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Abstract: In nonlinear system identification, the available observed data are conventionally 

partitioned into two parts: the training data that are used for model identification and the test data that 

are used for model performance testing. This sort of ‘hold-out’ or ‘split-sample’ data partitioning 

method is convenient and the associated model identification procedure is in general easy to 

implement. The resultant model obtained from such a once-partitioned single training dataset, however, 

may occasionally lack robustness and generalization to represent future unseen data, because the 

performance of the identified model may be highly dependent on how the data partition is made. To 

overcome the drawback of the hold-out data partitioning method, this study presents a new random 

subsampling and multifold modelling (RSMM) approach to produce less biased or preferably unbiased 

models. The basic idea and the associated procedure are as follows. Firstly, generate K training 

datasets (and also K validation datasets), using a K-fold random subsampling method. Secondly, detect 

significant model terms and identify a common model structure that fits all the K datasets using a new 

proposed common model selection approach, called the multiple orthogonal search algorithm. Finally, 

estimate and refine the model parameters for the identified common-structured model using a 

multifold parameter estimation method. The proposed method can produce robust models with better 

generalization performance. 
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1.   Introduction 

A mathematical model of a nonlinear dynamical system is usually defined by two properties: the 

model structure and the associated model parameters. The central task in any nonlinear system 

identification task is to construct, based on available observations, a suitable model structure using 

some specified elementary building blocks, and then to calculate the associated model parameters 

using some linear or nonlinear parameter estimation algorithm. Take the commonly used linear-in-the-

parameters regression modelling problem as an example, where a linear regression model is employed 

to describe the underlying system, and where candidate model terms or regressors are formed by some 

linear or nonlinear combinations of lagged input and output variables. The initial full regression model 

may be very complex and will typically include a great number of candidate model terms and some 

efficient model structure selection procedures, using either the best subset or stepwise search methods, 

will need to be performed to determine which model terms are important and should be included in the 

model. The forward stepwise regression method, especially the well known orthogonal forward 

regression (OFR) type methods (Billings et al. 1989b, Chen et al. 1989), have been widely employed 

in recent years for model structure identification of nonlinear dynamical systems (Leontaritis and 

Billins 1987, Billings et al. 1989a, Billings and Chen 1989, Chen et al. 1992, Zhu and Billings 1993, 

1996, Billings and Zhu 1994, Aguirre and Billings 1994, 1995a, b, Chen et al. 1996, Billings and Chen 

1998, Correa et al. 2000, Harris et al. 2002, Hong et al. 2003a,b,c, Wei et al. 2004, Tsang and Chan 

2006, Truong et al. 2007).  

Conventionally, the available observational dataset is often partitioned into two parts: the training 

data that are used for model identification including parameter estimation, and the test data that are 

used for model performance testing. The main advantage of this sort of ‘hold-out’ or ‘split-sample’ 

data partitioning method is that it is convenient and the associated model identification procedure is in 

general easy to implement. Notice, however, that the division of the training and test data using the 

‘hold-out’ method, for model identification, may sometimes be subjective and models produced by the 

once-partitioned single training dataset may occasionally be biased, because the identified model 

structure and the estimated model parameters can be highly dependent on how the given dataset was 

partitioned. The most useful approach, to overcome the drawbacks of the hold-out method for 

nonlinear dynamical modelling, is to introduce cross-validation, which has been extensively applied in 

conventional linear regression and related models (Allen 1974, Stone 1974, Golub et al. 1979, Shao 

1993), into the model identification procedures (Stoica et al. 1986, Ljung 1987). In fact, leave-one-out 

(LOO) cross-validation has been introduced for model parameter estimation of nonlinear regression 

models (Hansen and Larsen 1996, Myles et al. 1997, Monari and Dreyfus 2002) and for model 

construction of linear-in-the-parameters regression models for nonlinear dynamical systems (Hong et 

al. 2003a, b, c, Chen et al. 2004). It has been shown that by incorporating the LOO cross-validation in 

the OFR procedure, the resultant algorithms can often produce efficient sparse models for nonlinear 
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identification problems using the linear-in-the-parameters regression form of models (Chen et al. 

2004). Recent applications of the forward or backward orthogonal selection algorithms, assisted by the 

LOO criterion, can be found in Truong et al. (2007) and Hong and Mitchell (2007). A variation of the 

conventional LOO criterion for model subset selection of nonlinear systems can be found in Billings 

and Wei (2007). An attractive advantage of LOO for dealing with linear least squares problems is that, 

a closed form solution is available to calculate the associated LOO criterion from the results of a 

single least-squares fit to all training samples. 

It has been shown that although LOO cross-validation produces almost unbiased estimates for the 

expected generalisation error (Stone 1974, Efron and Tibshirani 1993), the associated variance may be 

very large (Efron 1983, Breiman 1996). Another drawback of the LOO cross-validation is that it is 

unstable with respect to small perturbations in the data, that is, a slight data perturbation may lead to a 

drastic change in the resultant regression models (Breiman 1996). Furthermore, LOO cross-validation 

also has some more subtle deficiencies in model subset selection. For example, it has been shown 

(Shao 1997) that for linear regression models, LOO is asymptotically equivalent to the AIC and 

Mallow’s Cp criteria; however, leave-v-out cross-validation, is asymptotically equivalent to Schwarz’s 

Bayesian information criterion (BIC), for some specifically chosen v. It is known that, with the same 

subset selection procedure, the number of model regressors chosen by using the AIC criterion is 

always greater than that chosen by using the BIC criterion. Results from numerous simulations have 

shown that while AIC tends to produce badly overfitted models with a small number of training 

samples, BIC can still work well (Hurvich and Tsai 1989, Shao and Tu 1995). This suggests that 

leave-v-out cross-validation, with some appropriately chosen values for v, should provide better results, 

for linear regression models. In fact, Breiman and Spector (1992) found that, for subset selection and 

evaluation in linear regression modeling, leaving out 10% to 20% of the data gave better results than 

LOO.  

With the aforementioned observations and keeping in mind that prediction accuracy is often the 

‘gold standard’ for model identification, this study aims to present a new random subsampling and 

multifold modelling (RSMM) approach to produce robust models with better generalization properties. 

The implementation of the RSMM method consists of three stages. The first stage involves data 

resampling, which is quite similar to K-fold random cross-validation. At this stage, K training datasets 

are independently generated; each dataset contains a certain number of data points that are randomly 

selected from a specified dataset. Corresponding to each training dataset, a validation dataset can be 

obtained by removing the training data points from the whole measured dataset. The second stage 

involves the detection of common significant model terms and the identification of a common model 

structure that fits all the K datasets. A new common model selection approach, called multiple 

orthogonal search (MOS) algorithm, is proposed to achieve the target of this stage. The objective of 

the third stage is to refine the associated model, by applying a multifold parameter estimation 

approach to the identified common-structured model, to produce some improved estimates of the 
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model parameters.  

