
This is a repository copy of Second quantisation for skew convolution products of infinitely 
divisible measures.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/85393/

Version: Submitted Version

Article:

Applebaum, D. and van Neerven, J. (2015) Second quantisation for skew convolution 
products of infinitely divisible measures. Infinite Dimensional Analysis, Quantum 
Probability and Related Topics (idaqp), 18 (1). ISSN 0219-0257 

https://doi.org/10.1142/S0219025715500034

Electronic version of an article published as Infinite Dimensional Analysis, Quantum 
Probability and Related Topics, 18, 1, 2015 10.1142/S0219025715500034 © copyright 
World Scientific Publishing Company http://www.worldscientific.com/worldscinet/idaqp

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


SECOND QUANTISATION FOR SKEW CONVOLUTION

PRODUCTS OF INFINITELY DIVISIBLE MEASURES

DAVID APPLEBAUM AND JAN VAN NEERVEN

Abstract.

1. Introduction

Let Ei, i = 1, 2 be Banach spaces equipped with Radon probability measures µ1

and µ2, respectively. A Borel measurable mapping T : E1 → E2 is called a skew

map for the pair (µ1, µ2) if there exists a Radon probability measure ρ on E2 so
that µ2 is the convolution of ρ with the image of µ1 under the action of T . In this
case we obtain a linear contraction PT : Lp(E2, µ2) → Lp(E1, µ1) given by

PT f(x) =

∫

E2

f(T (x) + y)ρ(dy).

Such constructions arise naturally in the study of Mehler semigroups, linear sto-
chastic partial differential equations driven by additive Lévy noise and operator
self-decomposable measures (see [2]). In this context, the problem of “second quan-
tisation” is to find a functorial manner of expressing PT in terms of T . The reason
for this name is that the first work on this subject [3], within the context of Gaussian
measures, exploited constructions that were similar to those that are encountered
in the construction of the free quantum field from one-particle space (see e.g. [7])
wherein the nth chaos spanned by multiple Wiener-Itô integrals corresponds to the
n-particle space within the Fock space decomposition. In our previous paper [2]
we implemented this programme and constructed PT as the second quantisation
of T in the two cases where for i = 1, 2, µi are Gaussian (generalising [3] and [6]),
and are infinitely divisible measures of pure jump type (generalising [8]). In this
article, we complete the programme by dealing with the case where the µi’s are
general infinitely divisible measures, and so are convolutions of the cases previously
considered.

2. Background

Let µ be an infinitely divisible Radon probability measure defined on a (sepa-
rable) Banach space E. It is well-known that the generic such measure may be
written as the convolution µ = µG ∗ µP where µG is a Gaussian measure (see e.g.
[5, 4]). In fact, it follows from the Lévy-Itô decomposition of [9] that µ may al-
ways be realised as the law of an E-valued random variable X defined on some
probability space (Ω,F , P ) for which X = X1 +X2, where the summands X1 and
X2 are independent. Here X1 is Gaussian and has law µG, while X2 is controlled
by a Poisson random measure on E whose intensity measure is a Lévy measure ν,
and X2 has law µP . From [2], we know that we can effectively realise the second
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quantisation of twist maps of µG in the symmetric Fock space Γ(H) of the repro-
ducing kernel space H of µG which is naturally isomorphic to L2(E, µG). To second
quantise twist maps of µP , we use L2(E, µP ) ≃ Γ(L2(E, ν)). To unify these two
approaches we make use of the following:

L2(E, µ) = L2(E, µG ∗ µP ) →֒ L2(E, µG)⊗ L2(E, µP )

≃ Γ(H)⊗ Γ(L2(E, ν)) ≃ Γ(H ⊕ L2(E, ν)).

We give a more detailed account of these embeddings and isomorphisms in the
sequel.

3. Main result

Suppose µ is an infinitely divisible measure, say

µ = γ ∗Π

with γ centred Gaussian and Π as in [2] 1. For a function f ∈ L2(µ) let

Ff (x, y) := f(x+ y).

