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Abstract

The first half of the paper provides an overview of a new engineering software tool
that is designed for the efficient solution of problems that may be modeled as systems
of linear and nonlinear partial differential equations (PDEs) of parabolic type. Our
tool is built upon the PARAMESH library, [15], which provideshierarchical mesh
adaptivity in parallel in two and three dimensions. Our discretizations are based upon
cell-centred finite difference schemes in space and implicit multi-step methods in time
(primarily the second order backward differential formula(BDF2)). This results in the
need to solve a nonlinear algebraic system at each time step,and we have implemented
an optimal nonlinear multigrid method based upon full approximation scheme (FAS).
The second half of the presentation illustrates the application of this new software
framework to a challenging application, namely a multi-phase-field model of tumour
growth [18]. We show some typical simulations for growth of the model tumours, and
these results demonstrate second-order convergence in both space and time. We con-
clude with a discussion of the challenges of obtaining highly scalable parallel perfor-
mance for a software tool that combines both local mesh adaptivity (requiring efficient
dynamic load-balancing) and a multigrid solver (requiringcareful implementation of
coarse grid operations and inter-grid transfer operationsin parallel).

Keywords: parallel, adaptive mesh refinement, finite difference, implicit, multigrid.

1 Introduction

Many problems in computational engineering are based upon the use of complex
mathematical models and their numerical approximations. These models often consist
of highly nonlinear, time-dependent and coupled PDEs. Accurate, efficient and reli-
able numerical algorithms (and, frequently, great computational power) are necessary
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in order to obtain robust computational solutions. This work is concerned with the
novel application of advanced numerical methods to the efficient solution of nonlin-
ear time-dependent systems of PDEs. Specifically, the focusis on parabolic systems.
This type of system may be applied to a plethora of different applications, ranging
from solidification [3], computational fluid dynamics [10, 11] to tumour growth [18].

The multigrid method is commonly accepted as being one of thefastest numeri-
cal methods for solving algebraic equations arising from mesh-based discretizations
of PDEs. Brandt in his 1977 paper [5] systematically describesthe first multigrid
methods, and some of their applications. The subsequent publications e.g. [6, 17]
suggest further combinations of multigrid methods with spatial adaptivity and adap-
tive time-stepping, for applications in which physical effects occur at multiple length
and time scales. Often these problems tend to be very stiff, thus requiring fully-
implicit (strongly stable) temporal discretization. Alternative existing software pack-
ages which offer adaptive multigrid solvers are, for instance, DEAL.II [2] and DUNE
[7]. However, to our best knowledge, generally the systems implemented in these
packages are preferably discretized using explicit schemes in a parallel setting due to
their simplicity of implementation.

The software that we have implemented aims to efficiently solve the algebraic sys-
tems arising from eachimplicit time step. We combine FAS multigrid with dynamic
adaptivity and adaptive time-stepping in a parallel setting and address the challenge in
parallel performance from using this combination of schemes. In Section 2, we intro-
duce our software framework, from its fundamental mesh generator to multigrid and
adaptivity. In Section 3, an application of multi-phase-field model of tumour growth
is presented, along with our results and novel findings. We conclude this paper in
Section 4 with suggestions for possible future work.

2 Software Framework

The software that is used in this work, Campfire [3, 13, 19], is dependent upon an open
source software library, which is called PARAMESH [15]. Thissoftware library gen-
erates structured, cell-centred, Cartesian meshes with theuse of a block partitioning
strategy, and obtains spatial adaptivity by having multiple layers of mesh refinements.
Providing two user-defined, problem-specific tolerances (i.e. one for coarsening and
another for refining), the mesh can be dynamically adapted through adaptive mesh
refinement (AMR). The mesh hierarchies supported by PARAMESH are quad-tree
and oct-tree meshes in two and three dimensions, respectively. We show a typical
example of such a 2-D adaptive grid in Figure 1 (a) with a globally user-defined block
size of2 × 2, and its corresponding quad-tree mesh structure in Figure 1(b). In this
example, instead of the original depth-first Morton ordering 1 that is implemented in
PARAMESH, an alternative level-by-level ordering is used inCampfire because the
partition of the mesh structure that is induced by this ordering is more fitting to the
multigrid solver in parallel. The parallel distribution example shown in Figure 1 (b) is
modified from the original PARAMESH implementation, so the workload is balanced
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Figure 1: (a) A 2-D adaptive Cartesian mesh: the heavy lines indicate the boundaries
of each block, and the lighter lines indicate individual cell-centred grid points. (b)
The corresponding quad-tree mesh structure of the mesh in (a); four shapes (i.e.¤,
N, • and◦) are used to illustrated a possible distribution to four MPIprocesses in a
parallel environment (ensuring that the work is equally distributed within each level
of the tree).

on each mesh level, as multigrid operates from one level to another in a sequential
order, instead of globally distributing the whole mesh tree.