The paper is organised as follows: In section 2, the linear-in-the-parameters regression model is 

briefly presented. In section 3, the three stages are presented in detail. Some examples are provided in 

section 4, to demonstrate how well the new proposed RSMM approach works on model identification 

of nonlinear systems. The paper ends with summary in section 5, where some comments are given. 

2.   The Linear-In-The-Parameters Model 

Consider the identification problem for nonlinear systems given  pairs of input-output 

observations, , where u(t) and y(t) are the observations of the system input 

and output, respectively. The relationship between the input and the output of a wide class of nonlinear 

systems can formally be described using the NARX (Nonlinear AutoRegressive with eXogenous 

inputs) model below (Leontaritis and Billings 1985, Pearson 1995, 1999, Ljung 2001)  

0N

},,2,1:))(),({( 0Nttytu L=

)())(,),(),(,),1(()( tentutuntytyfty uy +−−−= LL                                                               (1) 

where f is some nonlinear function, and  are the maximum lags in the input and output, 

respectively, and e(t) is an independent identical distributed noise sequence. 

un yn

The function f is in general unknown and needs to be identified from given observations of the 

system. The task of system identification is thus to find, from the given data, a nonlinear approximator 

 that can represent the true (but unknown) function f. Generally, the identified model should not 

only fit the observed data accurately, but also possess good generalization properties, meaning that the 

model is capable of capturing the underlying system dynamics, so that the model can be used for 

simulation, prediction, and control. One commonly used approach, for effectively reconstructing the 

nonlinear function f, is to construct a nonlinear approximator using some specific types of basis 

functions including polynomials, radial basis functions, kernel functions, splines and wavelets 

(Leontaritis and Billings 1987, Chen and Billings 1992, Brown and Harris 1994, Murray-Smith and 

Johansen 1997, Cherkassky and Mulier 1998, Liu 2001, 

f̂

f̂

Harris et al. 2002, Wei and Billings 2004, 

Billings and Wei 2005a). More often, models constructed using these methods can easily be converted 

into a linear-in-the-parameters form, which is an important class of representations for nonlinear 

system identification, because compared to nonlinear-in-the-parameters models, linear-in-the-

parameters models are simpler to analyze mathematically and quicker to compute numerically. 
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A general form of the linear-in-the-parameters regression model is given as 

)()())((ˆ)(
1

tettfty
M

m
mm +== ∑

=

φθx )()( tetT += θφ                                                                    (3) 

where M is the total number of candidate regressors, )(tmφ ))(( tm xφ= (m=1,2, …, M) are the model 

terms generated, in some specified way, by the elements of the ‘input’ (predictor) vector ,)(tx mθ are 

model parameters, and  and  are the associated regressor and 

parameter vectors, respectively. Notice that in most cases the initial full regression equation (3) might 

be highly redundant, some of the regressors or model terms can thus be removed from the initial 

regression equation without any effect on the predictive capability of the model, and this elimination 

of the redundant regressors usually improves the model performance. Generally, only a relative small 

number of model terms need to be included in the regression model for most nonlinear dynamical 

system identification problems. An efficient model term selection algorithm is thus highly desirable to 

detect and select the most significant regressors. 

T
M ttt ))]((,)),(([)( 1 xxφ φφ L= θ

3.   The Random Subsampling and Multifold Modelling Approach 

The random subsampling and multifold modelling (RSMM) approach consists of three steps: 

random subsampling, common model structure identification and model parameter estimation. 

3.1  Random subsampling 

Random resampling methods, including cross-validation, bootstrapping and jackkniffing (Devijver 

and Kittler 1982, Efron and Gong 1983, Efron and Tibshirani 1993), have been widely applied for data 

analysis and nonparametric modelling tasks. This study, however, employs a K-fold random 

subsampling method to generate, from a set of chronologically recorded observations, a number of 

training and validation datasets, which are to be used for model identification including parameter 

estimation of nonlinear systems. 

Consider the model identification problem for a nonlinear dynamical system, where pairs of 

observations, , are available. Following the conventional routine of the 

‘hold-out’ method, the data pairs are first split into two parts: the training dataset consisting of the 

first N data pairs, and the test dataset consisting of the remaining  data pairs. 

Let

0N

},,2,1:))(),({( 0Nttyt L=x

0N

NN −0

},,2,1:{ NtB t L== ξ  and },,1:{ 0NNtT t L+== ξ , where ))(),(( tytt x=ξ is the t-th sample 

(observation pair). Following the idea of conventional cross-validation, samples in the dataset B can be 

resampled as follows: 

•   K-fold cross-validation. The dataset B is split, along the coordination of the sampling index t, into 

K subsets, with roughly equal data length (number of samples). The hold-out method is then 

repeated K times, and at each time, one of the K subsets is used as a validation set and the other   
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K-1 subsets are used as a training set. 

•   K-fold random subsampling. The dataset B is randomly partitioned into K different subsets; each 

subset contains a certain number of samples that are randomly selected (without replacement) from 

B. Each of the K subsets is successively used as a validation set.  

Note that the two K-fold resampling methods above are slightly different in detail in that the splitting 

in the first case works on ordered data, while in the second case it works on randomly permuted data. 

Although from a statistical point of view these two sampling methods are equivalent, it is important to 

distinguish these two cases when the data comes from a dynamical system because the order of the 

samples is important for dynamical signals. This study considers the K-fold random subsampling 

method, which is implemented as below. 

•   Step 1. Let and },,2,1{0 NL=Γ }:{ 0Γ∈=Γ ii  be a random permutation of 0Γ . Divide the index set 

 into K different parts, , where each part is roughly with the same size. Γ KΓΓΓ ,,, 21 L

•   Step 2. Let },:{ kttk tBV Γ∈∈= ξξ  and }\,:{\ kttkk tBVBB ΓΓ∈∈== ξξ , with k=1,2, …,K. Each 

is used as a training set and each  is used as a validation set. kB kV

For the given pairs of samples0N },,2,1:))(),(({ 0Nttytt L== xξ , both the associated training dataset 

},,2,1:{ NtB t L== ξ  and the K training sets , along with the K validation sets 

 , will be used to identify an appropriate regression model of the form (3) for the relevant 

dynamical system. This will be achieved with a new multiple orthogonal search algorithm (MOS) 

below. 