Using the fact that L2(γ)⊗̂L2(Π) = L2(γ×Π) isometrically (with ⊗̂ indicating the
Hilbert space tensor product) it is immediate to verify that

‖f‖2L2(µ) =

∫

E

∫

E

|f(x+ y)|2 dγ(x) dΠ(y) = ‖Ff‖
2
L2(γ)⊗̂L2(Π)

.

As a result the mapping f 7→ Ff is an isometry from L2(µ) into L2(γ)⊗̂L2(Π). This
brings us to the setting with independence structure as discussed in [1]. Following
that reference, on the algebraic tensor product L2(γ)⊗ L2(Π) we define

D := Dγ ⊗ I + I ⊗DΠ,

where we denote the ‘Gaussian’ and the ‘pure jump’ derivatives with subscripts γ
and Π, respectively.

Consider the Hilbert spaces

Hn :=
⊕

j,k≥0
j+k=n

H s©j⊗̂L2(ν) s©k.

Then,

L2(γ ×Π) = L2(γ)⊗̂L2(Π) =
( ∞⊕

j=0

H s©j
)
⊗̂
( ∞⊕

k=0

L2(ν) s©k
)

=

∞⊕

n=0

( ⊕

j,k≥0
j+k=n

H s©j⊗̂L2(ν) s©k
)
=

∞⊕

n=0

Hn

may be viewed as the associated Wiener-Itô decomposition. We define the n-fold
stochastic integral on In : Hn → L2(Ω) by

In(f ⊗ g) := Ij,γf ⊗ Ik,Πg

for f ∈ H s©j and g ∈ L2(ν) s©k with j + k = n, where we denote the ‘Gaussian’ and
the ‘pure jump’ integrals with subscripts γ and Π, respectively.

1Be more precise
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In what follows, in order to tidy up the notation we will refrain from writing
subscripts γ and Π; expectations taken in the the left and right sides of tensor
products refer to γ and Π, respectively.

Proposition 3.1. For all F ∈ L2(γ ×Π),

F =
∞∑

m=0

1

m!
Im(E(DmF )).

Proof. Let F = f ⊗ g with f ∈ H s©j and g ∈ L2(ν) s©k. By Leibniz’s rule,

∞∑

m=0

1

m!
ImEDmF =

∞∑

m=0

1

m!
Im

(
E

m∑

ℓ=0

(
m

ℓ

)
Dℓf ⊗Dm−ℓg

)

=

∞∑

m=0

m∑

ℓ=0

1

ℓ!(m− ℓ)!
Im

(
E
(
Dℓf ⊗Dm−ℓg

))

=

∞∑

m=0

m∑

ℓ=0

1

ℓ!(m− ℓ)!
Iℓ,γ(ED

ℓf)⊗ Im−ℓ,Π(D
m−ℓg)

=

∞∑

j=0

1

j!
Ij,γ(ED

jf)⊗

∞∑

k=0

1

k!
Ik,Π(ED

kg),

= f ⊗ g

= F

using the Last-Penrose type decompositions for γ and Π in the second last identity.
�

Suppose now that two measures µ1 and µ2 are given as above, on Banach spaces
E1 and E2, respectively, say µi = γi ∗ Πi for i = 1, 2. Let T : E1 → E2 be a linear
skew mapping with respect to both (γ1, γ2) and (Π1,Π2) with skew factors ργ and
ρΠ. Recall that this means that Tγ1 ∗ ργ = γ2 and TΠ1 ∗ ρΠ = Π2.

Set ρ := ργ ∗ ρΠ.

Lemma 3.2. Under these assumptions, T is skew with respect to (µ1, µ2) with skew

factor ρ.

Proof. Since for any two measures on E1 one has T (ν1 ∗ ν2) = (Tν1) ∗ (Tν2), this
follows from

Tµ1 ∗ (ργ ∗ ρΠ) = (Tγ1 ∗ TΠ1) ∗ (ργ ∗ ρΠ) = (Tγ1 ∗ ργ) ∗ (TΠ1 ∗ ρΠ) = γ2 ∗Π2 = µ2.

