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Abstract—The direction estimation problem of coherent targets
in multiple-input multiple-output (MIMO) radar systems is
studied and a scheme with joint transmission and reception
diversity smoothing is proposed. When both the transmitting
and receiving antenna arrays are located closely in space, the
new approach leads to much more available covariance matrices
for spatial smoothing to decorrelate the coherent signals. As a
result, a better estimation performance is achieved compared
to the existing transmission diversity smoothing (TDS) method.
It can also identify more coherent targets when sparse antenna
arrays are employed. On the other hand, the proposed approach
can be applied to joint direction of arrival (DOA) and direction of
departure (DOD) estimation using existing direction estimation
algorithms when the transmit and receive arrays are separated
far away from each other (i.e. the bistatic case). Two specific
methods are proposed under the scheme, one is based on forward-
only (FO) spatial smoothing and one is based on forward-
backward (FB) processing. Due to the increased number of
covariance matrices for spatial smoothing, a further improved
performance is achieved by the FB-based one.

Index Terms—MIMO radar, DOA/DOD estimation, coherent
targets, transmission-reception diversity smoothing.

I. INTRODUCTION

Unlike the standard phased-array radar, MIMO radar em-

ploys multiple transmit antennas for emitting orthogonal wave-

forms and multiple receive antennas for receiving the echoes

reflected by the targets [1]–[3]. Two types of MIMO radar

have been investigated, namely, widely separated antennas [4]

and colocated antennas [5]. In this paper, we will formulate

the problem based on MIMO radar with colocated antennas,

where the transmitting side and the receiving side can be

located either at the same site or far away from each other.

MIMO radar can exploit the waveform diversity to form a

virtual array with increased degrees of freedom (DOFs) and a

larger aperture compared to the traditional phased-array radar.

It has been shown that MIMO radar can provide enhanced

spatial resolution, achieve better target detection performance,

and significantly improve the system’s parameter identifiability

[3], [5]–[7].

Many techniques have been proposed (see [8]–[29] for

details) for angle estimation in MIMO radar by assuming

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

that all targets are uncorrelated with each other, so that

the traditional eigenspace-based algorithms, such as MUSIC

[30] and ESPRIT [31], can be employed for multiple-target

localization. However, in many radar applications, the received

echo signals from different targets are considered as coherent,

which implies that the eigenspace-based methods cannot be

directly used for angle estimation due to the ill conditioning

problem of the covariance matrix [32], [33]. Spatial smoothing

is a classic method to decorrelate the signals in the data

covariance matrix [34]–[38]. The drawback with it is the

decrease of the array aperture and the number of DOFs,

resulting in lower resolution and accuracy.

To overcome the coherent-target localization problem in

MIMO radar, a preprocessing technique referred to as TDS

is used to spatially smooth the signal covariance matrix in

order to enable the use of eigenspace-based angle estima-

tion methods [32]. The basic idea of the TDS method is

to form a new covariance matrix with decorrelated signal

subspace by summing the covariance matrices corresponding

to the transmit antennas together. Unlike the traditional spatial-

smoothing technique, the TDS method does not decrease the

physical array aperture and can be used for any array geometry.

However, the maximum number of coherent targets which

can be identified by the TDS method is M − 1, where M
is the number of transmit antennas. Therefore, compared to

the original MIMO array, the TDS method also significantly

reduces the effective array aperture length and the number of

DOFs. Additionally, the TDS method is designed for MIMO

radar systems where both the transmit and receive arrays are

located closely in space. It is not suitable for joint DOA and

DOD estimation in bistatic MIMO radar. On the other hand,

due to the different phase shifts associated with the different

propagation paths from the transmit antennas to targets, these

independent waveforms are linearly combined at the targets

with different phase factors, leading to linearly independent

signal waveforms reflected from different targets. Therefore,

the covariance matrix computed from the received data directly

without matched filtering can also be used for the application

of adaptive array algorithms [33]. This method has the same

decorrelation performance as the TDS method [39]. Like the

TDS method, however, its application is also limited by the

aforementioned drawbacks.

In this work, we propose a class of improved methods to

deal with multiple coherent targets in MIMO radar based on

uniform or symmetric arrays. Since linearly independent wave-

forms are transmitted simultaneously via multiple antennas, we

can obtain a data matrix based on a set of virtual antennas.

A Kr ×Kt receiving-transmitting window is then utilized to

slide over this data matrix, where Kt and Kr represent the

transmitting and receiving dimensions of the sliding window.