Each of the mesh blocks is surrounded by a layer of guard cells(not illustrated
in Figure 1 for clarity), which may be expanded to multiple layers for schemes with
larger stencils. The guard cells at the actual domain boundary contain information
which allows the specified boundary conditions to be implemented, and others are
used to store values of corresponding grid points on the neighbouring blocks. In
PARAMESH, parallelism is achieved through distributing meshblocks to multiple
MPI processes, and using MPI to communicate between individual MPI processes to
exchange data held by these guard cells. A possible workload-balanced parallel dis-
tribution is shown in Figure 1 (b) across four MPI processes.If AMR is carried out
dynamically, then dynamic load-balancing is applied in order to maintain the parallel
performance.

A nonlinear multigrid with full approximation scheme (FAS)[5, 6, 17] is built
in Campfire for the algebraic systems arising from every time step. This multigrid
method exploits iterative methods which are known to have a smoothing property, and
smooth the nonlinear algebraic systems on each mesh level. More specifically, when
all Fourier components (up to the resolution of the grid) arepresent in the initial error,
smoothing methods (such as Jacobi and Gauss-Seidel) damp out the highest frequency
components of the error in a very small number of iterations.Therefore, by applying
a few sweeps of such an iterative method on a fine grid, a large reduction of the high
frequency components of the error is achieved. In order to remove the remaining low
frequency components of the error on the fine grid, the algebraic system is moved
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Figure 2: A three-level hierarchy of 1-D adaptive cell-centred grids, with the use of
temporary boundary points, the nonlinear FAS multigrid with MLAT can be applied
on these grids.

down to a coarser grid in the grid hierarchy. In order to form aproblem on the coarser
grid that is connected with the problem on the fine grid, a modified right-hand side
(RHS) is given to the coarse grid problem, which depends upon the restricted residual
and the fine grid solution itself. Since the number of grid points is reduced on such a
coarser grid, part of the remaining error has a high frequency on this grid. The iterative
method can again quickly remove the high frequency components of the error within a
small number of sweeps. This is repeated until the coarsest grid (with the least number
of grid points) is reached. A large amount of iterations can be performed to obtain an
“exact” solution on the coarsest grid, with a reasonable time cost because of the small
amount of work per iteration. This “exact” solution can thenbe interpolated to the
next finer grid and used to improve the solution. Once the correction reaches the finest
mesh, it completes a full cycle, and this is termed a V-cycle.A user-defined stopping
criterion is required here (typically imposed on the residual) to indicate if the solution
has converged with acceptable errors, or another V-cycle isrequired.

The FAS multigrid method is designed for uniform grids. Withthe given spatial
adaptivity from PARAMESH (e.g. Figure 1 (a)), one may combinethe FAS multigrid
with a multi-level adaptive technique (MLAT) in a straightforward manner. That is,
by fixing the guard cells as temporary Dirichlet boundary points, the problem can be
smoothed on local grids, and only the coarsest grid is required to capture the whole
domain. For the purpose of demonstration, the use of temporary boundary points is
illustrated on 1-D adaptive cell-centred grids in Figure 2.

For the grid transfer operators, used to move between grid levels, a cell-averaging
restriction and a bilinear interpolation are employed in Campfire. We illustrate these
two operators on a simple 2-D cell-centred grid in Figure 3. A2-D version of the
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Figure 3: (a) The cell-averaging restriction operator in Equation (1): this process
reduces a group of four points (marked as•) on the fine mesh level to one point
(marked as◦) on the coarse mesh level. (b) The bilinear interpolation operator in
Equation (2): arrows indicate an example of this process from points (marked as◦) on
the coarse mesh level to a point (marked as•) on the fine mesh level.
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where the arrayu stores values at the grid points,(x, y) are the Cartesian coordinates,
h, 2h are the grid spacing on fine and coarse grids respectively andthe geometric
symbols are indicated in Figure 3 (b). The 3-D version of thesetwo operators (i.e.
3-D cell averaging and trilinear interpolation) are straightforward.

