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Abstract

The first half of the paper provides an overview of a new ergging software tool
that is designed for the efficient solution of problems thayrhe modeled as systems
of linear and nonlinear partial differential equations @4) of parabolic type. Our
tool is built upon the PARAMESH library, [15], which providédserarchical mesh
adaptivity in parallel in two and three dimensions. Our thfizations are based upon
cell-centred finite difference schemes in space and iniphiaiti-step methods in time
(primarily the second order backward differential form(B®F2)). This results in the
need to solve a nonlinear algebraic system at each timeastdpye have implemented
an optimal nonlinear multigrid method based upon full agpr@tion scheme (FAS).
The second half of the presentation illustrates the appdicaf this new software
framework to a challenging application, namely a multigdwéield model of tumour
growth [18]. We show some typical simulations for growthloé inodel tumours, and
these results demonstrate second-order convergencehsjpate and time. We con-
clude with a discussion of the challenges of obtaining lyigichlable parallel perfor-
mance for a software tool that combines both local mesh adlgtequiring efficient
dynamic load-balancing) and a multigrid solver (requircageful implementation of
coarse grid operations and inter-grid transfer operaiiopsrallel).

Keywords: parallel, adaptive mesh refinement, finite difference, iafpimultigrid.

1 Introduction

Many problems in computational engineering are based uperuse of complex
mathematical models and their numerical approximatiohes& models often consist
of highly nonlinear, time-dependent and coupled PDEs. Aatey efficient and reli-
able numerical algorithms (and, frequently, great compariat power) are necessary



in order to obtain robust computational solutions. Thiskuvgrconcerned with the
novel application of advanced numerical methods to the efficsolution of nonlin-
ear time-dependent systems of PDEs. Specifically, the fisoms parabolic systems.
This type of system may be applied to a plethora of differgmgliaations, ranging
from solidification [3], computational fluid dynamics [1Q1]ito tumour growth [18].

The multigrid method is commonly accepted as being one ofakst numeri-
cal methods for solving algebraic equations arising fromhviessed discretizations
of PDEs. Brandt in his 1977 paper [5] systematically descritbesfirst multigrid
methods, and some of their applications. The subsequeticatbns e.g. [6, 17]
suggest further combinations of multigrid methods withtgpadaptivity and adap-
tive time-stepping, for applications in which physicalesffs occur at multiple length
and time scales. Often these problems tend to be very diifs tequiring fully-
implicit (strongly stable) temporal discretization. Attative existing software pack-
ages which offer adaptive multigrid solvers are, for insgrDEAL.II [2] and DUNE
[7]. However, to our best knowledge, generally the systemslemented in these
packages are preferably discretized using explicit sckema parallel setting due to
their simplicity of implementation.

The software that we have implemented aims to efficientlyestiie algebraic sys-
tems arising from eachmplicit time step. We combine FAS multigrid with dynamic
adaptivity and adaptive time-stepping in a parallel sgtéind address the challenge in
parallel performance from using this combination of sch&enhe Section 2, we intro-
duce our software framework, from its fundamental mesh ggaeto multigrid and
adaptivity. In Section 3, an application of multi-phasdefimodel of tumour growth
is presented, along with our results and novel findings. Wecloale this paper in
Section 4 with suggestions for possible future work.

2 Software Framework

The software that is used in this work, Campfire [3, 13, 19]egahdent upon an open
source software library, which is called PARAMESH [15]. Thaftware library gen-
erates structured, cell-centred, Cartesian meshes withsthef a block partitioning
strategy, and obtains spatial adaptivity by having mudtiplyers of mesh refinements.
Providing two user-defined, problem-specific tolerances @ne for coarsening and
another for refining), the mesh can be dynamically adaptssligh adaptive mesh
refinement (AMR). The mesh hierarchies supported by PARAMESHqaad-tree
and oct-tree meshes in two and three dimensions, respgctiwe show a typical
example of such a 2-D adaptive grid in Figure 1 (a) with a glghsser-defined block
size of2 x 2, and its corresponding quad-tree mesh structure in Fig@bg. In this
example, instead of the original depth-first Morton ordgrinthat is implemented in
PARAMESH, an alternative level-by-level ordering is usedCiampfire because the
partition of the mesh structure that is induced by this andeis more fitting to the
multigrid solver in parallel. The parallel distributionaxple shown in Figure 1 (b) is
modified from the original PARAMESH implementation, so therlWdoad is balanced
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Figure 1: (a) A 2-D adaptive Cartesian mesh: the heavy lingisate the boundaries
of each block, and the lighter lines indicate individuall-@antred grid points. (b)
The corresponding quad-tree mesh structure of the mesh;ifo(a shapes (i.el],
A, ¢ ando) are used to illustrated a possible distribution to four NdRicesses in a
parallel environment (ensuring that the work is equallyribsted within each level
of the tree).