Due to the existence of the phase-shift factor between the slid-

ing sub-block data, the corresponding covariance matrices can

be employed to perform spatial smoothing for reconstructing

the full-rank signal covariance matrix, supported by a detailed

analysis of its decorrelation effect. Since both transmission and

reception diversity smoothing is utilized, the proposed method

has more covariance matrices for the smoothing operation, and

therefore can achieve a better estimation result than the TDS
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method and localize much more coherent targets when sparse

arrays are employed [40]. More importantly, it is also suitable

for joint DOA and DOD estimation in bistatic MIMO radar

by employing the existing joint DOA and DOD estimation

algorithms directly due to the use of joint transmission and

reception diversity smoothing. Moreover, given the generalized

conjugate symmetric property of the effective steering vectors

of the array, a forward-backward based smoothing method is

proposed to further improve the performance of the system.

This paper is organized as follows. In Sec. II, the signal

model for MIMO radar is provided. The proposed spatial

smoothing method with a detailed analysis of its decorrelation

effect is introduced in Sec. III, where both the FO and the FB

based smoothing processes are investigated. Simulation results

are presented in Sec. IV and conclusions are drawn in Sec. V.

II. SIGNAL MODEL FOR MIMO RADAR

Consider a narrowband MIMO radar system with a uniform

linear array (ULA) of M antennas for transmitting and a ULA

of N antennas for receiving. The M transmit antennas are used

to transmit M orthogonal waveforms. Assume that K coherent

targets are present and the targets in a coherent processing

interval (CPI) do not have range walking across range cells,

i.e., they are located at the same range cell of received pulses.

Consequently, the output of the matched filters at the receiver

at the lth snapshot can be expressed as [3], [9], [12]

x[l] =
[

x1,1[l], x2,1[l], · · · , xN,1[l], x1,2[l], x2,2[l], · · · ,

xN,2[l], · · · , x1,M [l], x2,M [l], · · · , xN,M [l]
]T

=

K
∑

k=1

at(ϕk)⊗ ar(θk)bk[l] + z[l]

= [at(ϕ1)⊗ ar(θ1), at(ϕ2)⊗ ar(θ2), · · · ,

at(ϕK)⊗ ar(θK)]b[l] + z[l] (1)

where xn,m[l] is the received data at the nth receive antenna

associated with the mth transmit antenna, [·]T denotes the

transpose operation, θk and ϕk are the DOA and DOD of

the kth target, ⊗ stands for the Kronecker product operator,

and bk[l] = γke
j2πfkl, with γk being the complex-valued

reflection coefficient of the kth target and fk being the Doppler

frequency;

b[l] =
[

b1[l], b2[l], · · · , bK [l]
]T
, (2)

at(ϕk) = [1, αk, · · · , α
M−1
k ]T (3)

ar(θk) = [1, βk, · · · , β
N−1
k ]T (4)

are the transmit and receive steering vectors, with αk =
e−j2πdt sin(ϕk)/λ, βk = e−j2πdr sin(θk)/λ, where dt and dr,

respectively, are the adjacent antenna spacing for the transmit

and receive arrays, and λ denoting the wavelength; z[l] denotes

the received zero-mean complex-valued white noise with a

power σ2.

III. PROPOSED METHOD

A. Construction of full-rank signal covariance matrix

First, we form an N ×M matrix Y[l] directly from x[l].
The mth column of Y[l] is the received data at the N receive

antennas associated with the mth transmit antenna, and Y[l]
is then given by

Y[l] =











x1,1[l] x1,2[l] · · · x1,M [l]
x2,1[l] x2,2[l] · · · x2,M [l]

...
... · · ·

...

xN,1[l] xN,2[l] · · · xN,M [l]











= ArΞAT
t + Z[l] (5)

where

At = [at(ϕ1), at(ϕ2), · · · , at(ϕK)], (6)

Ar = [ar(θ1), ar(θ2), · · · , ar(θK)], (7)

Ξ = diag
[

b1[l], b2[l], · · · , bK [l]
]

, (8)

and Z[l] denotes the N ×M noise matrix.