KBBB ,,, 21 L

KVVV ,,, 21 L

3.2  The multiple orthogonal search algorithm for model selection 

From the above discussion, it is known that all the datasets and come 

from the same dynamical system. These datasets should thus share, in theory, the same model 

structure, as well as the same model parameters. At the moment, however, the common model 

structure is not yet known and needs to be identified from these given datasets.  

KBBB ,,, 21 L KVVV ,,, 21 L

Let the number of samples in the training dataset  be , and denote these samples by kB kN kN

:))(),(({ , tyt kktk x=ξ ,, ktk B∈ξ  . The objective is to identify a common-structured 

sparse model, for the given system, from the following multiple regressions 

},,2,1 kNt L=
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1
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M

m
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xφθ )()(
1

,, tet k

M

m
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=

φθ                                                     (4) 

where ))(()(, tt kmmk xφφ = , with k=1,2, …, K, m=1,2, …, M, and t=1,2, …, . These equations can be 

expressed using a compact matrix form below 

kN

kkkk eθy +Φ=                                                                                                                        (5) 
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where , , , and   

with  for k=1,2, …, K and m=1,2,…, M.  

T
kkkk Nyy )](,),1([ L=y T

Mkkk ],,[ ,1, θθ L=θ T
kkkk Nee )](,),1([ L=e ],,[ ,1, Mkkk φφ L=Φ

T
kmkmkmk N )](,),1([ ,,, φφ L=φ

3.2.1  Multiple orthogonal search (MOS) for model term selection

The multiple orthogonal search (MOS) method, which can be considered as an extension of the 

well known orthogonal forward regression (OFR) type algorithms (Billings et al. 1989, Chen et al. 

1989), is developed to select a common-structured sparse model from the multiple regressions given 

by (4) and (5). Let , and denote by },,2,1{ MI L= }:{ ImD m ∈= φ  the dictionary of candidate model 

terms. For the kth training dataset , the dictionary D can be used to form a dual 

dictionary

kB

}:{ , Immkk ∈= φD , where the mth candidate basis vector  is formed by the mth 

candidate model term

mk ,φ

Dm ∈φ , in the sense that  (k=1,2, …,K). The 

common model term selection problem is equivalent to finding, from the dictionary

T
kkmkmmk N ))]((,)),1(([, xxφ φφ L=

}:{ ImD m ∈= φ , a 

subset D
nsss ⊂},,,{

21
φφφ L  (generally Mn << ), so that (k=1,2, …, K) can be satisfactorily 

approximated using a linear combination of  as 

ky
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The MOS algorithm selects significant model terms in a forward stepwise way, one model term at 

each search step. Initially, let (k=1,2, …, K).  For k=1,2, …, K and j=1,2, …, M,  calculate kk yr =0,
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Notice that , as the squared cosine of the angle between the involved vectors  and , 

provides a measurement of the similarity between the associated vectors, and can be used to measure 

the correlation dependence of on . The most significant common vectors, with respect to all 

the designed signals (k=1,2, …, K),  can  be determined by maximising (8). Notice also that 

can be explained as the error reduction ratio (ERR) that is introduced by including the mth 

basis vector  into the kth regression model; see Billings et al. (1989) and Chen et al. (1989) 

),(err )1( jk ky jk ,φ

ky jk ,φ

ky

),(err )1( jk

mskmk ,, φα =

 8



for a detailed explanation of ERR. From (7) and (8), the first significant common model term can be 

selected as the s1th element,
1sφ , in the dictionary D. Accordingly, the first significant basis vector for 

the kth regression model is thus , and the associated orthogonal basis vector can be chosen 

as .The model residual for the kth regression model, related to the first step search, is given 

as 

1,1, skk φα =

1,1, skk φq =

1,
1,1,

1,
0,1, k

k
T
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kk q
qq
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rr −=                                                                                                            (9) 

In general, the mth significant model term 
msφ can be chosen as follows. Assume that at the (m-1)th 

step, (m-1) significant model terms, 121 ,, −mφφφ L , have been selected. Let be the 

associated basis vectors for the kth regression model, and assume that the (m-1) selected bases have 

been transformed into a new set of orthogonal vectors via a standard Gram–

Schmidt orthogonal transformation. Let  
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Similar to given by (7),   here provides an indicator to show the correlation 

dependence of on , and the most significant common vectors can  be determined by 

maximising (12). The mth significant common model term can then be selected as the th element, 

),(err )1( jk ),(err )( jkm

ky )(
,
m

jkp

ms

msφ , in the dictionary D. Accordingly, the mth significant basis vector for the kth regression model is 

thus , and the associated orthogonal basis vector can be chosen as .The model 

residual for the kth regression model, related to the mth step search, is given as 
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Notice that  can be explained as the error reduction ratio (ERR) (Billings et al. 1989, 

Chen et al. 1989) that is introduced by including the mth basis vector  into the kth 

regression model. The criterion (12), by maximizing the sum of the ERR values, relative to all the K 

data sets, guarantees that the variation of the outputs in all the K data sets can be explained by 

including the model term 

),(err )(
m

m sk

mskmk ,, φα =

msφ , with the highest percentage, compared with selecting any other 

candidate model term }:{ ImD m ∈=∈ φφ . The quantity 

∑ == K
k m

m skKm 1
)( ),(err)/1()AERR(                                                                                    (14) 

 is referred to as the mth average (or overall) error reduction ratio (AERR). 

Subsequent significant vectors can be selected in the same way step by step.  Once the first (m-1) 

basis vectors  (respectively the associated orthogonalized vectors 

) have been determined, then these (m-1) vectors together with the mth vector 

 (respectively the orthogonalized vector ) , can explain the variation in the 

outputs of the K data sets with a higher percentage than by including any other candidate vectors. This 

step-by-step forward selection algorithm is a non-exhaustive search method, and may not always 

produce the global optimal solution. For most problems, however, this algorithm usually produces 

satisfactory and nearly optimal results. 

