & BES, (38)
i=o i-o

which is similar to the form of egn 136,

Hatrices HiBi are analogous to the linesr transformation of
eqn 130.  The sequential algorithm of eqn 31 may be considered as a
descent scheme operating to reduce the instantaneous residue between the

new measurement Ve and the expected value ¥ = with the

%
ket kel k7

weighting matrix B transforming or apportioning the residue to the new

k1
improved estimate.

The formulation of the dynamic multistage estimation problem is
basically similar to that of the single-stage static problem, with the

Ia

: 2
state changing according to the state differential or difference equations ~,
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The estimate of the state of the linear dynamic system based on

neasuremsnts corrupted by additive Gaussian noise are given by the

30’31, which reduce, for the static system,
-
to the original form of Plackett's eguations j. The form of the

Kalman-Bucy filter equations

sequential optimal filter is of fundamental importance in problems of
estimation, filtering, prediction and identification. Sequential
methods of statistical decision and estimation theory also have applica-

tions in problems of pattern recognition and machine learning” .

3.3 Analogy of network tearing with sequential least-squares estimation

Kron's method of tearing and interconnection for solution of

the electrical network problem can be shown to be analogous to the tech-

s

nigues of sequential least-sguares estimation, identifiication and control,

with the addition of link elements corresponding to the augmenting of the
least-squares solutions with a discrete data sequence., The analogy is
illustrated by a comparison of egns 17 and 29 representing the updated
nodal solution matrix (Y£)~1 and the discrete-time covariance matrix Py
respectively. The measurement matrix Hk end weighting matrix Vk in the
least-squares solution are seen to correspond with the branch-node matrix

ATi and admittance of the added links YLi respectively.

-l
Augnenting the least-squares solution with the data segquence

Ve and weighting V thus corresponds to the addition of admittance com-

k

ponents YL‘ and link voltages bL = (e—Zl) ) in the solution for the
node-to-datum voltages of eqn 101. Thus
k~1 k-1
e'=(AtY_,A+zAY Al y )(Ye-i-EAY
k TTT 1. W Li L1 Lk Lk Lk i 51 LiLi L
+ ALkY keLk) (39)

The identity of egn 28 also corresponds to the form of egn 16, However,
the analogy of convergence inherent in the least-squares problem does not

extend to the electrical network problem, in which the process is termina-

ted with the addition of the final link element. An updated-type soluticn

may also be obtained for the node-to-datum voltages. Thus, proceeding

as in the sequential least-squares formulation, and combining eqn 39 for

the solution of eﬁ and ei 3 and egn 16 gives
t
t - (Y A 40
o= A ) (Vi 1%t * Appe Yo ! \80)
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and then using the form of egn 16 gives

R
ryy Tt = '
() ap ¥ lep, ~ A e )

- 1 !
ek = 81{_1-;- (+1)

Egns 17 and 41 now give a sequential algorithm for updating the node-to-
datum voltages at stage k based on the previous-stage 'estimate', the
current-stage nodal solution matrix and the link voltages €k corresponding
to an additional data seguence. With the processing of individual links
matrix inversion is reduced to the inversion of a scalar quantity.

Similarly, the 'estimate' of egn 41 may also be specified in the fornm

Rl T (Yllc-1)_1AEk[Y£:: . ALk(Y}'c~1)“1A;kf1(eLk P, (2
In the sequential solution the & priori and current-stage
admittance matrices summate in the form of egn 16, ard represent the link
admittances entering the connected network at every stage. It is
interesiing to note the 'measurement' process included in egns 41 and 42
correspondimg to the form of the voltage relation of ean 97. A filter-
gain-type matrix corresponding with eqn 34 may also be identified in the
network problem., Thus from eqn 39 with Aj representing the row components

of matrix A

= t
e! = (T (A Y. e = L B. e, )
b AT LD B ) = B3y (43)
where B, = (Y')-1 A? ¥, (44)
J k did
and ZB.A, = I {45)
3 4 J P

The matrix Bj thus represents a weighting or filter-gain matrix which
transforms a voltage difference to the new 'estimate' and possesses

properties similar to those in the least-squares formulation.

The relations developed for sequential least-squares estimation
thus extend for application to the piecewise solution of the electrical
network problem. Also by analogy with the piecewise solution of the
network problem, the sequential least-squares estimator may be given a
physical interpretation in terms of the addition of structural elements
with weighting Vk in a linear graph using 'connection matrix' elements Hk'
The piecewise solution of the network problem with the addition of link
elements is not analogous toc sequential estimation in the linear dynanic
system involving a state transition. The methods, however, appear to be
applicable for the piecewise analysis of the transient problem formulated
in block diagram form or in terms of an interconnection of dynamic units

in a linear graph.
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Formulation of the multimachine power system problem

The formulation of the multimachine power system problem can be

associated with a least-power theorem, and the overall dynamic problem
may also be defined in terms of & sequential connection of generators at
the network nodes which is analogous to the recursive solution for least-
squares estimation. BSuch a formulation may have important applications
for cobtaining a pilecewise transient solution of large machine systems

and also in the design of multivariable control systems.

