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Abstract  We consider a behavioural model of an animal choosing between two activities, based on positive feedback, and exa-

mine the effect of introducing cross inhibition between the motivations for the two activities. While cross-inhibition has pre-

viously been included in models of decision making, the question of what benefit it may provide to an animal’s activity selection 

behaviour has not previously been studied. In neuroscience and in collective behaviour cross-inhibition, and other equivalent 

means of coupling evidence-accumulating pathways, have been shown to approximate statistically-optimal decision-making and 

to adaptively break deadlock, thereby improving decision performance. Switching between activities is an ongoing decision 

process yet here we also find that cross-inhibition robustly improves its efficiency, by reducing the frequency of costly switches 

between behaviours [Current Zoology 61 (2): 242–250, 2015]. 
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For decisions that are important during an animal’s 
life history, either due to their consequences or the fre-
quency with which they must be made, we expect natu-
ral selection to have shaped effective decision-making 
and behavioural mechanisms. Here we examine the be-
haviour of a hypothetical animal choosing between two 
activities, such as feeding and drinking, mediated by 
motivation levels or drives for those activities. The pro-
blem facing such an animal is to undertake efficiently 
the activities that reduce the corresponding motivations, 
and a key part of this is to avoid costly switching be-
tween behaviours. One simple behavioural strategy is to 
always perform the activity associated with the highest 
motivation; in this case the animal’s behavioural pat-
terns act to bring the two motivations to the same level, 
at which point if the animal is without cost able to ser-
vice both motivations simultaneously, or to rapidly 
switch between the two, then this strategy is in fact pro-
vably optimal (Houston, 2011a). In many cases however 
simultaneous performance of the two behaviours will be 
impossible, and switching between them costly, because 
of physical distance between food and water sources for 

example. In these situations, rapid alternation between 
two behaviours is sub-optimal, and a trade-off between 
servicing both motivations and reducing the costs of 
switching between behaviours must be managed. A pre-
vious model that addresses this problem made use of 
positive and negative feedback loops to reduce the fre-
quency of behavioural switches (Houston, 1985). An 
alternative approach (Ludlow, 1976; Ludlow, 1982a) 
incorporates inhibition between motivations to ensure 
that only one activity is selected at any point in time. 
The comparison between these models was based on 
their ability to reproduce observed animal behaviour, 
and it was shown that both models produced similar 
patterns of behaviour making it hard to distinguish them 
on solely behavioural evidence (Houston, 1985). Here, 
drawing inspiration from computational neuroscience, 
we introduce coupling between the competing drives to 
the positive feedback model of (Houston, 1985) and 
investigate the effect of this on the overall efficiency of 
the behavioural process, thereby providing an evolutio-
nary perspective on which mechanisms we might expect 
real animals to use.  
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In computational neuroscience great progress has been 
made in understanding the neural basis of the simplest 
decision tasks, known as two-alternative forced-choice 
tasks, in which a subject is given noisy evidence and 
must use this to attempt to correctly choose one of two 
alternatives (reviewed in (Bogacz, 2006a)). The sim-
plest possible decision-strategy, known as the accumu-
lator model or race model (Vickers, 1970a), uses uncou-
pled decision pathways; a recent review of various neu-
rally plausible decision-models shows, however, that 
when the evidence-accumulating pathways are coupled 
in some way, such models can approximate the statisti-
cally-optimal decision-making strategy and thus exceed 
the performance of the naïve race model (Bogacz, 2006a). 
One method of coupling decision pathways is cross in-
hibition, in which different neural populations mutually 
inhibit each other’s activation, as in the influential Usher- 
McClelland model (Usher, 2001a). Cross-inhibition also 
features in asymptotically optimal models of action se-
lection in basal ganglia (e.g. Bogacz, 2007a). As part of 
the optimal decision-making process cross inhibition 
and other similar mechanisms lead to dynamics such 
that if one decision pathway has high activation then the 
other has low activation, which facilitates decision-ma-
king. The importance of cross-inhibition has also been 
identified in collective decision-making, where it can 
also allow statistically optimal decision-making (Mar-
shall, 2009a) or value-based deadlock breaking (Seeley, 
2012a; Pais, 2013). In forced-choice scenarios a deci-
sion-maker is required to make a single choice, with reac-
tion time and decision accuracy determining their rea-
lised payoff; here we introduce cross inhibition between 
competing motivations into an investigation of perfor-
mance in the activity model of (Houston, 1985), in 
which subjects switch repeatedly between two foraging 
options, with switches typically being costly and with 
realised payoff depending on how efficiently the subject 
manages its intake of forage in the time available to it. 