1,2,1, ,,, −mkkk ααα L

1,2,1, ,,, −mkkk qqq L

mskmk ,, φα = )(
,,
m

skmk m
pq =

From the above orthogonal procedure, it is known that the vectors and  are orthogonal, 

thus  
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By respectively summing (13) and (15) for m from 1 to n, yields 
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Equation (16) shows that  can be approximated using a set of orthogonal vectors , 

which are transformed from the original vectors . The norm , or 

some associated variations, is often used to form a criterion to determine the model complexity (model 

size) in some conventional identification procedure, where observed data are partitioned using the 

‘hold-out’ method. In this study, however, the model complexity will be determined using the BIC 

criterion and this will be described in 3.2.3. 

ky },,,{ ,2,1, nkkk qqq L

ksksksk n
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3.2.2  Parameter estimation of individual models

It is easy to verify that the relationship between the selected bases  and 

the associated orthogonal bases , for the kth data set, is given by 

ksksksk n
D⊂},,,{ ,,, 21

φφφ L

nkkk ,2,1, ,,, qqq L

nknknk ,,, RQA =                                                                                                                       (18) 

where ,  is an ],,,[ ,,, 21 nskskskk φφφA L= nk ,Q nNk × matrix with orthogonal columns 

, and  is an unit upper triangular matrix whose entries are calculated during 

the orthogonalization procedure. The unknown parameter vector, denoted by ,  for 

the regression with respect to the original vectors, can be calculated from the triangular equation 

, where the elements of  are given by  for 

m=1,2, …, n. 

nkkk ,2,1, ,,, qqq L nk ,R nn×

T
nkknk ],,[ ,1,, θθ L=θ

nknknk ,,, γθR = T
nkk gg ],,[ ,1, L= nk,γ )/()( ,,,, mk

T
mkmk

T
kmkg qqqy=

3.2.3  Model size determination

Model selection criteria are often established on the basis of estimates of prediction errors, by 

inspecting how the identified model performs on future (never used) data sets. Several criteria, for 

example, the Akaike information criterion (AIC) (Akaike 1974), the Bayesian information criterion 

(BIC) (Schwarz 1978), the minimum description length (MDL) (Rissanen 1978), the generalised 

cross-validation (GCV) (Golub et al. 1979), and many variants (Miller 1990, Hansen and Yu 2001，

Stoica and Selen 2004), are available to determine the model complexity or model size (number of 

regressors). In this study, however, one variation of the conventional BIC (Efron and Tibshirani 1993) 

is considered, and this given as below 

)MSE()ln(1)BIC( p
pN

Npp ⎥
⎦

⎤
⎢
⎣

⎡
−

+=
NpN

Np RSS)ln(1 ⎥
⎦

⎤
⎢
⎣

⎡
−

+=                                                             (19) 

where is the observed (or desired) output sequence of length N, MSE and RSS represent the mean-

squared-error and the residual sum of squares, respectively, corresponding to the choice of the model 

of p terms. The relationship between MSE and RSS is defined as , 

where represents the associated model residual. 

y

NNpp p /||||/)RSS()MSE( 2r==

pr

Now consider again the multiple (K-fold) regression modelling problem discussed in the previous 

section. The present study uses a weighted average information criterion to determine the number of 

common model terms. The weighted average BIC is given by 

)(WABIC)1()(WABIC)(WABIC (Val)(Train) ppp αα −+=                                                         (20) 

whereα is a constant satisfying 10 ≤≤α , and  respectively represent )(WABIC(Train) p )(WABIC(Val) p
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the values of the associated weighed average information criterion, corresponding to the model of p 

terms, calculated by applying the BIC to the relevant training and validation data sets as below  

∑
=

=
K

k
k p

K
p

1

(*)(*) )(BIC1)(WABIC                                                                                              (21) 

where ‘*’ indicates either ‘Train’ or ‘Val’, meaning that and are calculated 

from either the training datasets , or the validation datasets . The subscript k 

in  indicates that the criterion is for the kth model and is associated with the kth training and 

validation data set.  

)(BIC(*) pk )(WABIC(*) p

KBBB ,,, 21 L KVVV ,,, 21 L

)(BIC(*) pk

3.3  Model parameter estimation and refinement 

Assume that a total of n common model terms, , have been 

selected by applying the multiple orthogonal search (MOS) algorithm to the associated training dataset 

B that consists of N data pairs, 

n
mm t 1))}(({ =xω Dt n

mim
⊂= =1))}(({ xφ

},,2,1:))(),({( Nttyt L=x . The common-structured model can then be 

described as 

)())(()(
1

tetty
n

m
mm +=∑

=

xωβ )()(
1

tet
n

m
mm +=∑

=

ωβ                                                                (22) 

3.3.1  Ridge regression

Let be the design matrix associated with (22), y the output vector, and the 

model parameter vectors. The least squares estimator of the model parameter vector is then given by 

Φ T
n ],,,[ 21 βββ L=β

β

yβ TT ΦΦΦ= −1
LS )(ˆ                                                                                                                 (23) 

Note that the least squares method may occasionally produce very poor estimates of the regression 

coefficients when it is applied to non-orthogonal data (Montgomery et al. 2001), meaning that the 

absolute value of the least squares estimates may be too large and that they are very unstable, that is, 

their magnitudes and signs may change considerably given a different sample (Montgomery et al. 

2001). This stems from the requirement that the estimate  be an unbiased estimator of β . One way 

to alleviate this problem is to drop the requirement that the estimator of β  be unbiased by using ridge 

regression, a penalised least squares method originally proposed by Hoerl and Kennard (1970a,b) . 

The ridge estimator is defined as 

LSβ̂

Rigβ̂

yIβ TT Φ+ΦΦ= −1
Rig )(ˆ λ                                                                                                        (24) 

where 0≥λ  is some constant. Hoerl and Kennard (1976) proposed to use the following iterative 
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estimation procedure to determine the ridge biasing parameterλ .  

•    Step 0: Calculate 

 
LSLS

2
LS

0 ˆˆ
ˆ
ββT

nσλ =                                                                                                                            (25) 

where 

)ˆ()ˆ(1ˆ LSLS
2
LS βyβy Φ−Φ−

−
= T

nN
σ                                                                                     (26) 

•    Step k ( ): Calculate 1≥k

)(ˆ)(ˆ
ˆ

1Rig1Rig

2
LS

−−

=
kk

Tk
n

λλ
σλ
ββ

                                                                                                     (27) 

where is the ridge estimator corresponding to the biasing parameter)(ˆ
1Rig −kλβ 1−kλ .  

Results from our own simulation studies have shown that the above iterative estimation procedure 

converges very fast, and in most cases the biasing parameter kλ becomes unchanged (a constant) after 

only three or five steps. 

3.3.2  K-Fold estimation

This study proposes using a K-fold parameter estimation approach to obtain more robust estimates 

of the model parameters. Either the least squares (23) based or the ridge regression (24)-(27) based K-

fold estimation approach can be used to achieve this objective. Taking K-fold ridge regression as an 

example, the associated procedures can be briefly summarised as follows: 

•   Step 1: Apply the K-fold random subsampling method to the associated training dataset B, to 

generate K subsets , each roughly containing say 90% data samples in B. KΩΩΩ ,,, 21 L

•   Step 2: Apply the ridge regression to the training dataset B, and let the resultant ridge estimator be 

. )0(
Rigβ̂

•   Step 3: Apply the ridge regression to these K subsets KΩΩΩ ,,, 21 L . Let the resultant ridge 

estimator, relative to the kth dataset kΩ , be , with k=1,2, …, K. )(
Rig

ˆ kβ

•   Step 4: The average of the K+1 ridge estimators, defined as , is chosen as 

the model parameter vector of the associated model. 