on each mesh level, as multigrid operates from one level tohan in a sequential
order, instead of globally distributing the whole mesh tree.

Each of the mesh blocks is surrounded by a layer of guard ¢sdisillustrated
in Figure 1 for clarity), which may be expanded to multipledes/for schemes with
larger stencils. The guard cells at the actual domain baynclantain information
which allows the specified boundary conditions to be implete@, and others are
used to store values of corresponding grid points on thehbeigring blocks. In
PARAMESH, parallelism is achieved through distributing méébcks to multiple
MPI processes, and using MPI to communicate between indaisllPl processes to
exchange data held by these guard cells. A possible worldasahced parallel dis-
tribution is shown in Figure 1 (b) across four MPI procesd€&MR is carried out
dynamically, then dynamic load-balancing is applied inepridd maintain the parallel
performance.

A nonlinear multigrid with full approximation scheme (FAf9, 6, 17] is built
in Campfire for the algebraic systems arising from every tite@.s This multigrid
method exploits iterative methods which are known to have@osinmg property, and
smooth the nonlinear algebraic systems on each mesh lewek 8pecifically, when
all Fourier components (up to the resolution of the grid)@esent in the initial error,
smoothing methods (such as Jacobi and Gauss-Seidel) danme duighest frequency
components of the error in a very small number of iteratidriserefore, by applying
a few sweeps of such an iterative method on a fine grid, a ladction of the high
frequency components of the error is achieved. In orderntmwe the remaining low
frequency components of the error on the fine grid, the algelsystem is moved
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Figure 2: A three-level hierarchy of 1-D adaptive cell-cedtgrids, with the use of
temporary boundary points, the nonlinear FAS multigridmMLAT can be applied
on these grids.

down to a coarser grid in the grid hierarchy. In order to forpr@blem on the coarser
grid that is connected with the problem on the fine grid, a rredliright-hand side
(RHS) is given to the coarse grid problem, which depends upengstricted residual
and the fine grid solution itself. Since the number of gridh®is reduced on such a
coarser grid, part of the remaining error has a high frequenchis grid. The iterative
method can again quickly remove the high frequency compsradrthe error within a
small number of sweeps. This is repeated until the coarsedvgth the least number
of grid points) is reached. A large amount of iterations campérformed to obtain an
“exact” solution on the coarsest grid, with a reasonable thost because of the small
amount of work per iteration. This “exact” solution can thaa interpolated to the
next finer grid and used to improve the solution. Once theection reaches the finest
mesh, it completes a full cycle, and this is termed a V-cyAleiser-defined stopping
criterion is required here (typically imposed on the realjlto indicate if the solution
has converged with acceptable errors, or another V-cyckmjisired.

The FAS multigrid method is designed for uniform grids. Wiitke given spatial
adaptivity from PARAMESH (e.g. Figure 1 (a)), one may combime FAS multigrid
with a multi-level adaptive technique (MLAT) in a straightévard manner. That is,
by fixing the guard cells as temporary Dirichlet boundarynpgithe problem can be
smoothed on local grids, and only the coarsest grid is redun capture the whole
domain. For the purpose of demonstration, the use of tempbndary points is
illustrated on 1-D adaptive cell-centred grids in Figure 2.