1  Materials and Methods 

The model for two competing motivations is speci-
fied by the following pair of coupled ordinary differen-
tial equations, where vi is the level of the i-th motivation, 

xi is the level of the corresponding deficit, and iv  

and ix are their rates of change with respect to time:  
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          (1) 

The animal performs the action with the greatest mo-
tivation. If action i is performed then deficit xi is re-

duced at rate ( )ix g h   . If no action is taken to re-

duce it a deficit increases at rate ix h , however in the 

current analysis we concentrate only on how an animal 
can efficiently reduce current levels of deficit, and thus 
assume that h = 0; this corresponds to considering be-
haviour over a sufficiently short timeframe (Houston, 
1985). Motivations and deficits are both prevented from 
going below zero when studied using numerical simula-
tion. The model of equations (1) can be made equivalent 
to that of (Houston, 1985) by choosing c2 > 0, c3 = ‒c2 

and c4 = 0 (see Appendix A). Cross-inhibition of moti-
vations can be added by choosing c4 < 0 in which case, 
with the other parameters as before, equations (1) cor-
respond to a noise-free linear Usher-McClelland model 
(Usher, 2001a; Bogacz, 2006a), with the first two terms 

( 1 2i ic x c x ) corresponding to the sensory inputs in that 

model. Thus equations (1) demonstrate the close rela-
tionship between the model of activity selection of 
(Houston, 1985) and the connectionist model of deci-
sion-making of (Usher, 2001a). Conversely, by choos-
ing c4 > 0 the decision-maker could exhibit cross-excita-
tion of drives, so that an increase in one motivation also 
acted to increase the other motivation, and vice versa. 
We do not assume the particular form of cross-talk in 
our model, and make the minimal necessary assump-
tions about the remaining parameters in order to main-
tain equivalence with the basic positive feedback model 
of (Houston, 1985), including the possibility that such 
feedback is completely absent; indeed, the model is also 
able to implement the optimal strategy when switching 
is cost-free (Houston, 2011a), by setting c1 = 1 and c2 = 
c3 = c4 = 0 (see figure 1 and Appendix B). We then 
search for parameterisations that optimise the animal’s 
behaviour under various interruption rates and costs for 
switching between behaviours.  

To assess the performance of different parameterisa-
tions of equations (1) we model the hypothetical animal 

as moving in space between two locations correspond-

ing to different activities; in this paper we will refer 
primarily to a source of water for drinking and a source 

of food for eating, but the approach is general and could 
equally be applied to choices between foods having di-

fferent nutritional contents, or other activities for which 
physiological deficits and corresponding motivations 

should exist. The modelled animal moves towards the 

location corresponding to the greatest motivation. While 
at a location the animal reduces its corresponding deficit 

until the largest motivation changes, at which point the 
animal moves towards the other location. During the 
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time the animal is moving between locations it cannot 
take action to reduce either of its deficits, although the 
motivations are updated otherwise according to equa-
tions (1). The animal’s initial position is set equidistant 
between the two locations, while the animal’s initial 
deficits are set to not quite equal levels, since the model 
is deterministic and hence equal deficits would lead to 
equal motivations and to behavioural deadlock. The 
animal's behaviour is simulated for a geometrically-dis-
tributed period of time with interruption probability 

per-unit-time , and mean performance at interruption 
under this distribution is calculated. At interruption of 
the simulated bout the animal’s performance in reducing 
its deficits is scored according to the penalty function  

p := x1
2 + x2

2    (2) 
which has the biologically reasonable effect of reward-
ing the reduction of a large deficit more than an equal 
reduction of a small deficit. This penalty function has 
been used in models of animals balancing nutritional 
requirements (Sibly, 1976a; Houston, 2011a), and mi-
nimising it is equivalent to minimising the Euclidean 
distance (the square root of (2)) which has been invoked 
as the metric used by real organisms based on experi- 
mental data from diverse species, from unicellular or-
ganisms through to social insect colonies (Simpson, 
 