The interconnection of synchronous generators with the general
equations of a nultinode linear passive network is considered in a form

suitable for the study of load-frequency control33’34.

The equivalent
network containing only generator nodes is represented by the n-node

equations

4 = :
e v

where YT

(46)

is a 2nxZn symmetrical matrix of equivalent driving-point and

-

transfer admittances with real partitioned elements }7ij
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generator node voltagos and shunt currents to neutral will include the
components v., = Dls, iy = {18 ¢ with D, Q reference zxes common to all
nodes, = Ql
The synchronous nachines are represented by Fark's voltage
equations referred to direct~ and guadrature-axes in the machine rotor
positions,
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Synchronous maechine output Pei 2 Ny 1i (49)

For small changes of machine and syster speed, the balance of synchronous,

asynchronous, mechanical and inertial powers is represented by

where constants hi represent effective rotary inertias and Tdi the per-
unit demping-torque coefficients for small deviations.
Turbine-governor-valve control, with provision for speed resetiing, is
represented by

d ., = =kd . 6 -Xuw .+ k
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a (51)
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In the steady state each machine maintains a constant phase
displacement of its intermal voltage. With a system load change momen-
tary changes in machine speeds will ocecur for repositioning the rotor load
angles, and the system will settie at a meintained synchronous speed,

With load angles A, between the quadrature field axcs of each machine and
the common D, Q ne%work reference axzes, machine i terminal voltage will

be related to the j-node network voltage components by the rotational

transformation
[ cosh sin5.1 _VD‘T
X _ i 3 i A J ¢
W, om AR s 1 v =] P (52)
i, i’ W il i =sinh, cosh, | N s
: L i ik ¢ ) V|
Vith m machines connected to n network nedes
Vo= A8)vy (53)

The connection ma@;ix A(R) of order mxn, with m 3 n in general, contains
elements A, = (e "4, 0) if the ith machine is incident or not om the jth
node, and corresponds to the tree-branch-node matrix AT of Section 8.1.1
containing elements (+1, =1, 0). It deseribes the topology of inter-
connection and also the displacement of the machine axes from a common
network reference frame. The machine and network currents are similarly
related by

Bqus 46, 47, 53 and 54 defining the intercomnectad system may
now be combined to give the network voltages in terms of internal machine
voltages,

G tf‘n F o ",“'1_15 Y fong
= [T+ A7 (R )LAR) T 4% (s)r, 0 (55)
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t ; ‘ : .
where A '(A)Y A(8) with real components is a 2nx2n diagonal matrix of 2x2
7 "

suomatrices. The generator voltages may then be specified as

v o= A(a)[Ywn;.At(a)y},;A(R)]"1At(a)'zme = m(s)yye (56)

M(A) is a symmetrical mxm matrix and corresponds with the similar forms

of eqns 105 and 130 in the network and leasti-square problems. Lgn 55
also corresponds to the solution for node-to~datum voltages in the zeneral
network analysis of 3sction 8.1. The m-individual machine relations of
eqn 48 in diagonal form mey now be interconnected with the transformation
of egn 56, giving

& = [F + I E'[ER)Y,_.!E + Ge {.57)
1 fish b'd

2

Matrix (&) thus introduces interaction in association with the machins

terminal voltage matrix F The overall state-variable representation

2.
of the interconnected machine system, including component machine voltages
e L e .

di® qi
position for the ith machine is then given by egn 57 combined with the

load angles f,, turbine speed change «», . and governor-valve
A w i * 5

vector forms of egns 50 and 51, and with

33
:.' " = I Y,_(e, = ¥ 8}
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The state derivatives are related to linear functions of the state
variables and also to nonlinear relations involving implicit algebra
associated with the network solution for a spscified set of load angles
and internal machine voltages. Control is applied by movement of the
governor valves and speeder-motor positions dsi and by unit excitation
L Integrated control may be investigated for restoring equilibrium '
conditions in some specified optimal manner following load disturbances3 .
The form of egqn 55 corresponds to the least-sguares solution
of eqn 138 incorporating a priori information concerning the unknown
estimate, The solution for network voltages can thus be similarly

related to the minimisation of a quadratic function
ji i 2

P = = V.
e - & w iy

il

T t t 6
- - 3 3 v 0
e Iy Yy s T4+ nh (60)

with respect to voltages vr. The formulation of the multimochine power
\
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system problem thus includes inherently the form of a least-power theorem
associated with a potential function related to machine power losses and
power supplied to the network, which can be used to define the inter-
conneoted network voltages. BEgn 55 also includes a summation of admit-
tance elements with the connection of generators to the nebtwork nodes
which corresponds with the interconnection of link elements in Kron's
method of tearing. The general methods of network analysis based on
tearing and interconnection and the techniques of sequential least-squares
estimation will thus extend for application to the piecewise solution of

the multimachine power system problem.