∑ = += K
k

k K0
)(

RigKF )1/()ˆ(ˆ ββ

4.   Examples and Applications 

Two examples are provided to demonstrate the application of the proposed random subsampling 

and multifold modelling (RSMM) approach. The data used in the first example are simulated from 

some low-order nonlinear models; the objective is to illustrate how well the RSMM approach works 
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on improving the model parameter estimates for nonlinear models, where the model structure is 

assumed to be known. The data used in the second example are for a wild type of fly, called 

Drosophila; this example involves a real-world nonlinear input-output system identification problem. 

4.1  Improved parameter estimates with known model structure

Consider two models given below 

1M :   )1(8.0)2(6.0)1(8.0)( −+−−−= tutxtxtx )1(7.0)1(6.0)1(4.0 432 −−−+−− tututu           (28a) 

)()()( ttxty ε+=                                                                                                                  (28b) 

2M :                                     (29a) )2()1(2.0)2()1(4.0)2(5.0)1()( 2 −−−−−+−+−= tututututututx

)()()( ttxty ε+=                                                                                                                  (29b) 

where u(t) is the input, y(t) is the output, x(t) is the state, and )(tε is the additive noise signal. The 

properties of u(t) and )(tε , along with some simulation conditions, are described in the details later. 

The objective here was to identify, from given observations of the system input and output, the model 

parameters. The systems were simulated and the associated input-output observations were recorded; 

these observations were then used for model parameter estimation, under an assumption that the model 

structure was known but the model parameters were unknown.  

The input-output description of the models (28) and (29) was assumed to be known as below 

)()()( ttty T ε+= βφ                                                                                                               (30) 

where  is the regressor vector that will be used to form the associated design matrix, and β  is the 

model parameter vector. For the models (28) and (29), the vector is respectively given as 

)(tφ

)(tφ

Ttututututxtxt )]1(),1(),1(),1(),2(),1([)( 432 −−−−−−=φ , 

and 

Ttutututututut )]2()1(),2()1(),2(),1([)( 2 −−−−−−=φ , 

while the true parameter vector β  for the models (28) and (29) is respectively given by 

 and . T],,,[ 621 βββ L=β T]7.0,6.0,4.0,8.0,6.0,8.0[ −−−= T],,,[ 4321 ββββ=β T]2.0,4.0,5.0,1.0[ −=

4.1.1   Experiments for model  1M

The input u(t) was uniformly distributed on [-1, 1], and the noise . Four cases, 

corresponding to 

),0(~)( 2σε Nt

σ =0.0106, 0.1071, 0.3374 and 0.5979, were considered. These enable the signal-to-
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noise ratio (SNR) to be roughly 40, 20, 10 and 5dB, respectively. Simulations and Monte-Carlo 

experiments were carried out by performing the procedures below: 

•    For each case, the model was simulated 200 times 

•    At each time of simulation, a data set containing 500 input-output data points was collected.  

•   For each of the 200 datasets, the ordinary least squares algorithm was used for parameter 

estimation. 

•    For each of the 200 datasets, the K-fold parameter estimation procedure, described in section 3.3, 

was performed for parameter estimation, where K was chosen to be 10.  

Let be the estimate of the pth parameter , produced from the qth dataset using either the 

ordinary least squares algorithm or the K-fold parameter estimation method, where p=1,2,3,4,5,6, and 

q=1,2,3, …, 200. This study uses the following three statistics to measure the performance of the 

parameter estimates for a known model structure. 

)(ˆ q
pβ pβ̂

•   The mean (or average) 

∑
=

=
200

1

)(mean ˆ
200
1ˆ

q

q
pp ββ                                                                                                                 (31) 

•   The standard deviation 

2/1

2
200

1

mean)(dev ]ˆˆ[
200
1ˆ

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−= ∑

=q
p

q
pp βββ                                                                                            (32) 

•    The mean of the total relative error 

%100
ˆ

6
1

200
1ˆ

200

1

6

1
)(

)()(
MTRE ×⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
= ∑ ∑

= =q p
q

p

q
p

q
p

p β
ββ

β                                                                            (33) 

The three statistics associated with the above four cases are listed in Table 1. 

4.1.2   Experiments for model  2M

The input u(t) was an AR(2) process of the form u(t)=1.6u(t-1)-0.6375u(t-2)+ , and the 

noise 

)(16.0 tw

)(tε was of the form )()1(75.0)( tcwtt +−= ηη , where with and c is a constant. 

Four cases, corresponding to c=0.01, 0.1, 0.25 and 0.5, were considered. These make the signal-to-

noise ratio (SNR) to be roughly 40, 20, 10 and 5dB, respectively. The same simulations and Monte-

Carlo experiments, as described for the previous model , were carried out, and the associated 

results are shown in Table 2. From the results given in Tables 1 and 2, it can be concluded, in a 

statistical and an asymptotical sense, that: 

)1,0(~)( Ntw

1M
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•   When the SNR is high, both the ordinary least squares algorithm and the K-fold estimation methods 

can provide very good parameter estimates, with low standard deviations and low total relative 

errors. 

•   The variance of the parameter estimates produced by the ordinary least squares algorithm is much 

greater than that produced by the K-fold estimation methods.  

•   The total relative errors of the parameter estimates produced by the ordinary least squares 

algorithm is much greater that that produced by the K-fold estimation method.  

•   The variance of the parameter estimates produced by the K-fold ridge regression is less than that 

produced by the K-fold least squares method.  

•   The total relative errors of the parameter estimates produced by the K-fold ridge regression are 

comparable with those produced by the K-fold least squares method. 