Define a Kr ×Kt matrix Yj,i[l]
(

1 ≤ j ≤ N −Kr +1, 1 ≤
i ≤ M − Kt + 1

)

, which is the received data from the jth
to the (j + Kr − 1)th rows of Y[l] and from the ith to the

(i+Kt − 1)th columns of Y[l].
With the notation Vec(·) for a matrix operation that stacks

the columns of a matrix to form a new column vector, we

form the following vectors:

yj,i[l] = Vec
(

Yj,i[l]
)

=
K
∑

k=1

(

a
(Kt)
t (ϕk)⊗ a(Kr)

r (θk)
)

αi−1
k βj−1

k bk[l]

+zj,i[l]

= Aφφφi−1
t φφφj−1

r b[l] + zj,i[l],

i = 1, · · · ,M −Kt + 1,

j = 1, · · · , N −Kr + 1. (9)

where a
(Kr)
r (θk) and a

(Kt)
t (ϕk) are the Kr × 1 and Kt × 1

truncated versions of the steering vectors ar(θk) and at(ϕk),
respectively,

A = [a
(Kt)
t (ϕ1)⊗ a(Kr)

r (θ1), · · · ,

a
(Kt)
t (ϕK)⊗ a(Kr)

r (θK)], (10)

φφφt = diag{α1, · · · , αK}, (11)

φφφr = diag{β1, · · · , βK}. (12)

The covariance matrix corresponding to yj,i[l] is given by

Rj,i = E
[

yj,i[l]y
H
j,i[l]

]

= Aφφφi−1
t φφφj−1

r S(φφφj−1
r )H(φφφi−1

t )HAH + σ2I (13)

where E[·] denotes the expectation operation, [·]H represents

the Hermitian transpose, and S = E[b[l]b[l]H ] is the signal

covariance matrix. Like the classic forward only (FO) spatial

smoothing technique [34], we can sum all the Rj,i together to

spatially smooth the signal covariance matrix:

Rfo =

∑(M−Kt+1)
i=1

∑(N−Kr+1)
j=1 Rj,i

(M −Kt + 1)(N −Kr + 1)
. (14)

In practice, the sample covariance matrix of (13)

R̂j,i =
1

L

L
∑

l=1

yj,i[l]y
H
j,i[l] (15)

is used, where L is the number of snapshots.
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B. Analysis of the decorrelation effect of the proposed method

Now we study the decorrelation effect of the proposed joint

transmission and reception diversity smoothing by extending

the results of [41]. Combining (13) and (14), we obtain

Rfo = AS̄AH + σ2I (16)

where S̄ is the K ×K smoothed covariance matrix with

S̄ =

∑(M−Kt+1)
i=1

∑(N−Kr+1)
j=1 φφφi−1

t φφφj−1
r S(φφφj−1

r )H(φφφi−1
t )H

(M −Kt + 1)(N −Kr + 1)
.

(17)

We now study how progressive joint transmission and

reception diversity smoothing reduces the correlation between

all the impinging signals. From (17), we have

[S̄]p,q = [S]p,q ×
(M−Kt+1)

∑

i=1

(N−Kr+1)
∑

j=1

αi−1
p βj−1

p (βj−1
q )∗(αi−1

q )∗

(M −Kt + 1)(N −Kr + 1)
, (18)

where [·]p,q denotes the (p, q)th element of the matrix and (·)∗

represents the conjugate operation. Clearly for p = q, we have

[S̄]p,p = [S]p,p. But for p ̸= q, we have
∑(M−Kt+1)

i=1

∑(N−Kr+1)
j=1 αi−1

p βj−1
p (βj−1

q )∗(αi−1
q )∗

(M −Kt + 1)(N −Kr + 1)

=

∑(M−Kt+1)
i=1 αi−1

p (αi−1
q )∗

(M −Kt + 1)

∑(N−Kr+1)
j=1 βj−1

p (βj−1
q )∗

(N −Kr + 1)

=

∑(M−Kt+1)
i=1 (αpα

∗

q)
i−1

(M −Kt + 1)

∑(N−Kr+1)
j=1 (βpβ

∗

q )
j−1

(N −Kr + 1)
. (19)

We see that
∑(M−Kt+1)

i=1 (αpα
∗

q)
i−1

(M−Kt+1) (or

∑(N−Kr+1)
j=1 (βpβ

∗

q )
j−1

(N−Kr+1) )

goes to zero as M −Kt + 1 (or N −Kr + 1) goes to infin-

ity. Thus, the coherent signals are increasingly decorrelated.

However, the rate for (19) to approach zero depends on the

spacing and directions of the signals. Here, we see the effect of

small angular separation on decorrelation between the signals.