ho1 BSequentisl formulation of the multimachine power system problem

The analysis of the high-order system model will introduce
considerable computational difficulties which may be reduced by considering
a piecewise interconnection of the dynamic units with the network structure.
The solution for network voltages may be considered in piecewise form with

a sequential connection of m generators represented by

m m
' = f n A (A -1 W 85 )
(qy = [+ o “1(“1”4-1 1(%5)] (j; Ay(55 0T84 (&)

with the connection metrix A(R) partitioned into rows

T [R0]
A(R) = JA(R,)} = " : »  Thus with the connection of the kth
oSty | |
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generator, the n-component network voltages,
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Eqn 62 may also be considered in the sumnated forn

| £, :
(gl = (Y') [2 (R M5 'Tﬁ'ic(r'k)ymikek] (65)
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and including the form for (JN) _y gives

o N
(v = T £ v V(A
(v, (1) g (gl q + 4 ( i) (6)
and including eqn 63 gives
£ 3 1 t A f
v = s ! f\ v * ‘-\. Fa
(), = (v s (r e oyl DTSN B

Eqn 67 represents an updating of the network node voltages with the
addition of & single machine defined in terms of the internal voltags and
admittance matrix of the kth generator and the connection matrix row
Ak(ﬁk) which identifies the partlcular.node connection. ¥ith the
addition of the kth machine, the k generator terminal voltagzes from eqn 53
are

ne = A0, (68)

1
i

and these may be stated as a function of the generator internal voltages
{61..ek)(=ek), or as a function of the previcus-stage network voltage

o

(Jﬁ)k_q and the geuerstor voltage e{. Thus from ean &2,
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or from egn 67

- -1t
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Vi = B0 A I T A (5T Ty - 4,00 ] (70)
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The kth machine power may then be obtained using eqn 58 and the kth row

voltage component of eqn 69. The matrix Mk 1(5) associated with lt1
<
connected gensrators mey also be updated by
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The dynamic analysis of the multimachine power syster problen
may now be considered in a piecewise form based on the sequential inter-
; i P
connection of generators 1..m. Zgn 71, with the updated (Y‘ ) will

permit the nonlinear functions associated with the state uer¢v¢tivas of
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egn 57 to be obtained piecewise during each stage of the integration
process. The problem of repeated mxm complex matrix inversion is also
reduced to complex scalar inversion in egn 6k, The decomposition of the
multimachine system thus appears to be feasible under dynamic operating
conditions using techniques similar to Kron's method of tearing. The
formulation will have application in the analysis of general large-scale
system models which can be defined in terms of dynamic units interconnected
with the nodes of a linear graph. The methods will permit a detailed
study of the effects of interaction and will extend for investigating
integrated control system design on a sequential or multi-lavel-type
basis. The methods also appesr to have particular application for the
tearing and interconnection of the transfer matrix representation of the

multivariable control system.

5. A sequentisal formulation of the multivariable control problem

A pilecewise analysis of the multi-loop control system illustrated
in FIG. 1 may be considered using technigues anzlogous to the method of
tearing and interconnsction in the eleetrical network problem. The
general problem includes forward and feedback controllers C{s) and K(s)
respectively, contirolling a process represented by the open-loop transfer

matrix G(s). A4 set of transformed reference input variables r(s) specify

the required behaviour of ihe output variables x(s).

o ooels) o ou(s) g
er/‘:::3E{3:1:5¢ﬁ G(S)\EI:“T::IQEr %is)%:T""T:j %(8)
%1 ! ! / i {nxm) | (
(nxt1) J‘:l(mm) oo (met) 12 ) %i (nxt)
i R R !
i LTELI ;

FIG. 1. Multivariable control system representation

Vith transformed inputs u(s) the open-loop behaviour of the
process is represented by
x(8) = G(s) u(s) (72)
The closed-loop performance of the system is then given by

x(s) = (I_+ 60K)'cox(s) = & (s)x(s) (73)

where Go{s) is the overall system transfer matrix.
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It is of interest to note that, with the reference input r{s) restricted
to n components, and with the forward controller of order mxm and with
the corresponding mxn feedback controller defined by XK{s) = G (s), the
solution for the closed-loop response can be associated with the least-

gquares estimation problem. Thus, considering a performance index

I(s) iie(s)ﬂg + xt(s)x(s)

il

= [x(s) - kx(s)]%C[x(s) - Kx(s)] + x(s)x(s) (74)
then 3J(s)/xx(s) = 0 gives
(s) = (I +XKe) kK Ex(s), € = ()2 (75)