For the grid transfer operators, used to move between gréddea cell-averaging
restriction and a bilinear interpolation are employed in @ara. We illustrate these
two operators on a simple 2-D cell-centred grid in Figure 32-B version of the
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Figure 3: (a) The cell-averaging restriction operator iru&&gpn (1): this process
reduces a group of four points (marked @son the fine mesh level to one point
(marked as) on the coarse mesh level. (b) The bilinear interpolatioarafor in
Equation (2): arrows indicate an example of this process fpoints (marked as) on
the coarse mesh level to a point (marke®)psn the fine mesh level.

restriction can be written as
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where the array. stores values at the grid points;, y) are the Cartesian coordinates,
h,2h are the grid spacing on fine and coarse grids respectivelytl@deometric
symbols are indicated in Figure 3 (b). The 3-D version of theseoperators (i.e.
3-D cell averaging and trilinear interpolation) are sthafgrward.

Our software tool is intended for mathematical models thasist of a system of
multiple coupled equations. From our experience, it isdvétir a smoother to update
the whole system (all variables), at each visited grid paithultaneously. Hence,
we utilise a point-wise, nonlinear block Jacobi method efltical relaxation-type, in
which Newton’s method is used to solve the small nonlineatesy corresponding to
the unknowns on each grid point [16]. In order to demonstraaise of this nonlinear
block Jacobi method, consider a finite difference discrétnaof a system of elliptic
nonlinear PDEsF(u) = 0, whereu is a vector contains all unknowns. Lef, be
the approximate solution on grid pointor unknown variable:, where we assumi
unknowns at each grid point The systeni (u) = 0 is made up ofV x K coupled
nonlinear algebraic equations,

-Fz’,k(u) =0, 3)

wherei = 1,..., N andk = 1,..., K (to clarify the notation;  is thek™ component
of u; € R* andF;;, is thek! component ofF; € RX). On one grid point, all £
variables may be updated simultaneously as

u =l — O F(uh), (4)

wherel is the number of iteration and; ' is the inverse of thé x X Jacobian matrix
C;, which is given as

0F; 1 0Fi1 0Fi1
Oui 1 Ou; 2 T Ouik
O0F; 2 O0F; 2 O0F; 2
B 1 ; B o ; B e :
S e ®
OF; x 0F; 0F;
8ui,1 (9u1-72 e 8”1‘,){

The Gauss-Seidel form of this method is straightforward asas the most up-to-date
values ofu on the RHS of Equation (4), rather than only usirfg Although for the
purpose of demonstration, an elliptic system is chosens@etised, time-dependent
parabolic system of PDEs may also be written in the form ofdEign (3) at each time
step when an implicit temporal discretization scheme isluse

Having described multigrid and AMR, for problems in which ploal effects occur
at multiple time scales, fully implicit time-stepping sches are usually appropriate
(such problems tend to be stiff), often combined with ad@pstep size selection. In
Campfire, we use the number of V-cycles within each time stegnamdicator to
control the selection oft. Typically, when a time step siz# is relatively small, the
multigrid solver converges very quickly, 0 has the potential to be increased. On
the contrary, the multigrid solver struggles if a time steg@st is too large, and may
even fail to converge. Thug has to be reduced, and for the failed attempt, that time



step has to be restarteit.is kept the same if the solver converges within a reasonable
number of V-cycles. Together with the use of adaptive BDF2& have applied this
adaptive time-stepping to the long-wave models of thin filow# [10, 11] (see [19]

for detailed discussions) and phase-field models of bindoy aolidification [3, 13].
Within our framework, it is also possible and straightfordvéor one to implement an
indicator that is based upon local ordinary differentiali@ipn error estimation, such
as the one used in [12].

Having provided a brief overview of the software that we hdegeloped, in the
following section, we demonstrate our software framewoithwa multi-phase-field
model of tumour growth [18].

3 An Application Base Upon Multi-Phase-Field M odel
of Tumour Growth

Over the last few decades, the understanding of tumourgie (ke birth and growth
of tumours) has developed dramatically and the contribuiomathematical tumour
modelling cannot be neglected. The biological experimantsclinical observations
have been complemented by the mathematical models thabeawedeveloped. Even
simple tumour models and simulations can help to supporteoy dhe hypotheses
made from observations. Therefore, the two, mathematiodetting and experimen-
tal work, when interwoven together, expand our knowledgeusmour growth and

eventually contribute to therapies. The review papers [148describe a number of
examples in detail to illustrate how theory can drive expents and vice versa.