Let ϕp and ϕq correspond to closely spaced signals, and let

ϕp = ϕq+∆. We then have {sin(ϕp)−sin(ϕq) ≈ ∆cos(ϕp)}.

Consequently, we can write

M−Kt+1
∑

i=1

(αpα
∗

q)
i−1

=

M−Kt+1
∑

i=1

exp[−j2π(i− 1)dt(sin(ϕp)− sin(ϕq))]

≈
1− exp[−j2(M −Kt + 1)πdt∆cos(ϕp)/λ]

1− exp[−j2πdt∆cos(ϕp)/λ]
. (20)

Thus, the minimum value of (M −Kt + 1) required for the

numerator of (20) to go to zero is given by

(M −Kt + 1) = λ/
(

dt∆cos(ϕp)
)

(21)

Similarly, we can write

(N−Kr+1)
∑

j=1

(βpβ
∗

q )
j−1

≈
1− exp[−j2(N −Kr + 1)πdr∆cos(θp)/λ]

1− exp[−j2πdr∆cos(θp)/λ]
,(22)

and the minimum value of (N − Kr + 1) required for the

numerator of (22) to go to zero is then given by

(N −Kr + 1) = λ/
(

dr∆cos(θp)
)

. (23)

From (21) and (23), we see that the values of (M−Kt+1) and

(N−Kr+1) required for decorrelating the pth and qth signals

are large when the angular separation between them is small.

Moreover, for a fixed small angular separation between the

signals the values of (M−Kt+1) and (N−Kr+1) required

for decorrelation go up when the signals approach the end-fire

direction, i.e., 90◦. However, it should be noted from (19),

(21) and (23) that for the proposed method, its decorrelation

effect will degrade severely only when both DODs and DOAs

approach the end-fire direction.

C. Selection of Kt and Kr

From (9) and (14), the effective aperture length and the

number of covariance matrices defined in (13) are related to

Kt and Kr. In this section, the selection of Kt and Kr is

investigated, and two cases of MIMO radar system will be

considered. In the first case, both the transmit and receive

arrays are assumed to be closely located in space, so that any

target located in the far-field can be seen at the same direction

by both arrays, that is, θk = ϕk. The second one is a bistatic

MIMO radar system where the transmit and receive arrays are

separated far away from each other.

1) The first case with filled ULA for both the transmit

and receive arrays: First consider the case both the trans-

mit and receive arrays are filled (i.e., half-wavelength inter-

element spacing with dt = dr = λ/2) ULAs [5]. In this

case the KtKr × 1 vector a
(Kt)
t (θk) ⊗ a

(Kr)
r (θk) has only

(Kt+Kr−1) distinct elements; in fact, this appears to be the

smallest possible number of distinct elements, and there are

(M −Kt + 1)(N −Kr + 1) number of Rj,i defined in (13);

nevertheless, only (M−Kt+1+N−Kr) distinct Rj,i actually

used for spatial smoothing. Therefore, to identify K coherent

targets when the spatially smoothed covariance matrix is used

in conjunction with eigenspace-based techniques, Kt and Kr

should satisfy

Kt +Kr − 1 > K, M −Kt + 1 +N −Kr > K. (24)

We see that an enhanced spatial resolution will be obtained

by increasing the value of Kt or Kr. However, the number of

covariance matrices Rj,i will decrease in such a case, leading

to decrease of the maximum number of coherent targets that

can be identified by the proposed method. Consequently, there

is a trade-off between the sub-array aperture and the number

of coherent targets identified by the proposed method. In

particular, when the following condition

Kt +Kr − 1 =M −Kt + 1 +N −Kr (25)

is achieved, i.e., Kt+Kr = M+N+2
2 , the maximum number of

coherent targets that can be identified by the proposed method

will be obtained. On the other hand, the proposed method will

be equivalent to the TDS method when Kt and Kr are set to

1 and N , respectively. So the TDS method can be considered

as a special case of the proposed method. In addition, it is
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flexible for the proposed method to set its effective aperture

length, which can be larger than that of the TDS method by

setting Kt and Kr properly.