Our software tool is intended for mathematical models that consist of a system of
multiple coupled equations. From our experience, it is better for a smoother to update
the whole system (all variables), at each visited grid point, simultaneously. Hence,
we utilise a point-wise, nonlinear block Jacobi method of the local relaxation-type, in
which Newton’s method is used to solve the small nonlinear system corresponding to
the unknowns on each grid point [16]. In order to demonstratethe use of this nonlinear
block Jacobi method, consider a finite difference discretization of a system of elliptic
nonlinear PDEs:F(u) = 0, whereu is a vector contains all unknowns. Letui,k be
the approximate solution on grid pointi for unknown variablek, where we assumeK
unknowns at each grid pointi. The systemF(u) = 0 is made up ofN × K coupled
nonlinear algebraic equations,

Fi,k(u) = 0, (3)

wherei = 1, . . . , N andk = 1, . . . ,K (to clarify the notationui,k is thekth component
of ui ∈ R

K andFi,k is thekth component ofFi ∈ R
K). On one grid pointi, all K

variables may be updated simultaneously as

uℓ+1
i = uℓ

i − C−1
i Fi(u

ℓ), (4)

whereℓ is the number of iteration andC−1
i is the inverse of theK×K Jacobian matrix

Ci, which is given as
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. (5)

The Gauss-Seidel form of this method is straightforward as it uses the most up-to-date
values ofu on the RHS of Equation (4), rather than only usinguℓ. Although for the
purpose of demonstration, an elliptic system is chosen, a discretised, time-dependent
parabolic system of PDEs may also be written in the form of Equation (3) at each time
step when an implicit temporal discretization scheme is used.

Having described multigrid and AMR, for problems in which physical effects occur
at multiple time scales, fully implicit time-stepping schemes are usually appropriate
(such problems tend to be stiff), often combined with adaptive step size selection. In
Campfire, we use the number of V-cycles within each time step asan indicator to
control the selection ofδt. Typically, when a time step sizeδt is relatively small, the
multigrid solver converges very quickly, soδt has the potential to be increased. On
the contrary, the multigrid solver struggles if a time step sizeδt is too large, and may
even fail to converge. Thusδt has to be reduced, and for the failed attempt, that time
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step has to be restarted.δt is kept the same if the solver converges within a reasonable
number of V-cycles. Together with the use of adaptive BDF2 [9], we have applied this
adaptive time-stepping to the long-wave models of thin film flows [10, 11] (see [19]
for detailed discussions) and phase-field models of binary alloy solidification [3, 13].
Within our framework, it is also possible and straightforward for one to implement an
indicator that is based upon local ordinary differential equation error estimation, such
as the one used in [12].

Having provided a brief overview of the software that we havedeveloped, in the
following section, we demonstrate our software framework with a multi-phase-field
model of tumour growth [18].

3 An Application Base Upon Multi-Phase-Field Model
of Tumour Growth

Over the last few decades, the understanding of tumourigenesis (the birth and growth
of tumours) has developed dramatically and the contribution of mathematical tumour
modelling cannot be neglected. The biological experimentsand clinical observations
have been complemented by the mathematical models that havebeen developed. Even
simple tumour models and simulations can help to support or deny the hypotheses
made from observations. Therefore, the two, mathematical modelling and experimen-
tal work, when interwoven together, expand our knowledge ontumour growth and
eventually contribute to therapies. The review papers [1, 8, 14] describe a number of
examples in detail to illustrate how theory can drive experiments and vice versa.

On the other hand, notwithstanding the advances in scientific and medical research,
the process of tumourigenesis and further growth still remains elusive. To study the
complex procedures of tumour growth itself and its interactions with the host, a con-
tinuum modelling technique which consists of a set of PDEs can be used to model
the morphology of tumours. In our work presented here, a multi-phase-field model of
tumour growth is considered, from Wise et al. [18]

There are in total four independent phase-field variables inthis model, namely
φW , φH , φV andφD which represent volume fractions of extracellular fluid, healthy
cells, viable tumour cells and dead tumour cell, respectively. In addition, there are
three assumptions amongst these volume fractions. Firstly, it is assumed the extracel-
lular fluid volume fraction is everywhere constant,φW (x, y, z, t) = φW,0 = constant.
After this assumption, the tumour model only consists of multiple solid cell fractions.
Secondly, cells are assumed to be close-packed, and this leads to the sum of the healthy
cell volume fractionφH , the viable tumour cell volume fractionφV and the dead tu-
mour cell volume fractionφD to be equal to1 (i.e. φH + φV + φD = 1). Furthermore,
the range of values of these phase-field variables is from0 to 1. Thirdly, it is further
assumed that inside the tumour there are only two types of cells: viable and dead.
This indicates the total tumour cell volume fractionφT is the sum ofφV andφD (i.e.
φT = φV + φD). Based upon these three assumptions, there are only two phase-field
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variables that are required to be solved, and they areφT andφD. Once these two
variables are obtained, other variables may be derived fromthe assumptions made.