On the other hand, notwithstanding the advances in scieatifi medical research,
the process of tumourigenesis and further growth still reshalusive. To study the
complex procedures of tumour growth itself and its intecars with the host, a con-
tinuum modelling technique which consists of a set of PDHs lwa used to model
the morphology of tumours. In our work presented here, airphlise-field model of
tumour growth is considered, from Wise et al. [18]

There are in total four independent phase-field variablethisy model, namely
ow, o, ¢y and¢p which represent volume fractions of extracellular fluidakiey
cells, viable tumour cells and dead tumour cell, respelgtiven addition, there are
three assumptions amongst these volume fractions. Fiitsfyassumed the extracel-
lular fluid volume fraction is everywhere constagty (z, v, z,t) = ¢w,o = constant.
After this assumption, the tumour model only consists oftipld solid cell fractions.
Secondly, cells are assumed to be close-packed, and thsstiethe sum of the healthy
cell volume fractionpy, the viable tumour cell volume fractiopy, and the dead tu-
mour cell volume fractior to be equal td (i.e. ¢y + ¢ + ¢p = 1). Furthermore,
the range of values of these phase-field variables is franl. Thirdly, it is further
assumed that inside the tumour there are only two types tf: celable and dead.
This indicates the total tumour cell volume fraction is the sum oty and¢p, (i.e.
or = ¢y + ¢p). Based upon these three assumptions, there are only twe-fie&s



variables that are required to be solved, and theygar@and ¢. Once these two
variables are obtained, other variables may be derived fhenassumptions made.

The componenp is assumed to obey the following Cahn-Hilliard-type adweati
reaction-diffusion equations:

291

Ak = MY - (1Y) + Sr = V - (usér), ©)

1= f(6r) - EVr, (7)

whereM > 0 is the mobility constantf (¢r) = ¢%(1 — ¢r)?/4 is the quartic double-
well potential,ug is the tissue velocity (and is substituted out of the equaltater),
ande > 0 is an interface thickness parameter between healthy anouutissue.Sr
is the net source of tumour cells which dependgen¢, and¢p, and it is given as

St = nG(CbT)QbV — ALép, (8)

wheren is the concentration of nutrient, which is specified later,= ¢ — ¢p, and
AL > 0is the rate of tumour cell proliferatiords (¢r) is a continuous cut-off function
and it is defined as

1 if 2 < or
Glor) =3 -1 ifs<or< 9)
0 |f¢T<§

A similar dynamical equation for predicting the volume fian of dead tumour
cells¢p is used:

0
% = MV - (¢pVp) + Sp — V - (ugep), (10)
whereS, is the net source of dead tumour cells, which dependsyoand¢,. This

source term is defined as

Sp = (Aa+ AvH (ny —n)) dv — Arép, (11)

where) 4 is the death rate of tumour cells from apoptosis,is the death rate of tu-
mour cells from necrosis;y is the necrotic limit (when nutrient is below this thresh-
old, dead tumour cells occur), aftflis a Heaviside function. This Heaviside function
is discontinuous and thus prevents us from obtaining a higttar convergence rate,
so we instead use the smoother approximation given by

1 if ny —n>¢€
H(ny —n) = —4(€£)3(nN—n)3+%(nN—n)+% if —e<ny—n<e¢
0 if ny —n < —¢€°,

(12)
wheree® controls the steepness of the smooth transition betwee 1.



The tissue velocity.¢ is assumed to obey Darcy’s law, and is defined as

ug = ~r(dr, 6p)(Vp — TuVor), (13)

wherex > 0 is the tissue motility function and > 0 is a measure of the excess
adhesion. An additional assumption made by Wise et al. [¢8hat there is no
proliferation or death of the host tissue, thus the velasityonstrained to satisfy

Instead of solving for the tissue velocity, Equations (13) éi%) are combined to-
gether, and a resulting Poisson-like equation for the cegure» can be constructed:

=V - (k(¢r,¢p)Vp) = Sr — V - (k(¢r, ¢D)%MV¢T>‘ (15)
A quasi-steady equation is given for the nutrient concemahrough diffusion:
0=V- (D(¢T)Vn) + Tc(ng,n) — n(qu — ¢D)7 (16)

whereD(¢7) = Dy (1—Q(¢r)) + Q(ér) is the diffusion coefficientDy is the nutri-
ent diffusivity in the healthy tissu€)(¢r) is an interpolation function, arifl.(¢7, n) =
(v (1 - Q(ér)) +vEQ(¢7))(ne — n) is the nutrient capillary source term. Further-
more, v > 0 andvl > 0 are constants specifying the degree of pre-existing umifor
vascularizationp > 0 is the nutrient level in capillaries and the interpolationd-
tion, Q(¢r), is defined as

1 if 1 <or
Q(or) = { 397 — 207 fO<or <1 (17)
0 if o <0.

To sum up, this multi-phase-field model of tumour growth cstssof a coupled
system of five equations, and they are Equations (6), (7), (18) and (16). There
are five dependent variables in total in this system: two @fii@$d variablesg, and
¢p; and three supplementary variables,p andn. These PDEs are valid through-
out a domairt?, there are no internal boundary conditions for the soliddumthe
necrotic core or other variables. Therefore, only one seutér boundary conditions
is required and this set is the following mixture of Neumand Birichlet boundary

conditions: 96 96
T D
E_E_O on 02, (18)

wherer denotes the outward-pointing normal to the bound#ey

In order to obtain the desired second order convergence watemodified this
model with additional penalty terms which are associatdd tie phase-field Equa-
tions (6) and (10). This slightly relaxes the constraint@sgd to the range of values
of the phase-field variables (i.e. < [0, 1]). The penalty terms added to Equation (6)
are

p=p=0, n=1,

%min (¢r,0) and %max (o7 — 1,0). (19)



These terms have no impact wher< ¢, ;. < 1, but create a large correction to the
system whenevet tries to take a value outside of this interval. The largercihaice

of the penalty parametérthe larger this correction becomes, forcing the values;of
to be close to this range but at the expense of adding to tHaearity of the resulting
system. The default value é6fused in this work iS0~*. Similar penalty terms which
take¢p into account are also added to Equation (10).

In order to define the initial conditions for the 2-D simutats, firstly the 2-D
domain(2 is defined which has Cartesian coordinatesy) € 2 = [0, 40] x [0, 40].
The initial condition forg can be defined as

o (v —20)? 2 2
— _— — <
=0 otherwise

This initial condition is discontinuous, so we employed m@e Jacobi iteration to

smooth the initial conditions, both to allow second ordesusiacy to be seen and to
avoid unnecessarily restrictive time steps at the statt@stmulation. A 2-D version

of such iteration is

- 1 - - - -
Bty = 7 (e + 0 + i + o). (1)
In addition, ¢p(t = 0) = 0 is assumed so that initially no dead tumour cells have
occurred.u(t = 0) is straightforward to calculate singds a function ofgr as shown

in Equation (7). The initial conditions for the presswrand nutrient, require the
application of a solver. Due to the increased computatioasti in 3-D, an additional
multigrid solver is implemented to solve first for the steatte solution ofi(t = 0)
(since Equation (16) is not dependent upap), thenp(t = 0). A stopping criterion

is used which is dependent upon the infinity norm of the redglaf» andp, and it
terminates whefir||o, <1 x 107°.

The values of the parameters that are used in this paperdantiiti-phase-field
model of tumour growth are presented in Table 1.

| Parameters Values| Parameters Values|

M 10.0 € 0.1
AL 1.0 Aa 0.0
AN 3.0 ol 0.0
ny 0.4 Dy 1.0
vH 0.5 vl 0.0
4] 0.0001 €’ 0.2
Nngo 1.0

Table 1: The parameters of the multi-phase-field model obuwngrowth. These were
used by Wise et al. in [18], except fet andd.
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There are two stopping criteria used in our multigrid sqlwédrich depend upon the
infinity norm of the residual from all five variables, and atdeane of the stopping
criteria must be satisfied in order to stop the iteration. flilséis an absolute stopping
criterion, which determines to stop the solver at the curtieme step if the infinity
norm is smaller tham0—¢. The second is a relative stopping criterion, which takes th
infinity norm after the first V-cycle in the current time stegmd determines to stop if
this infinity norm is reduced by a factor ®6° by subsequent V-cycles.