2) The first case with filled ULA for receive array but

sparse ULA for transmit array: When the receive array is

a filled ULA and the transmit array is a sparse ULA with

M/2-wavelength inter-element spacing, the virtual aperture

of the MIMO radar system is a filled-element ULA with

MN distinct elements [5]. The vector a
(Kt)
t (θk)⊗ a

(Kr)
r (θk)

for this case has KtKr distinct elements, and there are

(M − Kt + 1)(N − Kr + 1) distinct Rj,i defined in (13)

actually used for spatial smoothing. Similarly, the following

conditions

KtKr > K, (M −Kt + 1)(N −Kr + 1) > K (26)

should be satisfied to identify K coherent targets. In this

case the maximum number of coherent targets which can be

identified by the proposed method is obtained when (KtKr) =
(M −Kt + 1)(N −Kr + 1) is achieved. For simplicity, we

set Kt = M+1
2 and Kr = N+1

2 in our proposed method.

Then, the maximum number of coherent targets that can be

identified by the proposed method is
(M+1)(N+1)

4 − 1. Note

that if N > 3, the number of coherent targets identified by

the proposed method will be larger than M−1, the maximum

number of identifiable targets by the TDS method.

3) The second case with filled ULA for both transmit and

receive arrays: Because θk ̸= ϕk, the vector a
(Kt)
t (ϕk) ⊗

a
(Kr)
r (θk) for this case has KtKr distinct elements, and there

are (M −Kt + 1)(N −Kr + 1) distinct Rj,i defined in (13)

actually used for spatial smoothing. Therefore, in order to

identify K coherent targets, Kt and Kr should satisfy the

following conditions:

KtKr > K, Kt > 1, Kr > 1

(M −Kt + 1)(N −Kr + 1) > K. (27)

From (27), it can be seen that when the transmit and receive

arrays are separated far away from each other, we can obtain

sufficient DOFs by joint transmission and reception diversity

smoothing without increasing the interelement spacing of the

transmit array, while for the first case of the system, the inter-

element spacing of the transmit array should be increased to

obtain considerable DOFs.

D. Forward backward smoothing technique for the proposed

method

In (15), only FO processing is used to smooth the signal’s

covariance matrix. Therefore, it can be considered as an

FO-based smoothing method. However, the estimation per-

formance can be improved greatly by FB smoothing com-

pared with those using FO smoothing [42]. Moreover, the

FB smoothing technique leads to a significant reduction in

the correlation between signals, and therefore less antennas

are needed for coherent signal detection compared with the

one without it [35]. In this section, we will develop the FB

smoothing technique for the proposed method.

Following the proof in [43], it can be shown that the steering

vector a
(Kt)
t (ϕ) has the following property:

a
(Kt)
t (ϕ) = e−jφt(ϕ)JKt

(

a
(Kt)
t (ϕ)

)

∗

(28)

where φt(ϕ) = 2π(Kt − 1)dt sin(ϕ)/λ, and JKt
is the Kt-

dimensional exchange matrix

JKt
=







0 · · · 1
...

. . .
...

1 · · · 0






. (29)

Similarly, we have a
(Kr)
r (θ) = e−jφr(θ)JKr

(

a
(Kr)
r (θ)

)

∗

,

where φr(θ) and JKr
are defined in the same way as φt(ϕ)

and JKt
, respectively. Then we have

a
(Kt)
t (ϕ)⊗ a(Kr)

r (θ)

= [e−jφt(ϕ)JKt
a
(Kt)
t (ϕ)∗]⊗ [e−jφr(θ)JKr

a(Kr)
r (θ)∗]

= e−j(φr(θ)+φt(ϕ))[JKt
⊗ JKr

][a
(Kt)
t (ϕ)∗ ⊗ a(Kr)

r (θ)∗]

= e−j(φr(θ)+φt(ϕ))JKrKt
[a

(Kt)
t (ϕ)⊗ a(Kr)

r (θ)]∗. (30)

It can be clearly seen from (30) that the virtual steering vector

in MIMO array has the generalized conjugate symmetric

structure as the steering vector in the traditional ULAs, and

therefore FB processing can be applied here.

Using (30) and following the classical FB smoothing tech-

nique [35], the proposed FB smoothed covariance matrix can

be constructed as

Rfb =

∑(M−Kt+1)
i=1

∑(N−Kr+1)
j=1

(

Rj,i + JKrKt
R∗

j,iJKrKt

)

2(M −Kt + 1)(N −Kr + 1)
.