 
 

Fig. 1  The optimal strategy for an animal minimising its 
deficit in two nutrients, when there is no cost for switching 
between food types, is to calculate a switching line leading 
towards the animal’s preferred nutrient levels 
The appropriate food should be consumed exclusively to reach the 
switching line in the minimum time, then the two foods should be 
consumed in the optimal ratio in order to remain on the switching line 
(Houston, 2011a). As shown in Appendix B, for the assumptions of 
the present model, this switching line is the line x1 = x2 and along the 
line both food types are consumed at the same rate. As also shown in 
Appendix B, the present model can be parameterised to implement 
this optimal strategy by setting v1(0) = x1(0), v2(0) = x2(0), c1 = 1,  
and c2 = c3 = c4 = 0. 

1993a; Simpson, 2004a; Dussutour, 2009a; Dussutour, 
2010a; Simpson, 2012a).  

To find model configurations that maximise perfor-
mance under the penalty function (2) we systematically 
varied the parameters ci, movement time between food 
and water sources τ, and interruption probability per-  
unit-time λ. We refer to movement time τ as the cost of 
switching between activities since, as described above, 
while moving the modelled animal is unable to reduce 
either of its deficits; time spent travelling thus repre-
sents an opportunity cost as the same time could have 
been spent performing the present activity if no decision 
to switch had been taken. Since equivalence with the 
positive feedback model of (Houston, 1985) requires 
that c3 < 0 and c2 = ‒c3 (see Appendix A), we focussed on 
varying c1 (influence of rate of change of deficit on rate 
of change of motivation), c3 (strength of motivational 
decay leading to an equilibrium level of motivation for 
a given deficit) and c4 (strength of cross-inhibition be-

tween motivations), while treating  (distance between 
food and water sources) and λ (interruption probability) 
as parameters to be varied as part of a sensitivity analy-
sis. The model and sensitivity parameterisations used 
are described in Appendix C. As described in the ap-
pendix, we calculated expected penalty under interrup-
tion probability λ by numerical integration over 99% of 
the geometric distributions’ probability mass functions.  

2  Results  

We performed an extensive sensitivity analysis using 
numerical simulations of the model, by systematically 
varying the cost to switch behaviours and the interrup-
tion rate, each over an order of magnitude. Selected 
results from the sensitivity analysis using numerical 
simulations of the model are presented in figure 2. In-
spection of these results (see Online Supplementary 
Information) reveals a pattern that is preserved through-
out the costs and interruption rates studied; illustrated 
by a representative plot (figure 2), the lowest values of 
the penalty function are consistently associated with 
cross-inhibition (c4 < 0) and with parameterisations 
where the speed of equilibration of positive feedback is 
less than the strength of cross-inhibition (|c3| < |c4|). An 
exhaustive search over all combinations of switching 
cost and interruption rate revealed no cases in which the 
global optimum within the studied parameter space vi-
olated the aforementioned inequalities (see Online Sup-
plementary Information).  

Having established the general location of the global 
minima, we next considered the sensitivity of the op- 
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Fig. 2  Representative sensitivity analysis using numerical 
simulation of the model 
Parameter c2 = ‒c3 as described in ‘Methods’. Other parameters were 
varied as shown in the figures. Darker colours correspond to lower 
values of the penalty function at the end of the simulated time period, 
and hence better performance of the modelled animal. In all parameter 
spaces a ‘wedge’ of low penalty parameterisations is observed, cover-
ing the space where c4 < c3 < 0. 

 
timal parameterisation of an animal’s behavioural strate-

gy under changes in switching cost and interruption rate. 