The componentφT is assumed to obey the following Cahn-Hilliard-type advection-
reaction-diffusion equations:

∂φT

∂t
= M∇ · (φT∇µ) + ST −∇ · (uSφT ), (6)

µ = f ′(φT ) − ǫ2∇2φT , (7)

whereM > 0 is the mobility constant,f(φT ) = φ2
T (1− φT )2/4 is the quartic double-

well potential,uS is the tissue velocity (and is substituted out of the equation later),
andǫ > 0 is an interface thickness parameter between healthy and tumour tissue.ST

is the net source of tumour cells which depends onφT , φV andφD, and it is given as

ST = nG(φT )φV − λLφD, (8)

wheren is the concentration of nutrient, which is specified later,φV = φT − φD, and
λL ≥ 0 is the rate of tumour cell proliferation.G(φT ) is a continuous cut-off function
and it is defined as

G(φT ) =







1 if 3ǫ
2
≤ φT

φT

ǫ
− 1

2
if ǫ

2
≤ φT < 3ǫ

2

0 if φT < ǫ
2
.

(9)

A similar dynamical equation for predicting the volume fraction of dead tumour
cellsφD is used:

∂φD

∂t
= M∇ · (φD∇µ) + SD −∇ · (uSφD), (10)

whereSD is the net source of dead tumour cells, which depends onφV andφD. This
source term is defined as

SD = (λA + λNH (nN − n)) φV − λLφD, (11)

whereλA is the death rate of tumour cells from apoptosis,λN is the death rate of tu-
mour cells from necrosis,nN is the necrotic limit (when nutrient is below this thresh-
old, dead tumour cells occur), andH is a Heaviside function. This Heaviside function
is discontinuous and thus prevents us from obtaining a higherorder convergence rate,
so we instead use the smoother approximation given by

H(nN − n) =







1 if nN − n ≥ ǫs

− 1
4(ǫs)3

(nN − n)3 + 3
4ǫs (nN − n) + 1

2
if − ǫs ≤ nN − n ≤ ǫs

0 if nN − n < −ǫs,
(12)

whereǫs controls the steepness of the smooth transition between0 and1.
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The tissue velocityuS is assumed to obey Darcy’s law, and is defined as

uS = −κ(φT , φD)(∇p −
γ

ǫ
µ∇φT ), (13)

whereκ > 0 is the tissue motility function andγ ≥ 0 is a measure of the excess
adhesion. An additional assumption made by Wise et al. [18] is that there is no
proliferation or death of the host tissue, thus the velocityis constrained to satisfy

∇ · uS = ST . (14)

Instead of solving for the tissue velocity, Equations (13) and (14) are combined to-
gether, and a resulting Poisson-like equation for the cell pressurep can be constructed:

−∇ · (κ(φT , φD)∇p) = ST −∇ · (κ(φT , φD)
γ

ǫ
µ∇φT ). (15)

A quasi-steady equation is given for the nutrient concentration through diffusion:

0 = ∇ · (D(φT )∇n) + Tc(φT , n) − n(φT − φD), (16)

whereD(φT ) = DH(1−Q(φT ))+Q(φT ) is the diffusion coefficient,DH is the nutri-
ent diffusivity in the healthy tissue,Q(φT ) is an interpolation function, andTc(φT , n) =
(vH

P (1 − Q(φT )) + vT
P Q(φT ))(nC − n) is the nutrient capillary source term. Further-

more,vH
P ≥ 0 andvT

P ≥ 0 are constants specifying the degree of pre-existing uniform
vascularization,nC ≥ 0 is the nutrient level in capillaries and the interpolation func-
tion, Q(φT ), is defined as

Q(φT ) =







1 if 1 ≤ φT

3φ2
T − 2φ3

T if 0 < φT < 1
0 if φT ≤ 0.