(31)

Defining

ψψψ = diag{e−j(φr(θ1)+φt(ϕ1)), · · · , e−j(φr(θK)+φt(ϕK))},
(32)

and from (30) we have Aψψψ∗ = JKrKt
A∗. JKrKt

R∗

j,iJKrKt

can then be written as

JKrKt
R∗

j,iJKrKt

= Aψψψ∗(φφφ∗t )
i−1(φφφ∗r)

j−1S∗φφφj−1
r φφφi−1

t ψψψAH + σ2I. (33)

Thus, the proposed FB smoothed signal covariance matrix can

be expressed as

S̄fb =
1

2(M −Kt + 1)(N −Kr + 1)

M−Kt+1
∑

i=1

N−Kr+1
∑

j=1
[

φφφi−1
t φφφj−1

r S(φφφj−1
r )H(φφφi−1

t )H +

ψψψ∗(φφφ∗t )
i−1(φφφ∗r)

j−1S∗φφφj−1
r φφφi−1

t ψψψ
]

. (34)

We can see that the number of smoothing operation for

the proposed FB smoothing are twice that for the proposed

FO smoothing. As a result, much more coherent targets can

be located by the proposed FB smoothing, and it can also

be predicted that the proposed FB smoothing has a better

estimation performance than the proposed FO smoothing when

the angular separation between two signals is small or when

the signals approach the end-fire direction.
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E. Discussion

Note that the standard spatial smoothing technique is limited

to special array geometries such as uniform linear/rectangular

arrays. Similarly, our proposed method can not be used directly

for arbitrary nonuniform MIMO array systems. However,

given a system with an arbitrary geometry, we can employ

the array interpolation approach to create one or more virtual

arrays having a geometry suitable for the application of

the spatial smoothing technique [44]–[46]. Then the DOA

estimation problem in nonuniform arrays can be transformed

into simpler virtual uniform linear array problems. In addition,

another approach, called manifold separation [47]–[51], can

be used to model the received wavefield by means of an

orthogonal expansion that approximates the true array steering

vector of any arbitrary array as the product of a matrix that

depends only on the array parameters and a Vandermonde

vector depending only on the angle parameter. Therefore, by

employing the array interpolation approach, or the manifold

separation technique, it is possible to modify the proposed

method to deal with angle estimation problems in nonuniform

array based MIMO radar systems.

IV. SIMULATIONS

In this section, simulations are carried out to investigate

the performance of the proposed methods compared with the

TDS method. We consider a MIMO array configuration where

a ULA of M = 10 antennas is used for transmitting and a

ULA of N = 10 antennas for receiving. Assume that the

additive noise is spatially white circularly symmetric complex

Gaussian. All simulations are averaged over 500 independent

runs. Define the root mean squared error (RMSE) as

1

K

K
∑

k=1

√

√

√

√

1

500

500
∑

n=1

(ϑk − ϑ̂n,k)2 (35)

where ϑ̂n,k is the estimate of DOA/DOD ϑk of the nth run.

A. Both the transmit and receive arrays are closely located

Two scenarios are considered: 1) three coherent targets with

the same signal-to-noise ratio (SNR) are located at angles θ =
10◦, 20◦ and 30◦; 2) the angles of the three coherent targets

change to θ = 50◦, 60◦ and 70◦.

1) Both the transmit and receive arrays are filled ULAs:

In the first example, both the transmit and receive arrays

are arranged with half-wavelength spacing between adjacent

antennas. To form the same aperture with the TDS method,

the proposed method chooses Kt = 6 and Kr = 5. The

performance of the two methods is investigated using the

ESPRIT-based algorithm [10].

Fig. 1 shows the RMSEs of DOA estimation versus the num-

ber of snapshots for SNR = 20 dB. Fig. 2 shows the RMSEs

of DOA estimation as a function of input SNR for L = 50. As

shown, the proposed method has achieved higher estimation

accuracy than the TDS method. The reason is, although there

are only 10 distinct covariance matrices defined in (13), the

proposed method actually uses (M−Kt+1)(N−Kr+1) = 30
covariance matrices for spatial smoothing. Thus, the proposed
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(a) Scenario 1 with θ = 10◦, 20◦ and 30◦.
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(b) Scenario 2 with θ = 50◦, 60◦ and 70◦.

Fig. 1. RMSEs of DOA estimation versus the number of snapshots when
both the transmit and receive arrays are filled ULAs and closely located.

method has obtained a better conditioned estimate of the

covariance matrix than the TDS method, leading to better

estimation result. In addition, it can be clearly seen that

the performance of the proposed FB smoothing method is

much better than the one with FO smoothing, especially for

the second scenario where the signals approach the end-fire

direction.