Thus the closed-loop response of the particular trensfer matrix control
problem is analogous to a least-squares solution asscciated with a 'poten-
tial function' J(s). The squared outputs in the multivariable control
problem also correspond with the generator output powers in the multi-
machine problem. Thus by analogy with eaqn 58

t

dyg = ()% o(r ~Kx) = xECe = x'x (76)

The scolution for network voltages in the multimachine power
system problem given by egn 55 may also be represented in the form of a

multivariable feedback control system, as in FIG. 2.

PG, 2, Hultimachine powey system representation

The block diagram arrangement illustrates the transformation between the
network-machins voltages in a feedback loop,and also the dual transforma-
tion between the machine admittance and network impedance matrices in the
forward path. The leazmt-squares sstimate of egn 133 may similarly be
represented with matrix blocks R -~ Ht and S in the forward path and with
a feedback block representing ths matrix H between the estimate % and the
observation y, The piscewise solution of the machine problem may also be

considered in the form of FIG. 3 associated with eqn €1 in the form
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FiG. 3., Decompositionh of multimachine

power system problem

The piecewise analvsis is based on the equivalent tearing of the systenm
configuration, as shown, with a sequential interconnection of the indivi-
dval machine blocks, The single-stage updating may also be illustrated
&8 in FIG. 4 using a combined form of egns 62 and 63 to give the equivalent

single-loop feedback reprecsentation
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FIG, 4. Decomposition of multimschine power system

problem with single-stage updating
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The multivariable control system representation in the frequency
domain is complicated by the inversion of transfer function matrices in
eqn 73. These difficulties may be reduced by considering a piecewise
snalysis with a sequential connection of the transfer function control
loops, analogous to the interconnection of the link admittances in the
method of network tearing. This may simplify the design procedure for
determining the system controllsrs, possibly by the application of conven-
tional single-loop freguency domain techniques for compensation of the
overall system in accordance with certain desired performance specifica-
tions. It will also lead to a more detailed understanding of the signi-

ficance of interaction introduced by the individual contrel loops.

Now with a columm and row partitioning of the matrices G and

C, K respectivaljr; defined by

I

- t
t C K
1 f'f ! - o
G = [LrliJ Gz"um : - } {g i K = EE-Q ; (79)
] C, | | K. i
i 7 18y

we can consider the effective piecewise addition of m control loops and
specify the output states in the form
i m n o] m n
(x), = (G)r = (I + 2 36GC K) (2 560 r) (80)

i1 J=
The partitioned plant and forward controller transfer function componentes
are now assoclated with a particular individual input, and the feedback
controller elements with each of the measured output componznts. The
previous methods of piecewise solution based on a decomposition of matrix
products into interconnecting 'link!' elements may now be used by consider-
ing egn 80, associated with the addition of k inputs, in the form
k-1 n

P
/ C
(2 260, .r + 2 chkjrj) (81)
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where p represents the pth outlput and
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The calculation for the oversll system transfer matrix can now be simpli-
fied with matrix inversion reduced to the inversion of a single transfer
funetion element in eqn 83. The dscomposition of the control problem
given by egqn 80 may also be represented in partitioned block diagram form
sinilar to FIG, 3 for the multimachine problenm. Such a structural
representation illustrates, particulerly, the physical significance of
tearing and interconnection in the multivariable control problem., A
plecewise representation incorporating a single fesdback loop may also

be obtained as in the multimachine problem by combining egns 81 and 82 to
give '

{k-1 n p~1 )
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Thus, for a system of dimension n = 3, m = 2 with p = 2, the interconnection

of the single loop {,2322) corresponding to k = 2 may be represented as in

FIG*- 5.
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FIG. 5, Decomposition of multivariable control gystem

problem with singls-loop interconnection

The formulation of the piecewise solution will simplify with
the system including a disgonal controller C(s) of order mxm and with the
feedback controller matrix K{s) of order mxn associated with m reference
inputs. The sequential addition of k control loops will then result in
the transformed output states