In order to demonstrate our dynamic AMR, results from a 2-Dusation are il-
lustrated here. We present the solutionpefin Figure 4 with a starting time step size
of 5t! = 1 x 10~3. By using adaptive time-stepping, we are able to use a laimer t
step size later on, however, due to the nature of the probdenfound the time step
size could not be increased too much. Our results in thisdighow similar tumour
evolution to [18] (for a detailed discussion on validatieag [19]). Our choice for the
AMR strategy is conservative (not just considering the pHasd variables), because
the pressurg obeys Darcy’s law and is known, by Wise et al., to be difficalre-
solve. Our AMR strategy takes into account the second derévaf the solutions of
variablesgr, ¢p, p andn, i.e. |V2¢r|, [V2épl, [V?p| and|V?n|. Within each mesh
block, on every grid point, j), the adaptive assessment is computed via:

. (1-4) (1-4) (1-4) (1-4) (1-4)

adaptive assessment= |u;, 5 +uy g+ u g +upy —du (22)
Then the maximum value of adaptive assessmefit; is selected from these four
variablesu'~% to represent this mesh block and compared against the efiaed
refinement/coarsening criteria. The specific choices fsélcriteria must be obtained
and evaluated from practice. In this case we define the rgfriterion to be).01 and
the coarsening criterion to e001. Therefore, if adaptive assessment is greater than
0.01 (i.e. dxdy|V*u™>| > 0.01), this mesh block is marked for refining, or if it is
less than0.001 (i.e. dxdy|VZu™®| < 0.001), then this mesh block is marked for
coarsening. Due to the profile of the highest level of mesh refinementtat 0
covers a much larger area than the initial seed;of

The adaptive meshes and the dynamic AMR are illustratedgorgi5. The red
color represent the highest mesh refinement |@18?; the pink color is level 024?;
the light blue show$122 mesh level; finally, the dark blue, which only appears in the
top two figures, indicate®562 mesh level.

Within a typical time step in the 2-D simulation, we illug&aur optimal multigrid
convergence rate with five different grid hierarchies inuUfeg6. The infinity norm
of residuals from four variables (i.e¢r, 1, ¢p andn) is used to demonstrate the
multigrid convergence rate. These results suggest thectiedun the residuals (at
least for these four variables) is independent of grid siZée difficulty of resolving
the pressure has previously been identified, and a detailed discussipresented in
[19] which supports the observations of Wise et al. [18]

The spatial and the temporal discretization schemes teatsed in this work are
both second-order accurate. Therefore, we expect thelbeeraergence rate to be
second order. This means by halving the time step size anolidgithe number of

11



Figure 4: 2-D simulation, showing the evolution ®f. These results are generated
from a grid hierarchy which ha8® as the coarsest grid and, if refined everywhere,
20482 as the finest grid.
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Figure 5. The adaptive meshes from the 2-D simulation showigure 4. Since
the mesh at = 0 is relatively similar to the one at= 50, these two are illustrated
together here.

grid points in each direction, the error should reduce byctofeof four. In order to
illustrate this, we conduct our convergence tests based sglation restriction. That
is, let's consider three example grid hierarchies using @ibs. They ares? — 162,
82 — 162 — 322 and8? — 162 — 322 — 642. Each grid is associated withda: §¢6°,
5132° = ﬁ andott? = ﬁ respectively. The solutions are obtained by solving the
same problem on these three finest grids separately, withabeespondingt, and
with the assumption that the ending tirhas exactly the same for all runs. To make
a comparison between two solutions we restrict the fine gidti®n to the coarse
grid by using a restriction operator (e.g. four-point ageng shown in Equation (1)).
Thus, the solution which is restricted from grid hieraréiy— 322 can be compared
to the solution from grid hierarchy® — 162. Similarly, the restricted solution from
hierarchy8? — 642 can be compared to the original solution from hierarghy- 32°.
The infinity norm and the discrete two norm of the differenagihin the solutions
are computed from these comparable solutions on the cagnigerThe infinity norm
error measure is defined as the following:

llelloo = max([ufSe™ —uy), (23)
whereu®"“ s the restricted solution from the finer grid hierarchys the solution
from the coarser grid hierarchy,; = 1,..., N and N is the number of internal
grid points in each axis direction on the finest grid of therseagrid hierarchy. The
discrete two norm error measure is given as