To see more clearly the performance of the proposed

method, we plot RMSEs against separation angle of two

sources in Fig. 3, where Kt = Kr = 7, SNR = 20 dB,

and L = 50, respectively. The three sources are assumed to

be located at (10◦, 20◦, 20◦ + ∆) and (50◦, 60◦, 60◦ + ∆),
respectively, for the first and second scenarios, where ∆ varies

from 4◦ to 20◦. It is observed that the proposed method has

a much better performance than the TDS method for small

angular separations because a larger array aperture length is

used by the proposed method. As the separation angle ∆
increases, their performance becomes very similar to each

other.

2) The transmit array is a sparse ULA: In the second

example, the receive array is a filled ULA while the transmit

array is a sparse ULA. SNR = 20 dB and L = 50.

With Kt = 6 and Kr = 5, Fig. 4 shows the effect of

interelement spacing of the transmit array on the estimation

performance for two different signal scenarios as considered in

the previous example. From the two figures, we see that again
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(a) Scenario 1 with θ = 10◦, 20◦ and 30◦.
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(b) Scenario 2 with θ = 50◦, 60◦ and 70◦.

Fig. 2. RMSEs of DOA estimation versus input SNR when both the transmit
and receive arrays are filled ULAs and closely located.

the proposed method outperforms the TDS method, especially

for the second signal scenario, as the interelement spacing of

the transmit array increases.

Now assume that 11 coherent targets are located at the

angle region [−80◦, 70◦], with equal angle interval of 15◦.

Both Kt and Kr are set to 6 for the proposed method with

dt = 3λ. In this case, the TDS method fails because the

number of coherent targets is larger than the maximum number

of coherent targets that can be identified by the TDS method.

On the other hand, the proposed method has KtKr = 36

distinct elements in the vector a
(Kt)
t (θk)⊗ a

(Kr)
r (θk) and has

(M −Kt+1)(N −Kr +1) = 25 distinct covariance matrices

defined in (13) for spatial smoothing. Therefore, the proposed

method can localize all the coherent targets. With SNR = 20
dB and L = 50, the spatial spectrum of the proposed FO

smoothing method by applying the classical MUSIC algorithm

is shown in Fig. 5 and we can see that the targets have been

identified successfully.

B. The transmit and receive arrays are widely separated

In this example, the transmit and receive arrays are assumed

to be separated far away from each other. Here, three scenarios

are considered with three coherent targets for each scenario:

1) (θ, ϕ) = (10◦, 15◦), (20◦, 25◦), and (30◦, 35◦); 2) (θ, ϕ) =
(50◦, 55◦), (60◦, 65◦), and (70◦, 75◦); 3) (θ, ϕ) = (10◦, 55◦),
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(a) Scenario 1 with θ = 10◦, 20◦ and 20◦ +∆.
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(b) Scenario 2 with θ = 50◦, 60◦ and 60◦ +∆.

Fig. 3. RMSEs of DOA estimation versus angular separation when both the
transmit and receive arrays are filled ULAs and closely located.

(20◦, 65◦), and (30◦, 75◦). Both Kt and Kr are set to 5, and

L = 50.

Fig. 6 shows the RMSEs of joint DOA and DOD estimation

results versus input SNR. It can be clearly seen that the

proposed FB smoothing has achieved a much better estimation

than the proposed FO smoothing when both the DOAs and

DODs of signals approach the end-fire direction. Addition-

ally, we see that when only one of them (either DOAs or

DODs) approach the end-fire direction, the proposed method

still works well due to the benefit of joint transmission and

reception diversity smoothing.

We also plot RMSEs against separation angle of two of

the three sources in Fig. 7. The three sources are assumed

to be located at 1) (θ, ϕ) = (10◦, 15◦), (20◦, 25◦), and

(20◦ + ∆, 25◦ + ∆); 2) (θ, ϕ) = (50◦, 55◦), (60◦, 65◦), and

(60◦ + ∆, 65◦ + ∆); 3) (θ, ϕ) = (10◦, 55◦), (20◦, 65◦), and

(20◦ + ∆, 65◦ + ∆), respectively, for the three considered

scenarios, where ∆ varies from 4◦ to 20◦. Clearly the proposed

FB smoothing has a much better performance than the pro-

posed FO smoothing for small angular separations, especially

for the second scenario where both the DOAs and DODs of

sources approach the end-fire direction, because the number

of smoothing operation used by the FB-based smoothing is

larger than that of the FO-based smoothing. In addition, we

see from results of the last two scenarios that as the separation

angle ∆ increases, the DOAs/DODs of sources approach the
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(b) Scenario 2 with θ = 50◦, 60◦ and 70◦.