I T

- YT ,
(x)k = (Go)kr = (In + i§1giciihi) (i§1GiCiiri) (85)
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Tign 85 is analogous to the piscewise solution for network
voltages in the multimachine power system problem given by eqn 61, with
the network admittance matrix (Y ) corresponding %o the unit matrix, the
connection matrix A(S) to the feedback controller and its transpose to
the plant transfer matrix G(s). The machine admittance matrix ¥
corresponds similarly to the forward diagonal controller C(s), and the
internal machine voltages e to the transformed input reference signals
r(s). The performance criterion of eqn 74 in the equivalent least-squares
solution corresponds similarly with the machine systenm performance index
of egn 60. The 'topology' of the transfer matrix representation of the
multivarisble control problem may thus be defined in terms of the parti-
tioned structure of the plant transfer function matrix G(s) which inter-
connects the equivaleut 'machine! parameters Cii(s) assoclated with the
'internal' inputs r{s) with the equivalent unit matrix 'network'. A
comparison of the corressponding block diagrams and of the piecewise solu-
tions illustrates the particular difficulties of the general nultivariable
feedback control problem which will include off-diagonal forward controller

terms which do not appesr to exist in the machine-network problem.

The piecewise solution of the multivariable control problem will
pernit the effects of individual inputs produced by the addition of the
columns of the plant matrix G(s) to be studied. Thus, by analogy with
the solution of the multims.hine problem for network voltages Vg2 the
n-component transformed output states with the addition of k inputs

associated with the plant transfer matrix of order nxk will be given by

f & 11 REY
-1 H !"
(=) = (¥ ) '[g. &1 . §E f (86)
L kk_?:n.lk.g
-1
- 7! U 2! X 1 =
where ( k) = (Y 4+ Fkak ,) L1 I (87)
Then from the form of ean &7
=
= \ (y! (
(x)k = (x;k?1 1 \Yk) G CLker K. (x)b_1 (88)

Also by analogy with the gencrator voltages of eqns 68 and 69 the measured
feedback variables with the addition of k loops may be obtained in the

form

(kx). = | é‘(x) - K (x), (89)
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or from egqn 70
= o -1
( = K c (Y C » -x(x 1
(k) = K (x) , + K () &0 [z - (=), (91)

The matrix Mk may also be obtained in updated form as in egn 71 and
possesses properties similar to those of the li-matrices in the network

and least-squares problems.

Control design may now proceed by considering the cumulative
effects of the individual feedback controller loops and the forward
controller elements for desired overall performance of the output
variables. Such a method of analysis with a piecewise connection of
controller elements is directly enalogous to Kron's method of tearing and
interconnection which has found important application for solution of the
electrical network and other large-scale system problems, It reduces
the computational problem of inverting relatively high-order transfer
matrices to the scalar inversion of single transfer function elements by
effectively decomposing matrix products of transfer functions into 2 sum
of outer vector components. The method illustretes particularly the
interconnection of the system elements with an underlying topological
structure and can be related to a dynamic programming type of algorithm
for solution of the linear optimal control prdblem29, The particular
Torm of piecewise analysis will not provide a direct solution for contrel
design but it will give greater insight into the process of trial-and-
error design, with the effects of individual controller elements summated
into the overall desired solution. It can also form the basis for design
based on a sensitivity analysis,as in the network problem of Section 3.1,
which may be used for determining the changes produced in the overall
system response or in the input-output coupling,with differential changes

in the forward controller elerenis.
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6. Conclusions

Fundamental concepts based on the elemental principles of
algebraic topology originating in electrical network theory, and the
existence of a theorem of least power establish the basis for a direct
snalogy between the performance of the electrical network and other
physical systems. A unifying mathematical basis is shown to exist in
classical least-squares estimation theory with the quadratic form of
residuals corresponding to a potential function in the physical system.
The steady state network solution based on Kron's method of tearing and
interconnection is also shown to be directly analogous to the methods
developed for sequential least-squsres data fitting. The least-squares
problem may thus be given a physical interpretation in terms of an inter-
connected network, and may be considered as a process which introduces

physical structure into the abstract formulation.

Similar methods of analysis have been applied in the multi-
machine power system problem based on a sequential interconnection of
generators. A piecewise solution of the transient machine problem is
developed using a process of tearing and interconnection which has
previously been applied only to the steady-state electrical network
problem. This development based on the topological concepts of electri-
cal network theory could form the basis for the decomposition and piece-~
wise solution of many large-scale system problems, such as encountered
in the modelling of economic systems and company operations. A decompo-
sition of the multivariable control system problem has also been formulated
using an interconnection of control loop elements as in Kron's methods of
network tearing. Such methods of piecewise analysis and subdivision will
provide a greater insight into system structure and could form the basis
for a simplified sequential design of multi-loop control systems or for

the design of hierarchical multilevel control.
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8. Anpendix

8.1 The electrical network problem. The general electrical network is

considered with interconnected branches consisting of linear passive self

impedance or admittance elements and ideal voltage and current sources as

. g
in FIG. 6 ?.
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FIZ, 6. rth network branch

The branch currents and voltages in the unconnected (primitive) network

ars represented by the b-dimensional vector equations

E+e = AT +1),I+41i = Y(E+68)orV=

27, 3 = YV (92)

where the mutually reciprocal and symmetrical matrices Z and Y represent

the bxb dimensional primitive network impedance and admittance matrices

respectively., The equations representing the primitive network in terms

of all branch variables are linearly dependent.