That is, we examined whether the optimal values c1
*, c3

* 

and c4
* could easily be found given different values of τ 

and λ. We discovered multiple points within the para-

meter space produced the lowest global penalty so, as-

suming increased values of c1 through c4 to be physio-

logically costly for an animal to implement, chose the 

global optimum with the lowest Euclidean distance to 

the c1 = c2 = c3 = c4 = 0 origin of the parameter space. 

Unfortunately, the exact position of this efficient global 

optimum varies unpredictably as switching costs and 

interruption rate change (see Online Supplementary 

Information). However, across all parameters studied in 

the sensitivity analysis, all the points within the ‘wedge’ 

of the parameter space described by c1 < 1, c3 < 0, c4 < 

c3 were within 3% of the discovered optimum, whereas 

the distance between the best and worst performances in 

the studied parameter space, averaged across all scena-

rios in the sensitivity analysis, was over 12%.  

The reason why cross inhibition improves the effi-

ciency of the model can be understood by examining 

the dynamics of the motivations with and without cross 

inhibition. Figure 3 (left) shows how the standard posi-

tive feedback model of (Houston, 1985), which has no 

cross inhibition, functions to reduce deficits. The mod-

el’s behaviour is characterised by regular and frequent 

switches between the two activities which, since swi-

tching is costly in the present model, reduces efficiency. 

In contrast, figure 3 (right), which has the same beha-

vioural parameters except for the inclusion of cross-   

inhibition, reduces the frequency of switching between 

activities, because motivations act to suppress each oth-

er. The reason for this suppression is explored in more 

detail below, in discussing the second pattern observed 

in the sensitivity analysis of figure 2. 

The second pattern observed is that, when c4 is nega-

tive and hence there is some level of cross-inhibition, 

having c3 > c4 improves behavioural performance (Fig. 

2). This is explained due to the parallels of the beha-

vioural model with that of the linear Usher-McClelland 

model (Usher, 2001a; Bogacz, 2006a); multiplying the 

parameters c3 and c4 by minus one gives, respectively, 

the decay and the inhibition rates of the Usher-McClel-

land model, and it has been shown that when decay is 

less than inhibition the system becomes unstable, driv-

ing one of its integrators to maximal activation and the 

other to minimal activation (Bogacz, 2006a). Since in-

tegrators in the Usher-McClelland model correspond to 

motivations in the present model, we can see why this 

behaviour helps reduce rapid switching, since it moves 

the motivations apart so that one is low and the other is 

high (Fig. 4A); note that (Bogacz, 2006a) also showed 

that when the converse condition holds, i.e. decay ex-

ceeds inhibition in the Usher-McClelland model, or c3 < 

c4 in the present model, activations (motivations) con-

verge to stable non-zero levels (Fig. 4B) which will 

increase the frequency of behavioural switching since 

the level of motivations are held closer together by the 

dynamics of the model. The superiority of inhibition-   

dominance for activity selection in the Usher-McClel-

land model contrasts with its parameterisation for ap-

proximating statistically-optimal sequential tests, which 

is shown to occur when decay equals inhibition (c3 = c4) 

and the two-dimensional model can be reduced to the one- 

dimensional drift diffusion process (Bogacz, 2006a). 

The analytic approach of Bogacz et al. makes use of a 

rotation of the co-ordinate system, to track the summed 

activation of the integrators (our motivations, i.e. v1 + v2) 

and the difference in activation of the integrators 

(i.e. v1‒v2). Given we make use of the same equations, 

and given the importance of the switching line v1‒v2 = 0 

in our model, this same rotation would provide an al-

ternative way of conceptualising the dynamics pre-

sented above. 