�

It follows from the lemma that we may define PT : L2(E2, µ2) → L2(E1, µ1) by

PT f(x) :=

∫

E2

f(Tx+ y) dρ(y), x ∈ E1,

where ρ is the skew factor on E2, i.e., Tµ1 ∗ ρ = µ2. Similarly we can define an
operator PT ⊗ PT : L2(γ2)⊗ L2(Π2) → L2(γ1)⊗ L2(Π1) in the obvious way (with
an apology for the abuse of notation) and we then have:

Lemma 3.3. Under the above assumptions, FPT f = (PT ⊗ PT )Ff .
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Proof. For (γ ×Π)-almost all x, y ∈ E2 we have

(PT ⊗ PT )(φ⊗ ψ)(x, y) = (PTφ⊗ PTψ)(x, y)∫

E2

φ(Tx+ z) dργ(z)

∫

E2

ψ(Ty + z) dρΠ(z)

∫

E2

∫

E2

(φ⊗ ψ)(Tx+ z1, T y + z2) dργ(z1) dρΠ(z2).

Now suppose that Gn = Ff in L2(γ × Π), where each fn belongs to the algebraic
tensor product L2(γ)⊗L2(Π). By the above identity and linearity it follows, after
passing to a subsequence if necessary, that for (γ×Π)-almost all x, y ∈ E2 we have

(PT ⊗ PT )Ff (x, y) = lim
n→∞

(PT ⊗ PT )Gn(x, y)

= lim
n→∞

∫

E2

∫

E2

Gn(Tx+ z1, T y + z2) dργ(z1) dρΠ(z2)

=

∫

E2

∫

E2

Ff (Tx+ z1, T y + z2) dργ(z1) dρΠ(z2)

=

∫

E2

∫

E2

f(Tx+ Ty + z1 + z2) dργ(z1) dρΠ(z2)

=

∫

E2

f(Tx+ Ty + z) d(ργ ∗ ρΠ)(z)

=

∫

E2

f(Tx+ Ty + z) dρ(z)

= PT f(x+ y)

= FPT
(x, y).

�

For h ∈ H and y1, . . . , yn ∈ E and h ∈ H we define

Dh;y1,...,yn
:= Dh ⊗ I + I ⊗Dy1,...,yn

,

Lemma 3.4. For all f ∈ L2(E2, µ2), h ∈ H, and y1, . . . , yn ∈ E1,

Eγ1×Π1
Dn

h;y1,...,yn
FPT f = Eγ2×Π2

Dn
Th;Ty1,...,Tyn

Ff .(3.1)

Proof. We approximate Ff by finite sums of elementary tensors as in the proof of
the previous lemma. For such functions Gn the identity follows from the results in
[2] for the Gaussian and Poissonian case.

Take care of details, closedness argument needed?

Our D’s are unbounded. �

Can we define a derivative D in L2(µ) satisfying the requirement

EµD
nf = Eγ1×Π1

DnFf ?

(On the right, this is the D defined previously on L2(γ)⊗ L2(Π),
extended (by closbility? check) to a closed operator on L2(γ×Π)).
That would clean up the lemma as well as the commuting diagram.
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For Hilbert spaces H and H we note that

Γ(H,⊕H) =

∞⊕

n=0

( ⊕

j,k≥0
j+k=n

H s©j⊗̂H s©k
)
.

Theorem 3.5. Putting everything togehter, under the above assumptions the fol-

lowing diagram commutes:

L2(E2, µ2)
PT−−−−→ L2(E1, µ1)

f 7→Ff

y
yf 7→Ff

L2(γ2 ×Π2)
PT⊗PT−−−−−→ L2(γ1 ×Π1)

⊕∞
n=0

1√
n!

Eγ2×Π2
D̃n

y
y⊕∞

n=0

1√
n!

Eγ1×Π1
D̃n

Γ(L2(E2, ν2)⊕H2)
⊕∞

n=0
(T∗) s©n

−−−−−−−−−→ Γ(L2(E1, ν1)⊕H1)
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Basel, Boston, Berlin (1992)
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