 

 

 

Table 1  Comparisons of the parameter estimates produced by the ordinary least squares algorithm and 
by the K-fold RSMM method, for the model given by (28) 

 

Parameter estimates and the associated performance 
 

SNR 
Method 1β  2β  3β  4β  5β  6β  MTRE (%) 

LS 0.7998 -0.5999 0.8002 -0.3999 0.5998 -0.7002 0.4563% 
KLS 0.7999 -0.5999 0.8003 -0.4002 0.5997 -0.6998 0.0561% 

 
Mean 

KRR 0.7999 -0.5999 0.8003 -0.4003 0.5997 -0.6997 0.0566% 
LS 0.0005 0.0005 0.0031 0.0046 0.0048 0.0067  
KLS 0.0001 0.0001 0.0005 0.0008 0.0007 0.0012  

 
 

40dB 
 

Dev 
KRR 0.0001 0.0001 0.0005 0.0008 0.0007 0.0012  
LS 0.7855 -0.5868 0.7999 -0.4008 0.6004 -0.7015 5.0218% 
KLS 0.7857 -0.5870 0.8006 -0.4003 0.5995 -0.7023 1.0798% 

 
Mean 

KRR 0.7856 -0.5869 0.8007 -0.4039 0.5989 -0.6970 1.1937% 
LS 0.0048 0.0046 0.0287 0.0478 0.0438 0.0691  
KLS 0.0007 0.0007 0.0047 0.0078 0.0061 0.0109  

 
 

20dB 
 

Dev 
KRR 0.0007 0.0007 0.0046 0.0076 0.0060 0.0107  
LS 0.6789 -0.4908 0.7968 -0.4262 0.0611 -0.6711 19.6064% 
KLS 0.6784 -0.4901 0.8055 -0.4293 0.5898 -0.6664 8.2488% 

 
Mean 

KRR 0.6773 -0.4893 0.8057 -0.4545 0.5847 -0.6274 10.3088% 
LS 0.0166 0.0159 0.0915 0.1531 0.1391 0.2209  
KLS 0.0025 0.0021 0.0153 0.0186 0.0237 0.0266  

 
 

10dB 
 

Dev 
KRR 0.0025 0.0020 0.0144 0.0156 0.0222 0.0227  
LS 0.5130 -0.3458 0.8076 -0.4456 0.5858 -0.6612 34.3088% 
KLS 0.5117 -0.3459 0.8117 -0.4266 0.5789 -0.6929 17.0049% 

 
Mean 

KRR 0.5097 -0.3443 0.8106 -0.4856 0.5654 -0.5971 20.9344% 
LS 0.0274 0.0283 0.1554 0.2260 0.2321 0.3225  
KLS 0.0044 0.0038 0.0276 0.0457 0.0420 0.0699  

 
 

5dB 
 

Dev 
KRR 0.0044 0.0038 0.0236 0.0307 0.0356 0.0500  

 LS: Ordinary least squares algorithm; KLS: LS based K-fold parameter estimation;  
KRR: Ridge regression based K-fold parameter estimation; 
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 Table 2  Comparisons of the parameter estimates produced by the ordinary least 
squares algorithm and by the K-fold RSMM method, for the model given by (29).   

Method SNR 
1β 2β 3β 4β    MTRE (%)  

LS 0.9998 0.5001 0.4000 -0.2000 0.3393% 
KLS 0.9998 0.5002 0.4001 -0.2000 0.0619% 

   Mean 
KRR 0.9998 0.5002 0.4001 -0.2000 0.0622% 

 
40dB 

 LS 0.0056 0.0055 0.0009 0.0006  
KLS 0.0016 0.0014 0.0002 0.0001  

 
Dev  KRR 0.0016 0.0014 0.0002 0.0001  

LS 1.0000 0.4993 0.3995 -0.1997 3.8751% 
KLS 1.0014 0.4967 0.3995 -0.1995 0.4562% 

 
Mean 

KRR 0.9998 0.4980 0.3995 -0.1995 0.4174% 
LS 0.0508 0.0475 0.0096 0.0064  
KLS 0.0064 0.0094 0.0017 0.0011  

 
 

20dB 
 

Dev 
KRR 0.0064 0.0093 0.0017 0.0011  
LS 1.0049 0.4941 0.4021 -0.2004 10.3419% 
KLS 1.0035 0.4964 0.4038 -0.2002 1.2701% 

 
Mean 

KRR 0.9942 0.5039 0.4036 -0.1998 1.1024% 
LS 0.1315 0.1252 0.0253 0.0174  
KLS 0.0197 0.0209 0.0045 0.0021  

 
 

10dB 
 

Dev 
KRR 0.0191 0.0203 0.0045 0.0020  
LS 1.0182 0.4852 0.4001 -0.2005 20.1103% 
KLS 

 

 

 

 

 

 

 
0.9991 0.4909 0.4011 -0.1977 2.2415% 

 
Mean 

KRR 0.9996 0.5165 0.4006 -0.1962 2.7484% 

 
 

5dB  
LS 0.2514 0.2499 0.0480 0.0306  
KLS 0.0412 0.0342 0.0065 0.0054  

 
 Dev 

KRR 0.0376 0.0305 0.0065 0.0054  
 

 

4.2  Fruit fly modelling 

The fruit fly insect dataset contains 1000 experimental data points for a wild type of fruit fly, 

called Drosophila. The system input was the response of the photoreceptors (PR: mV), and the output 

was the response of the large monopolar cells (LMCs, mV). The relationship between the input and 

the output in the fruit fly experiment is complex, because in addition to the response from the 

photoreceptors, several other factors may also affect the output response of the large monopolar cells. 

The objective here was to find a model that reflects, as closely as possible, the relationship between 

the response of the photoreceptors (the input) and the response of the large monopolar cells (the 

output), to facilitate the analysis and understanding of the associate behaviour of this kind of insect.  

The 1000 input-output data points, which are shown in Figure 1, were partitioned into two parts: 

the training data set consisting of the first 800 points, and the test data set consisting of the remaining 

200 points. A Volterra series model was employed to describe the input-output relationship of the fruit 

fly data. The Volterra model is a special case of the linear-in-the-parameters form (3), where the 

‘input’ (predictor) vector contains no lagged output y(t-k), with . The input vector for 

the fruit fly data was chosen to be

)(tx 1≥k )(tx

Ttxtxtxt )](,),(),([)( 1521 L=x ,),2(),1([ L−−= tutu  , and 

the initial full model was chosen as  

Ttu )]15( −
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Fig. 1   The input and output signal for the fruit fly modelling problem.  
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A total of 136 candidate model terms were involved in the initial full model (34). A 10-fold random 

subsampling and multifold modelling (RSMM) approach, along with the weighed average BIC given 

by (20) where the weight coefficientα =0.5, was applied to the training dataset composed of the first 

800 data points. For a comparison, the conventional orthogonal forward regression (OFR) algorithm, 

along with the BIC given by (19), was also applied to the same training dataset. The BIC and WABIC, 

shown in Figure 2, suggest that the model size for the OFR and RSMM produced models should be 13 

and 12, respectively. The selected model terms for the two models are shown in Table 3, where 

individual model terms are ranked in the order that they entered into the model. 