246 Current Zoology Vol. 61  No. 2 

 

 
 

Fig. 3  Top row: illustrative trajectories of the motivations over time with (right) and without (left) cross inhibition (dashed 
diagonal line represents point of switching between activities). Bottom row: corresponding trajectories of the deficits over 
time with (right) and without (left) cross inhibition  
See Houston(1985) for introduction of the plotting methodology; time starts at the top-right of the deficit plots, and progresses downwards and 
leftwards; since intake rate is fixed and identical at the two patches, the length of vertical and horizontal lines in the deficit plots is exactly propor-
tional to the duration of the corresponding bout). Without cross inhibition (left) behaviour is characterised by regular bouts of each activity, and 
frequent switches between activities. With cross inhibition (right) activity bouts become irregular, and frequency of costly activity-switching is 
reduced resulting in improved behavioural performance. Parameterisations: (all) g = 0.2, c1 = ‒1, c2 = 1, c3 = ‒1 (left) x1(0) = v1(0) = 10, x2(0) = v2(0) 
= 10.1, c4 = 0 (right) x1(0) = v1(0) = 10, x2(0) = v2(0) = 10.1, c4 = ‒1. 
 

 
Fig. 4  Dynamics of the motivations over time when motivational decay is less than cross inhibition (left) and greater than 
cross inhibition (right) 
When decay is less than cross inhibition the motivational levels are unstable and, excluding the influence of feeding or drinking on drives, will 
converge to a situation where one is high and the other low, which reduces the tendency for behavioural switching. Parameterisations: (both) x1 =  
x2 = 10, c1 = 0 , c2 = 2, c3 = ‒2 (left) c4 = ‒3 (right) c4 = ‒1. 
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3  Discussion 

Our results suggest consistent selective pressure for 

the evolution of activity selection mechanisms utilising 
cross-inhibition of drives. To conclude we now relate 

these findings to previous models of activity selection. 
A previous model by Houston and Sumida (Houston, 

1985) was proposed to reduce dithering in behavioural 
switches, which was also our aim, but did not consider 

the possibility for interaction between drives. We find 

cross-inhibition, combined with Houston and Sumida’s 
‘positive feedback’ is optimal. Houston and Sumida also 

wished to reproduce behavioural data on which beha-
viour follows an interruption of variable length. They 

concluded that both their model, and an earlier model 

proposed by Ludlow (Ludlow, 1976), explain such data. 
Ludlow (Ludlow, 1976) described a model in which 

the current activity inhibits others, until such point as 
another activity exceeds this inhibition, at which point it 

becomes the inhibiting activity, and the other activities 
are inhibited. This differs from our model in which 

cross-inhibition between motivations always occurs, but 

the strength with which it occurs varies according to the 
strength of each motivation.  

More recently, Houston and colleagues (Houston, 
2011a) showed how, without a cost for switching be-
tween food types, an animal should move towards a 
switching line in nutrient space, then move along it. 
This differs from our model, because we include costs 
for switching between behaviours. If costs are negligi-
ble, moving towards and along the switching line 
should indeed be optimal in the current model. Since the 
model of (Houston, 2011a) was motivated by the geo-
metric framework for nutritional decision-making (Sim-
pson, 1993a; Simpson, 2012a), and since switching be-
tween food types may well incur a time or other cost for 
many animals, our results may have relevance for that 
literature; various experimental studies have shown that 
increasing physical distances between nutritional sour-
ces leads to longer visits to those sources and reduced 
switching frequency, indicating that these species’ be-
havioural strategies do indeed take account of switching 
costs (Larkin, 1978a; Bernays, 1997a; Zee, 2002a; Beh-
mer, 2003a; Seaman, 2008a). There are other contexts 
in which the cost of switching influences the frequency 
of switches. A well-studied case is the decision to leave 
a depleting patch in order to find a new patch. The mar-
ginal value theorem (Charnov, 1976a; Stephens, 1986a) 
specifies the time to leave that results in the highest 
long-term rate of energy gain. This optimal time in-

creases as the time to find a new patch increases; in this 
case, the animal is not necessarily switching between 
two alternatives although some lab tests might use two 
patches. Another example involves choice between two 
operant schedules. On variable interval schedules, the 
probability of reward on choosing a schedule increases 
with time since that schedule was last chosen. The pat-
tern of choice between two variable interval schedules 
that gives the highest long-term rate of energy gain in-
volves a decrease in switching rate as the time required 
to make a switch increases (Houston, 1981a), and em-
pirical data show this trend (Baum, 1982a; Boelens, 
1983a). While there are similarities in these approaches 
and results, there may also be important differences. In 
the case of patch-use, it is optimal to switch because the 
rate of gain in a patch is decreasing, whereas in the case 
of variable interval schedules it is optimal to switch 
because the probability of reward on the new schedule 
is increasing. In the environment that we have modelled, 
however, switching avoids large costs following inter-
ruption. Since there are different functional reasons for 
switching behaviour in these examples, there may well 
also be different mechanisms.  