N N i
el == Dic 2o (WSO — )
2 N x N ‘

(24)
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Figure 6: The optimal multigrid convergence rate withinpi¢al time step. There are

five different grid hierarchies and the same coarsest dfitlis used, but the number

of grid points on the finest grid quadruples as the number idsggrows each time.

For example 1024 x 1024 indicates there are grids from162 to 10242. The infinity

norm of residual isnax(r(¢r), r(u), r(¢p), r(n)).
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When adaptive grids are used, we consider all grid points tlafinest refinement
level, as well as the next coarser one. For the tumour mduelnfinity norm and the
two norm are computed separately for all five variables usiddferent grid hierar-

chies. The finest grid used, if refined everywhere, has a gadlution equivalent to
20482. The results for convergence tests are presented in Tablaé& evidence for
having obtained second order convergence is compelling.

For 3-D simulations, the imposed initial condition@f are defined by three ellip-
soids as

: —19)?
or(z,y,2) =1 if % + (y — 19)% + (2 — 19)* < 22,
2 (y B 20)2 2 2
- - — <
or (z—20)"+ 11 + (2 — 20)° < 27, (25)
— 19)?
or (z—21)%+(y—19)*+ 197 : 19) <22,

= (0 otherwise

This model of tumour growth is solved in 3-D with the paramestated in Table 1 and
the 3-D initial condition in Equation (25) in a 3-D domdihwhich has the Cartesian
coordinategz, y, z) € = [0,40] x [0,40] x [0, 40]. The finest grid resolution used,
if refined everywhere, i8563. The solutions ofs; at all grid points which have values
in range of0.5 to 1.0 are illustrated in Figures 7 and 8.

With the capability to run our solver in a parallel environremere we present
results from parallel efficiency tests up@ad cores. We run the simulation of tumour
growth for 10 time steps start from = 150, and results of time cost are illustrated in
Figure 9. The choice of mesh block size &, and within this simulation, the coarsest
grid is 323, the finest grid, if refined everywhere,1563. The actual number of leaf
nodes is8, 060, 928 from 1,968 mesh blocks. In this figure, the deterioration from
16 to 64 cores is caused, in part, by the fact that there is not enougklead on the
coarsest grid (which only hasmesh blocks). Finding a robust solution to this issue
is non-trivial, and there are a number of trade-offs that nedx considered. First of
all, one may suggest to reduce the block size, in order to hewe mesh blocks at
the coarsest grid level. However, this results in the useasfynmore guard cells, thus
causing a heavy burden on the memory as well as the paraftehcmication. Another
logical suggestion would be using a finer coarsest grid ¢it&in this case), however,
the nonlinear multigrid with FAS solves the nonlinear peshlon each level. Due
to the nonlinearity, to obtain an “exact” solution on a fineaxs®st grid may require
many more iterations of the coarsest grid and this detadstthie overall performance
of our solver.

4 Conclusion

We have introduced our software framework, Campfire, whidiased upon a mesh
generator called PARAMESH. Our built-in nonlinear, optimalltigrid solver with