B
8.1.1 Topalicgical structurq1’17’18’21’5)

The topological structure of

the connected network or linear graph is specified in terms of connection

natrices [&kj], where ﬁkj is +1, -1 or O depending on the directed branch-

node-mesh relationships. These may be illustrated by reference to the

graph of FIG. 7(a).
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A is the branch-node incidence matrix with linearly dependent columns.
A is the branch-node-pair matrix {(with the datum node column deleted),

with submatrices A, AL referring to tree branches (containing all the
oL

nodes and no meshes) and links (shown dotted) respectively. BT is the
node-to-datum path matrix with elements ékj = (+1, -1, 0) if the kth
branch is (positively, negatively, not) included in the Jjth node-to-
datum tree path. The branch-mesh matriz C contains elements

ekj (+1, -1, 0) if the kth branch is (positively, negatively, not)
included in the Jth basic mesp obtained by adding links to a tree. The

columns of C 1ndlcatm the br4nches included in each mesh, and with
grouping of the basmcrm shes with the defining links, the submatrix GL
referring to the links is 2 unit matrix. For any linear graph the
Lonneculoq mdLr¢ces awe “e*wu zd Qy

vy, Pl 12 0 (93)

o - EHEE :7 - s % - 3 = t
0 :?rE cT. = -BpA; with 4, = B/ (9%4)

Kren refers-'“ gn 93 as the ‘orthogenality condition' of node-pair
P e
potentials ar& nesh-enf's ~, If the linear graph contains b branches,

n nodes, m., n node palzs, ii basic meshes and k sub-graphs, then

_‘m¢p g +P ="k, K = bensd (95)
d_y are of dimensions bxn, bxp and bxm respectively, and

‘ ik C 1. The tree uniquely defines p open paths with p
indepah&éﬁ%xaﬁross variables, and the links uniquely define m closed paths

. % . . 1 . O
with, m ;n@gpendent through variables ,

8.1.2° “,gebwalc

on the branch iablésﬂ&efined by Kirchoff's voltage and current laws

represente&gbyjf{
% e 0, A% oo oo (96)
These relaﬁién  _ the bLranch voltages around each basic mesh, and all
the branch curr nbs legving each necde, and impose m and p constraints
respect Vlf. © The intercormection of the primitive elements introduces
a transfaymation between the branch voltages and currents e, i ('old!
variahleé) and the nede-to-datunm voltages e' and the currents in the
basic meshes i' ('new' wvuriables), given by

e = he! | i = Ci (97)

po |

strUeiure., The linear graph or network imposes constraint

s
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The variables e', i' represent linearly independent sets and constitute
a 'basis' for determining the branch variables e, i18, In eqn 97 only
p branch voltages and m mesh currents are linearly independent,  With
additional guantities E, I zssigned to the unconnected branches the
equivalent induced mesh vecltage and nodal current sources ars given by
B - ¢l . I' = Atz (98)
The electrical network problem is stated - Given a connected
network defined by the topological matrices A and C and the primitive
impedance matrix Z {or Y), and given the arbitrary source vectors E and

I, determine the branch voltages and currents e, i.

8.1.3 Mesh solution. Combining the voltage relations of egns 92 and 96

and the current relation of eqn 97 for eliminating e gives the general
solution for mesh currents

ito= (20 ctavmn) , oz - oYz, lzd £ o (99)
where 7' is the mesh impedance matrix. Branch currents i will then be
given by egn 97, and from eqns 92 and 99,

-1 % :
e = [Z-z0(2) e z1(1 - ¥E) (100)
-1t
The symmetrical matrix C(Z') ¢ (=L) is the branch admittance matrix {of
driving point and transfer admittances) relating branch currents i to the
equivalent branch voltage sources (E-ZI). The symmetrical matrix

-1 % !
[z - 2¢(2') '¢'Z] (=if) is similarly the branch impedance matrix.