Our model assumes that one resource satisfies only 
one deficit. This is unrealistic, and is relaxed in (Hou-
ston, 2011a). Having different resources satisfy multiple 
deficits may help explain observations such as deprived 
animals feeding before drinking (since many foods 
contain water as well) (Mayer, 1972a; McFarland, 
1973a), when taken together with different weightings 
in the utility of the different resources to the animal 
(since in our model both are assumed to be equally valu-
able; because of this weights for the two motivations are 
identical). Our model also assumes, as others before 
have, that resource levels do not interact in determining 
the eventual fitness of an animal; relaxing this assump-
tion may lead to benefits of, for example, cross-excita-
tion of drives. Our model is also unrealistic in that inte-
ractions between deficits and motivations, and between 
motivations, are all linear; linearity is the exception 
rather than the rule in physiology and neurophysiology, 
and it could be of interest to consider non-linear models 
in future work.  

Finally, it is worth considering the behavioural pre-
dictions of our model. In particular, the model predicts 
irregular activity bouts. Data on these have previously 
been collected for barbary doves (Sibly, 1975a; Sibly, 
1976a) and in some cases exhibit qualitatively similar 
behaviour to that exhibited by our model (e.g. figure 1 
in Sibly (1976b) and figure 3 herein), albeit under a 
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different interruption schedule. We have not addressed 
the issue of what the optimal strategy is, in the absence 
of mechanistic constraints on behaviour, for an animal 
seeking to minimise expected penalty in our scenario. 
However the pattern of behaviour exhibited in figure 3 
(lower-right), of progressively increasing bout durations, 
contrasts with models of activity selection proposed in 
the computational neuroscience literature; for example 
(Humphries, 2002a) shows a pattern of decreasing ac-
tivity bout durations as two motivations compete. In 
fact, as we show in Online Supplementary Information, 
our model is also capable of exhibiting this pattern of 
behaviour. We leave the problem of determining the 
optimal mechanism-free strategy for our scenario to 
possible future work.  
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Appendix A: Equivalence with Houston and Sumida’s Positive-Feedback Model 

Here we show how the model of equations 1 can be parameterised for equivalence with (Houston1985)’s model of 
activity-selection mediated by positive feedback. Houston and Sumida consider a ‘tendency’ to eat or drink (equiva-
lent to drives in the current work) which is equal to the sum of the current deficit (for food or water respectively) and a 
positive feedback term ((Houston, 1985), equation 1). In the notation of the current paper, for a motivation i we thus 
have  

vi(t) := xi(t) + fi(t)                                      (3) 
where fi(t) is the strength of positive feedback at time t. Differentiating with respect to time gives 

:i i iv x f    .                                           (4) 

Full equivalence with the model of (Houston, 1985) requires that motivations and deficits are set to the same initial 

levels; i.e. vi(0) = xi(0). The change in positive feedback over time if
 is defined as 

: ( ),i i i i if x f t                                           (5) 
where βi and αi are parameters controlling the positive-feedback loop through, respectively, its strength and the speed 
with which it reaches equilibrium (Houston, 1985). Now we take the implicit definition of fi(t) from equation 3, and 
substitute this and equation 5 into equation 4 to obtain  

: (1 )i i i i i i iv x x v       .                                   (6) 

Note that we have now omitted time indices for vi and xi, as in the main paper text. Equation 6 with i∈{1, 2} gives 

equations 1 provided that c1 = 1 ‒ β, c2 = α, c3 = ‒c2 and c4 = 0. Note that we have also here omitted subscripts from α 
and β and thus assume that these are equal for the two activities.  