It can be seen from Table 3 that the performance of the RSMM produced model is slightly better 

than that produced by using the traditional hold-out method, in the sense that the RSMM produced 

model provides better predictive capability over the test dataset. More importantly, it can easily be 

noted that by using the K-fold ridge regression, the very large initial least squares estimates of the 8th 

coefficient 53.7965 has been significantly reduced, without deteriorating the model’s generalisation 

properties. This is important because, from the discussion of the previous section, the ridge penalised 

model with shrinkage coefficients should be more robust. The model predicted output from the 

RSMM produced model is shown in Figure 3. Note that Figure 3 illustrates the model predicted output 

which is a much better indication of model performance than the one step ahead predicted output. The 

latter is virtually coincident with the data set. 
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Fig. 2   The BIC for the OFR produced model (the circled-line) and the WABIC for the RSMM produced model 
(the stared-line) for the fruit fly modelling problem.   
 

Table 3  Comparisons of the OFR and RSMM produced models for the fruit fly modeling problem. 
 

OFR RSMM 
Parameter 

 
Index Model term Parameter Model term 

Initial (LS) KLS KRR 
1 u(t-15) 0.399564 u(t-15) 0.439843 0.480600 0.141230 
2 u(t-1)u(t-14) -0.298695 u(t-1)u(t-14) 0.004403 0.004146 0.004584 
3 u(t-7)u(t-14) 0.312272 u(t-8)u(t-10) -0.003163 -0.003154 -0.002933 
4 u(t-2)u(t-14) 0.015946 u(t-2)u(t-13) 0.012494 0.012462 0.012521 
5 u(t-1) 3.397754 u(t-5) 0.390185 0.321670 0.916750 
6 u(t-14)u(t-15) -0.023164 u(t-1)u(t-5) 0.430601 0.426020 0.462471 
7 u(t-1)u(t-13) 0.191000 u(t-1)u(t-15) -0.091538 -0.089021 -0.084144 
8 u(t-7)u(t-13) -0.183164 const 53.796524 53.396613 0.062336 
9 const 47.895010 u(t-1) 3.143354 3.159672 1.327320 

10 u(t-1)u(t-1) -0.059281 u(t-5)u(t-5) -0.245837 -0.243192 -0.251918 
11 u(t-1)u(t-5) -0.001521 u(t-1)u(t-1) -0.143858 -0.142570 -0.177004 
12 u(t-1)u(t-7) 0.285200 u(t-5)u(t-15) 0.068354 0.066661 0.056249 
13 u(t-7)u(t-7) -0.208430     

  mse=5.3722; mse=4.8159; mse=5.0013; mse=4.7537; 
nrmse=0.3695; nrmse=0.3498; nrmse=0.3565; nrmse=0.3475. 

 LS: Ordinary least squares algorithm; KLS: LS based K-fold parameter estimation; KRR: Ridge regression based K-
fold parameter estimation; The above MSE and NRMSE were calculated over the test dataset.  
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Fig. 3   A comparison of the model predicted output and the measurement for the fruit fly modelling problem. 
The thick solid line represents the measurement; the thick dashed line represents the model predicted output 
from the RSMM produced model; the thin solid line represents the model predicted output from the traditional 
hold-out method using the OFR algorithm. 
 

4.3  Modelling the solar wind magnetosphere

The solar wind magnetosphere is a complex input-output dynamical nonlinear system, where the 

solar wind and the associated parameters play the role of the inputs and the geomagnetic indices can 

be considered as the outputs. The Dst index is an important parameter to measure the disturbance of 

the geomagnetic field in a magnetic storm. In this example, the magnetosphere system was considered 

to be a structure-unknown (black-box) dynamical system. The objective was to identify a 

mathematical model that can be used to forecast the Dst index. Following Wei et al. (2007), the 

magnetosphere system was treated to be a two-input and single output system, where the Dst index 

was the system output, and the solar wind parameter VBs and the solar wind dynamic pressure P were 

the two inputs. Figure 4 shows the measurements of the Dst index (‘nT’), the solar wind parameter VBs 

(‘mV/m’), and the solar wind dynamic pressure P (‘nPa’), measured for a period of 49 days, from day 

230 to day 278, in the year 1998. The data points in figure 4 were recorded with a sampling interval 

T=1hour, thus there are a total of 1176 observations, with a time resolution of 1-hour, were involved. 
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These data points, which contain two intense storms on day 239 and day 268, respectively, were used 

for model identification. 

For convenience of description, let )()( tDstty = , )()(1 tVBstu = , and . Following Wei 

et al. (2007), the significant model variables were chosen to be 

)()(2 tPtu =

)}(),(),({ 1 ktujtuity k −−− , with i=1,2, 

j=1,2,3,4, and k=1,2,3,4. The ten variables were then used to construct a mathematical model. 

Following the method given in Billings et al. (2007), the observations about the ten variables were 

clustered into 22 groups, where the corresponding geophysical centres are denoted by 

with k=1,2, … ,22.  Following Billings and Wei (2005b), a wavelet-ARX 

model below was considered  

],,,[ ,10,2,1 kkkk ccc L=c

)())(()( tetfty += x )(),);(()(
1 1

,
0

teattx
cN

k

J

j
jkkj

d

i
kk ++= ∑∑∑

= ==
cxφθθ                                         (35) 

where d=10, )](,),(),(),([ 210 txtxtxtx dL=x ),2(),1(,1[ −−= tyty ),4(,),1( 11 −− tutu L  )]4(,),1( 22 −− tutu L , 

and is some wavelets defined as the tensor product of some one-dimensional functions as below φ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.   The two inputs (the solar wind  parameter VBs and the dynamical pressure, P) and the output (the Dst 
index), measured for the period from day 230 to day 278, in the year 1998, with a sampling interval of 1-hour. A 
total of 1176 observations, with a time resolution of 1-hour, were involved. 
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with and j
ja 2= φ being defined as the centralised and normalised 4th order cardinal B-spline 

)2(
2
3)( 4 += xBxφ                                                                                                               (37) 

where the explicit expression of the ordinary 4th order cardinal B-spline B4(x) can be found in Billings 

and Wei (2006). The parameters involved in the wavelet-ARX model (35) were set to be: d=10, J=8, 

=22, and thus a total of 187 candidate model terms were involved in the initial full model (35). cN

A 5-fold random subsampling and multifold modelling (RSMM) approach, along with the weighed 

average BIC given by (20) where the weight coefficientα =0.5, was applied to the training dataset 

composed of the 1176 data points. For a comparison, the conventional orthogonal forward regression 

(OFR) algorithm, along with the BIC given by (19), was also applied to the same training dataset. The 

BIC and WABIC, shown in Fig 5, suggest that the model size for the OFR and RSMM produced 

models should be 16 and 14, respectively. The selected model terms for the two models are shown in 

Table 4, where individual model terms are ranked in the order that they entered into the model, but 

have been rearranged for convenience of the comparison of the corresponding parameter estimates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5   The BIC for the OFR produced model (the circled-line) and the WABIC for the RSMM produced model 
(the stared-line) for the solar wind magnetosphere modelling problem.   
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Table 4  Comparisons of the OFR and RSMM produced models for the solar wind magnetosphere 
modelling problem. 