Fig. 4. RMSEs of DOA estimation versus dt when both the transmit and
receive arrays are closely located and the transmit array is a sparse ULA.
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Fig. 5. Spatial spectrum of the proposed FO smoothing method using the
MUSIC algorithm with dt = 3λ and 11 targets, when both the transmit and
receive arrays are closely located and the transmit array is a sparse ULA.
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(a) Scenario 1 with (θ, ϕ) = (10◦, 15◦), (20◦, 25◦), and (30◦, 35◦).
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(b) Scenario 2 with (θ, ϕ) = (50◦, 55◦), (60◦, 65◦), and (70◦, 75◦).
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(c) Scenario 3 with (θ, ϕ) = (10◦, 55◦), (20◦, 65◦), and (30◦, 75◦).

Fig. 6. RMSEs of DOA/DOD estimation versus input SNR when the transmit
and receive arrays are widely separated (Kt = 5, Kr = 5).

end-fire direction, leading to degradation of the estimation

performance.

In the last example, Kt and Kr are set to 10 and 9, respec-

tively. With L = 50, the result for the first scenario is shown

in Fig. 8. In this case, the proposed FB smoothing still works

well. However, the proposed FO smoothing fails because there

are three coherent targets while only two covariance matrices

are available for smoothing. Similar results can be observed

for the remaining two scenarios.
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(a) Scenario 1 with (θ, ϕ) = (10◦, 15◦), (20◦, 25◦), and (20◦+∆, 25◦+
∆).
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(b) Scenario 2 with (θ, ϕ) = (50◦, 55◦), (60◦, 65◦), and (60◦+∆, 65◦+
∆).
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(c) Scenario 3 with (θ, ϕ) = (10◦, 55◦), (20◦, 65◦), and (20◦+∆, 65◦+
∆).

Fig. 7. RMSEs of DOA/DOD estimation versus angular separation when
the transmit and receive arrays are widely separated.
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Fig. 8. RMSEs of DOA/DOD estimation versus input SNR when the transmit
and receive arrays are widely separated (Kt = 10, Kr = 9) for the first
signal scenario with (θ, ϕ) = (10◦, 15◦), (20◦, 25◦), and (30◦, 35◦).

C. Target localization

The combined DOA and DOD estimation through a bistatic

MIMO array can be used for target localization by estimating

their coordinates. In this part, the performance of our proposed

method is evaluated for two-dimensional (2-D) target coor-

dinates estimation. Both the transmit and receive arrays are

placed along the x-axis and three coherent targets are located

on the x− y plane. The transmit array is located at [0, 0] and

the receive array at [20km, 0]. Two scenarios are considered,

as shown in Fig. 9 with the targets represented by the crosses,

which are equivalent to the first two scenarios considered in

Sec. IV-B. Both M and N are set to 20, Kt = Kr = 15, and

L = 200. Other parameters are the same as in Sec. IV-B. With

SNR = 20 dB, Fig. 9 shows the 2-D coordinates estimation

results (500 runs) calculated through the DOA and DOD

estimates obtained by the proposed FO smoothing method,

where the cluster of dots are the estimated locations. We see

all the targets have been identified reasonably well with a

relatively larger error for the second scenario, as the targets

are located at positions closer to the end-fire direction of the

arrays in that case.

V. CONCLUSIONS

A novel improved DOA estimation technique for coherent

targets has been introduced for MIMO radar systems with two

methods proposed: the FO-based spatial smoothing method

and the FB-based one. Different from the existing method,

the proposed ones employ both transmission and reception

diversity smoothing to tackle the ill conditioning problem of

the covariance matrix. When both the transmit and receive

arrays are closely located in space, the FO-based method can

achieve a better estimation accuracy than the TDS method

since there are more covariance matrices available for spatial

smoothing. Moreover, the number of coherent targets which

can be identified by the proposed method is much larger than

that of the TDS method when the transmit array is a sparse

one. On the other hand, the proposed method is suitable for

joint DOA and DOD estimation when the transmit and receive

arrays are separated far away from each other. Furthermore,
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Fig. 9. 2-D coordinates estimation results for the three coherent targets,
with crosses denoting the true locations and the cluster of dots denoting the
estimated ones.

the FB smoothing method corresponding to the proposed FO-

based one has also been developed to improve the performance

further. The effectiveness of the proposed method has been

demonstrated by extensive simulation results.
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