8.1.4 Node solution. Combiring the current relations of egns 92 and 96

and the voltage relation of egn 97 for eliminating i gives the solution
for node-to-datum voltages

/ -1t
et = (Y') 5 ¥(zI -E) , Y' = &% (101)

where Y' is the nodal admittance matrix, The branch voltages e will be
given by egqn 97, and from equs 92 and 101,
} -1, 6.~ i
i = [Y-ya(y') AYI(E - 21) (102)
Contributions to the coil variables J, V from the assumed given

E', I' can be obtained from eqns 92, 97, 99 and 101 in the form

T i =1 =1 et i Ty ]
PV Z0{ 4! ! EY, T AR i B -
M L RN L I R Y
Lol o)™ wmeey™ i T w owlirg
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Using the identities obtained from egns 99, 102 and 100, 101 gives

voowar) b L clz) et Lo (104)

z-20(2") 6% - ax)at - m (105)
Then Y-YY = L, 4 - Z4lZ = W (106)
and with matrices R and T defined by egn 103, egns 104, 105 give

I, = ar® + TCt = MY + ZL (107)
Also ) - ’hm , (z')“1 . (108)

Harrison21 derives eqns 106-108, associated with the topological character—
istics of the linear graph, using the rank and algebraic properties of
metrices equivalent to A and C, For the network problem, with mutuslly
reciprocal matrices Z and ¥, a simpler derivation follows directly as

above using the mesh and nodal solution equations.

6
8.1.5 Xron's 'orthogzonal network' solubtion 7 Kron defines the network

problem using both mesh and nodal representations with nonsingular trans-
formations and derives formulas for interconnecting solutions based on an
'orthogonal network' concept. For purposes of interconnection the
impressed sources are confined to the links and node-to-datum paths of

the tree by the relations

'

E - | T
i

t

i

| 1 (109)
LT

=
A"
—
il
i

o1, [
-1

RS o s

Then coil variables, including the constraints of eqn 97,

a0 (e et
. T l
V = 848 = § = Q! i = zJ (110)
A U iim LR
i e B Bl L5
B, & g f 1]
T s T4 = . | = 8| = W (111)
’ 0 Cpilav} Lir)
B T - 7 l'[ % TS e
gLving ! A Y o L S Bl (112)
[ B' Parg bt it
1] -1, et t f[et: = [et”
AR LB | Bt | LB
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[z, o~ (Y, 07
Now assuming g = | | ¥ o= | (114)
io 2y | Lo YLj
and using eqn 94,
- - t t T bt BT
2 Z.° B Z B ~Z, A | B.% B % B 3
= i ;] i 2
-A_Z Z A i -/ i
%5 4] e BER 1+ | § 4 sk
rY, Y fAtY s b’y a, 8% 1 [abm APy ]
- I i T = = ) - i i
g _1 2i= th :inT L°LL LLiz LLé (116)
A ; i A § :
RERN L % ] 1S |
Egns 112 and 113 can also be zolved in terms of the partitioned components
of Z and Y to give
-1 -1 =
s J SR R e = (2, - Z.2 Z_)I' 2.2 B!
1 = Zl,_ (14‘ 3 ), (1 g ZJ) + 2 (117)
= ; -1
o=y I' - Y B! L Y -YY Y E b R R 118
Egns 117 and 118 form the basis of Kron's work on network tearing and
interconnection. Now setting B = 0 and comparing eqn 117 with 101 gives

the nodal solution matrix

-1 -1
-v-' . & ' {74
(1)~ = 2 - L2 Zy (119)
Similarly, setting I = 0 and comparing egns 118 and 99 gives
=14
t = - Y Y Y {120
CONNEINAES S 3 (120)
Then from egns 115, 116, 118 and 119 and using eqn 94
-~ 1
1 . (4 - A
(y') = z, = 2, [AL?’A + L 1 Al I = i i (121)
-1 t =1 &
' - A Ta A
(@) = v - YA LAY A+ LYLAL1 ALY
t =1
= ~¥ ¢ +C Y i
- YL YL T[Y T LCT] CTYL (122)

Egn 121 forms the basis for interconnecting solutions associated with
added links and subnetworks,

cis i) 3w2l §36 . :
8.2 K-partitioning 792143 The X(Kron) method of partitioning is

considered independent of the network topology
FA AT x “1 p

A, A
5% %) |

Ax = {123)

P

> P

2

l
-

Thus direect solution of
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with nonsingular matrix A1 leads to

Tl A7 m -A A B
X“j E i }\‘1 + 4 :2 LLBA'; s T ;
= -1 i

[ =i [ s SRR

}
31 S1LP2]
A similar solution is given by
i o} T
( & R GAZAL
-1
i A GA A
By oS, SRy

—1 l
.A. = 3 "'"I . _1| 3
[,—AA &5G 3 !