15



For variablepr
Finest levels ot Time steps| Infinity norm | Ratio| Two norm | Ratio
5 8 x 1073 1250 - - - -
6 4 x 1073 2500 0.719 x 10° - 4.969 x 1072 | -
7 2x 1073 5000 6.228 x 1072 | 11.5 || 4.876 x 1073 | 10.2
8 1x1073 10000 1.249 x 1072 | 4.99 || 1.142 x 1073 | 4.27
9 5x 1074 20000 3.054 x 1073 | 4.09 | 2.806 x 107* | 4.07
For variableu
5 8 x 1073 1250 - - - -
6 4x1073 2500 1.367 x 1072 - 1.279 x 1073 -
7 2 x 1073 5000 1.205 x 1072 | 11.3 | 1.103 x 107 | 11.6
8 1x1073 10000 3.241 x 1074 | 3.72 || 2.888 x 107° | 3.82
9 5x107* 20000 8.226 x 1075 | 3.94 | 7.275 x 107¢ | 3.97
For variabley
5 8 x 1073 1250 - - - -
6 41073 2500 0.245 x 10° - 1.923 x 1072 -
7 2 x 1073 5000 1.663 x 1072 | 14.7 || 1.976 x 1073 | 14.7
8 1x1073 10000 4.303 x 1073 | 3.86 | 4.837 x 10~* | 4.08
9 5x 107* 20000 1.076 x 1073 | 4.00 | 1.206 x 10=* | 4.01
For variablep
5 8 x 1073 1250 - - - -
6 4 %1073 2500 4.918 x 1072 - 1.203 x 1072 -
7 2x 1073 5000 5.940 x 1073 | 8.28 | 1.726 x 1073 | 6.97
8 1x1073 10000 1.469 x 1073 | 4.04 || 4.487 x 10~ | 3.85
9 5x 1074 20000 3.673 x 1074 | 4.00 | 1.127 x 10~* | 3.98
For variablen
5 8 x 1073 1250 - - - -
6 4 %1073 2500 0.102 x 107° - 1.012 x 1072 -
7 2x 1073 5000 7.385 x 1073 | 13.8 | 1.003 x 1073 | 10.1
8 1x1073 10000 1.508 x 1073 | 4.90 || 2.365 x 1071 | 4.24
9 5x 1074 20000 3.696 x 1074 | 4.08 | 5.913 x 107° | 4.00

Table 2: Results show the differences in consecutive salsitiveasured in the stated
norm, followed by the ratio of consecutive differences.
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t=50 t=100

t=150 t=200

Figure 7: 3-D solutions of variable; att = 50, 100, 150 and200. Images in this
figure display th€0.5 — 1.0] solutions of¢y-.
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Figure 8: Images of three cross-sections through the midtach plane for the
solution of ¢ at all grid points which have values in rangedds to 1.0 at¢ = 200.
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Figure 9: Parallel efficiency tested fo0 time steps with a middle developed tumour
up to64 cores.
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FAS can be applied to general nonlinear, time-dependeabpéc systems. In addi-
tion, it is further coupled with dynamic AMR, adaptive timegping and parallelism
through domain decomposition and parallel communicatiwough MPI. We have
briefly described the nonlinear multigrid method with FASS,variation with MLAT
and its grid transfer operators. For commonly coupled meali systems, we have
proposed a nonlinear block Jacobi method as the multigrimbsiner.

This software framework is demonstrated for an applicabase upon a multi-
phase-field model of tumour growth [18]. We have illustrabed dynamic evolving
meshes, as well as the optimal multigrid convergence. Tdirdhe use of penalty
terms and a smoothed Heaviside function, we are able torplftai the first time,
an overall second order convergence rate (only first ordetisns were obtained in
[18]). This model is also solved in a computationally demagd3-D space. We
present our solution, as well as results from a parallelieficy test. Although there
are issues with our parallel scaling, these can be dimidisisethe amount of com-
putational work on the finest grid level is increased (for egkanin [3], satisfactory
parallel efficiency is observed on up 1624 processes for a sufficiently large problem
- in a different application domain to that considered hefd)e reasons for the chal-
lenges associated with obtaining high parallel efficieneyraultiple and have been
discussed. The way in which the coarse grid problem is sosetigreat importance,
for example. Further work could therefore be undertakervésapme this bottleneck
on the coarsest grids, possibly through the use of only sdithe @ores at the coarsest
levels. This technique, namely agglomeration, has beefiyprhentioned in [17]. The
dynamic load-balancing algorithm itself could also be ioyaed: currently we focus
only on the efficiency of the parallel smoothing, but this tesin relatively inefficient
grid transfer operators (in terms of data movement). Rmatie may seek a change in
the multigrid algorithm, for example, using a Newton muitigapproach (see [4, 19]
for detail). Due to the global Newton linearization, we maydble to afford a much
finer coarsest grid (with its linear problem) and this mayiiovwe the parallel scaling.
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