 
OFR RSMM 

Parameter 
 

Index Model term Parameter Model term 
Initial (LS) KLS KRR 

1 y(t-1)    1.093825 y(t-1) 1.076903 1.087722 1.207250 

2 y(t-2) -0.204097 y(t-2) -0.224521 -0.229147 -0.247479 
3 u1(t-1) -1.528591 u1(t-1) -1.414456 -1.406579 -1.204033 
4 u1(t-2) -3.119386 u1(t-2)  -3.250326 -3.253919 -3.050096 
5 u1(t-3) 1.202844 u1(t-3) 1.325963 1.383175 1.618463 
6 u1(t-4) 1.646110 u1(t-4) 1.488517 1.443757 1.610716 

7 u2(t-1) 2.863310 u2(t-1) 2.776554 2.755978 2.587707 
8 u2(t-2) -4.033820 u2(t-2) -4.017683 -3.991810 -4.299416 
9 u2(t-3) 1.334032 u2(t-3)  1.372376 1.361874 1.628050 

10 g(x, c15,a3) 8797.205872 g(x, c15,a3) 5062.882565 3124.930932 -243.470116 
11 g(x, c15,a5) -75.537995 g(x, c15,a4) 18.259092 4.687857 0.021499 
12 g(x, c19,a5) 0.694249 g(x, c15,a5) -72.298240 -67.466688 0.265323 

13 g(x, c20,a5) 4.539476 g(x, c15,a6) 36.347918 35.197519 -0.204760 
14 g(x, c20,a6) -22.374429 g(x, c20,a7) -17.417562 -16.452981 0.447423 
15 g(x, c15,a7) 46.882333     
16 g(x, c20,a7) -19.193810     

  Emax=57.43; Emax =41.65; Emax =40.97; Emax =39.64; 
Emean=1.95； Emean =1.90； Emean =1.35. Emean =1.87； 
LS: Ordinary least squares algorithm; KLS: LS based K-fold parameter estimation; KRR: Ridge regression 
based K-fold parameter estimation; The function g in the second column indicates the function 

 defined by (36). Emax and Emean are defined by (38) and (39) respectively. 

 

),);(( jk at cxφ

 

 

It can be seen from Table 4 that the performance of the RSMM produced model is significantly 

improved compared with that produced by using the traditional hold-out method, in the sense that the 

RSMM produced model provides better predictive capability over the test dataset. More importantly, it 

can easily be noted that by using the K-fold ridge regression, the very large initial least squares 

estimates of the 10th coefficient has been significantly reduced, without deteriorating the model’s 

generalisation properties. Again, this is important because, from the discussion of the previous section, 

the ridge penalised model with shrinkage coefficients should be more robust.  

Note that the forecasts of strong storms ( 100≤Dst nT) and larger storms ( nT) are 

particularly important in the solar wind magnetosphere modelling problem. In order to perform a 

stringent test on the identified model for such a problem, a test dataset containing a strong or large 

storm needs to be considered. To achieve this, a validation data set, which contains a large storm and 

which consists of 156 hourly sampled observations of the Dst index, the solar wind parameter VB

200≤Dst

s and 

the solar wind dynamic pressure P, measured for a period of 6.5 days from day 223 to day 229 (12 

hours for day 229), in the year 2000, was used to test the performance of the identified model. The 

model predicted output from the RSMM produced model is shown in figure 6. Note that the model 
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predicted output can reveal severe model deficiencies which would otherwise go undetected by one-

step-ahead predictions.  

To quantitatively measure and compare the performance of the identified models, the following 

two criteria were considered  

|)(ˆ)({|max
1max tytyE

Tt
−=

≤≤
                                                                                                            (38) 

 ∑
= −

−
=

T

t yty
tyty

T
E

1
mean |)(|

|)(ˆ)(|1                                                                                                            (39) 

where T is the data length of the test dataset, is the predicted value from the model, and )(ˆ ty y  is the 

mean of the observations of the response y(t) over the test dataset. The values for Emax and Emean, 

for the identified models, over the test dataset, were given in Table 4. It is clear from figure 6 and 

Table 4 that the proposed RSMM method, particularly the mutifold ridge regression based approach, 

produces significantly improved model estimation for the solar wind magnetosphere modelling 

problem, compared with the ordinary linear regression methods. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6   A comparison of the model predicted output and the measurement for the solar wind magnetosphere 
modelling problem. The thick solid line represents the measurement; the thick dashed line represents the model 
predicted output from the RSMM produced model; the dotted-line represents the model predicted output from 
the traditional OFR algorithm. 
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5.   Conclusions 

The application of the new random subsampling and multifold modelling (RSMM) approach 

involves two steps: model term selection and model parameter refinement. As in other random 

sampling or bootstrapping methods, the information carried by a given data set can often be 

sufficiently exploited for model identification by means of the proposed multifold random 

subsampling approach. When the RSMM approach is applied to model structure selection, some kind 

of multiple search procedures, over a number of partitioned datasets, are inevitably involved. It would 

initially seem that the implementation of a multiple search is complex. Fortunately, however, the 

introduction of the new multiple orthogonal search (MOS) algorithm enables the realization of the 

associated multiple search to be quite convenient. It should be noted that the computation load of the 

RSMM algorithm involving K-fold subsampling will approximately be near to K times of that required 

by a single-time estimation algorithm which involves a single ‘hold-out’ dataset. But this does mean 

that the RSMM algorithm is time demanding, in fact for most real-world problems, the calculation of 

the associated RSMM procedure can be completed within just a few minutes. It should also be pointed 

out that the effect of the parameter K on the resultant model performance for general problems has not 

been studied in depth in this work; whether the resultant model performance can be improved by 

increasing the parameter K needs to be investigated further.  

For convenience of description and illustration, the models involved in the first two examples were 

formed using polynomials, and the model involved in the third example was constructed using B-

splines. However, it should be stressed that the RSMM approach can also be applied to any other 

parametric or non-parametric modelling problems where the initial full models can be written as a 

linear-in-the-parameters form. 

The criterion used for model size determination in this study is a weighted average Bayesian 

information criterion (WABIC), where a weight coefficient needs to be provided. However, how to 

chose and optimise such a weight coefficient is still an open problem. 
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