The method generally requires less computational effort than direct matrix

inversion, It has also been referred to as the escalator method of

at

inversion™ ., Decreasing the size of the subunits reduces the number of
multiplicgtions and results in a Gaussian elimination schem956 which
represents the most efficient form of K-partitioning. A comparison of

the elements of egns 124 and 125 gives the Householder formulaja, referred

1

3

-1

to as the method of modified matrices

=1

....1 . - _-1 -
(F + GHK) = F ~-F 1G(H + KF 1-3) @ (126)

Egn 126 is used extensively with covariance error matrix calculations in
least-squares theory, and also has application for inverting large
matrices in terms of a known inverse and an additional outer productB?.
Tt is also included inherently in Kron's method of tearing and inter-

connection.

8.3 Least-squares estimation

The least-sguares estimation of parameters or states from a
static set of correlated data represents a classical problem of fundamental
importance, and provides an important basis for the solution of the
estimation, identification and control problem associated with the linear
dynamic system29. The basic linear least~squares problem is formulated
in terms of a relation between an observed m-vector ¥y and an unkncwn n-
parameter or state vector x stated as a measurement process of the Form

y = Hx (127)
where H is a known mxn matrix. If the data is exact and the matrix H
is nonsingular, i.e., m = n = rank H, a unique solution is given by the
direct inverse of matrix H. If H is of maximal rank n (< m) with

linearly independent columns associasted with a set of overdetermined
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equations, with more rows than columns, a vector x cannot be found to
satisfy egn 127 exactly. 1In this case a 'best! approximate solution in
the sense of minimising the scalar Euclidean norm or squared residual-
error functilon
avt P ” a {12
J = (y~HZ) (y~HX) = |ly-=H x ||

(128)
can be obtained. Setting 3J/3X = 0 then gives the least-squares estimate
as the solution of a set of normal equations

Ia t "1 t

x = (HH) H y (129)
If m<n, with fewer equations than unknowns, a 'best' solution must be
defined in terms of a generalised inverse HT. If the columns of H are

t

linearly independent, matrix H H is symmetric and positive definite and
thus nonsingular. The solution of egn 129 corresponds to a linear trans-
formation of y of the form

t -1 _t
z = H(HH) 1 Hy = Uy (130)

2

L =

ik

[

M o

e

g . i ' -t
The matrix M is symmetric and idempotent, i.e., ¥ = M,

In a statistical framework the estimation problem is formulated

by including an additive m-vector of uncorrslated random measurement

grrors Ve Thus the observed data is assumed to be in error and related
to the true measurement vector X, at stage i by
yy o= H X o+ LI bw Os 1 as (151)

sctors v, are assumed to represeat independent Gaussian random white
noise sequences which introduce uncertainty or residual errors into the
output measurements. They are defined with Zero mean and a covariance
matrix specified by

% L8 4.3
Elv.1 =0 Elv.v.l = R.A K. . = WL T
[ i 3 [ 455 1 ij: j_,j io i}éJ s Wall'e is the

expectation operator and Ri is a positive definite symmetric matrix,

The general state estimation probiem is defined in terms of estimating,

. . {
in some optimal sense, the sequence of states Jx ,..x,,..xk,..x
¢ i

{
ket )

based on the observed finite sequence Ey oy and the measurement eqn
)

k)
131.  We now seek the unbiased least-squares estimate of x, such that
E[%] = E[x], and consider the minimisation of' the scalar sum of weighted

squared residuals

7 = Eflly - mxli2) (132)
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where V is a symmetric positive-definite mxno weighting matrix, VMinimg gq-

tion of J(%) with 23/3% = 0 gives the 'best' linear least-squares estimate

; t_ =1 %
by (HVH)AjHVy

i
1

By (133)
or X = X+ Bv (134)

representing a linear unbiased estimate with BY - HtBt = In. In this
case the transformation matrix ¥ = HB is not symmetric, Combining egns
132 and 133 gives

I o= ¥ (I - HB)y (135)

The error covariance matrix for the least-squares estimate is
“ it
P = Bl(x~-x)(x-2)]= E[vatBt] - mB° {136)

and with the least-squares weighting matrix equal to the inverse of* the

error covariance matrix of the additive noise in the measurement process,

ie. V=R,
F

The estimate

10~

- @% ') (137)
X given by eqn 133 with V = R—1 then possesses minimum
covariance-of-error and defines the Gauss~Harkov theoremzé. The least~
squares unbiased estimate is not necessarily optimal and is a special case
of the linear minimum-variance eastimate. It requires, however, no a
priori information on residual errors and is the most widely used method
of estimation. With a priori information concerning the previously
assumed unknown vector x, represented by E[xxt] = 8, E{vxt] = 0, the
linear estimate associated with min %é%y—ngfg +!§xf g{
o ’

o= (@R, sy HtR"1y = P HtR-jy (138)

26

giving reduced error variasnce P .

is