Defining our cross-inhibition model as an extension of the positive-feedback model of (Houston, 1985) constrains 
our search for optimal parameterisations. From the equivalence shown above we see that, since α > 0 and β > 0 in the 
original model (Houston, 1985), we must have that c1 < 1 and c3 < 0, and furthermore c3 uniquely defines c2 = ‒c3. The 
parameter c1 can take positive or negative values, since there is no upper bound on β. If c1 = 1 this corresponds to a 
model with no positive feedback, whereas if c1 < 1 but c2 = c3 = 0 the model exhibits runaway positive feedback, that 
does not reach equilibrium.  

Appendix B: Equivalence with Houston et al.’s Zero Switching Cost Model  

Houston et al. consider an idealised model in which an animal can simultaneously consume two foods, each of 
which provides a different ratio of two required nutrients (Houston, 2011a), and there is no cost for doing so. The ob-
jective of the animal is to minimise their Euclidean distance in nutrient space from their target nutrient levels, when 
their feeding is interrupted. Houston et al.’s analysis shows that the optimal strategy is to consume the food that is 
richest in the nutrient the animal has the greatest deficit in, thereby moving towards a switching line in nutrient space. 
The switching line leads towards the target nutrient levels; once on this switching line it is optimal to remain on it by 
consuming both food types in a ratio determined by the slope of the switching line in nutrient space (Houston, 2011a). 
Our model is a simplified version of that of Houston et al. in which the two foods each contain only one nutrient, food 
and water respectively. Furthermore each nutrient is assumed to be equally valuable to the animal in the present model, 
since the nutrient target to reach is x1

* = x2
* = 0, and consuming each food type reduces its corresponding deficit at the 

same rate ‒g. If x1A is the amount of nutrient 1 associated with consuming food type A, x2A the amount of nutrient 2 
associated with consumption of food A, and so on, then in the present model we have x1A = x2B = ‒g and x1B = x2A = 0. 

Houston et al. show that the slope of the switching line in nutrient space is given by  

1 1

2 2

A B

B A

x x

x x




                                       (7) 

(their eq. 8 and immediately following). Substituting in the values defined above, the slope is seen to be 1. This trans-
lates into a ratio of resource consumption when on the switching line given by  

2 2 2 1 1 1
2 2

1 1 2 2

( ) ( )

( ) ( )
B B A B A B

A B A B

x x x x x x

x x x x

  

  
                            (8) 
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(eq. 11 in (Houston, 2011a)). Substituting in the values defined above, equation 8 simplifies to 1/2, indicating that the 
two food types are consumed at equal rates.  

The optimal strategy for the present model, when there is no cost for switching between food types, is thus to con-
verge as quickly as possible to the line x1 = x2, then to move along this equally exploiting the two available food types. 

Given that the initial conditions of the model are vi (0) = xi (0) for i∈{1, 2}, this can be achieved by choosing parame-

ters c1 = 1, and c2 = c3 = c4 = 0 as illustrated in figure 1.  

Appendix C: Numerical Simulations and Results  

To generate the results presented in the main paper we simulated an animal behaving under an interruption protocol, 
with geometrically-distributed bouts defined by an interruption probability per-unit-time λ. The expected penalty for 
an animal was then calculated as  

( 1)

1

( ) : ( )(1 )
T

T

T

E p p T  


 



                               (9) 

where T is the terminal time of the bout, and p(T) the penalty (defined according to equation 2) experienced by the 
animal behaving according to its decision-rule up to time T. Since our numerical simulation is deterministic a single 
run is sufficient for each value of T in the calculation of E(p) according to equation 9. The maximum terminal time 

T was chosen such that 99 percent of the geometric probability distribution was included in the calculation of equation 
9. Initial deficits were chosen to be sufficiently large that consistent satisfaction of one over an entire simulated epoch 
of ‘typical’ duration (up to 100s) would not result in that deficit being reduced to 0.  
 

 
  

 