(17)

To sum up, this multi-phase-field model of tumour growth consists of a coupled
system of five equations, and they are Equations (6), (7), (10), (15) and (16). There
are five dependent variables in total in this system: two phase-field variables,φT and
φD; and three supplementary variables,µ, p andn. These PDEs are valid through-
out a domainΩ, there are no internal boundary conditions for the solid tumour, the
necrotic core or other variables. Therefore, only one set ofouter boundary conditions
is required and this set is the following mixture of Neumann and Dirichlet boundary
conditions:

µ = p = 0, n = 1,
∂φT

∂ν
=

∂φD

∂ν
= 0 on ∂Ω, (18)

whereν denotes the outward-pointing normal to the boundary∂Ω.

In order to obtain the desired second order convergence rate, we modified this
model with additional penalty terms which are associated with the phase-field Equa-
tions (6) and (10). This slightly relaxes the constraint imposed to the range of values
of the phase-field variables (i.e.φ ∈ [0, 1]). The penalty terms added to Equation (6)
are

1

δ
min (φT , 0) and

1

δ
max (φT − 1, 0) . (19)
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These terms have no impact when0 ≤ φT i,j,k ≤ 1, but create a large correction to the
system wheneverφT tries to take a value outside of this interval. The larger thechoice
of the penalty parameterδ the larger this correction becomes, forcing the values ofφT

to be close to this range but at the expense of adding to the nonlinearity of the resulting
system. The default value ofδ used in this work is10−4. Similar penalty terms which
takeφD into account are also added to Equation (10).

In order to define the initial conditions for the 2-D simulations, firstly the 2-D
domainΩ is defined which has Cartesian coordinates(x, y) ∈ Ω = [0, 40] × [0, 40].
The initial condition forφT can be defined as

φT (x, y) =1 if
(x − 20)2

1.1
+ (y − 20)2 ≤ 22,

=0 otherwise.
(20)

This initial condition is discontinuous, so we employed a simple Jacobi iteration to
smooth the initial conditions, both to allow second order accuracy to be seen and to
avoid unnecessarily restrictive time steps at the start of the simulation. A 2-D version
of such iteration is

φl+1,t=0
T i,j =

1

4

(

φl,t=0
T i+1,j + φl,t=0

T i−1,j + φl,t=0
T i,j+1 + φl,t=0

T i,j−1

)

. (21)

In addition,φD(t = 0) = 0 is assumed so that initially no dead tumour cells have
occurred.µ(t = 0) is straightforward to calculate sinceµ is a function ofφT as shown
in Equation (7). The initial conditions for the pressurep and nutrientn require the
application of a solver. Due to the increased computationalcost in 3-D, an additional
multigrid solver is implemented to solve first for the steadystate solution ofn(t = 0)
(since Equation (16)n is not dependent uponp), thenp(t = 0). A stopping criterion
is used which is dependent upon the infinity norm of the residuals ofn andp, and it
terminates when||r||∞ ≤ 1 × 10−9.

The values of the parameters that are used in this paper for the multi-phase-field
model of tumour growth are presented in Table 1.

Parameters Values Parameters Values

M 10.0 ǫ 0.1
λL 1.0 λA 0.0
λN 3.0 γ 0.0
nN 0.4 DH 1.0
vH

P 0.5 vT
P 0.0

δ 0.0001 ǫs 0.2
nC 1.0

Table 1: The parameters of the multi-phase-field model of tumour growth. These were
used by Wise et al. in [18], except forǫs andδ.
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There are two stopping criteria used in our multigrid solver, which depend upon the
infinity norm of the residual from all five variables, and at least one of the stopping
criteria must be satisfied in order to stop the iteration. Thefirst is an absolute stopping
criterion, which determines to stop the solver at the current time step if the infinity
norm is smaller than10−6. The second is a relative stopping criterion, which takes the
infinity norm after the first V-cycle in the current time step,and determines to stop if
this infinity norm is reduced by a factor of105 by subsequent V-cycles.

In order to demonstrate our dynamic AMR, results from a 2-D simulation are il-
lustrated here. We present the solution ofφT in Figure 4 with a starting time step size
of δt1 = 1 × 10−3. By using adaptive time-stepping, we are able to use a larger time
step size later on, however, due to the nature of the problem,we found the time step
size could not be increased too much. Our results in this figure show similar tumour
evolution to [18] (for a detailed discussion on validation,see [19]). Our choice for the
AMR strategy is conservative (not just considering the phase-field variables), because
the pressurep obeys Darcy’s law and is known, by Wise et al., to be difficult to re-
solve. Our AMR strategy takes into account the second derivative of the solutions of
variablesφT , φD, p andn, i.e. |∇2φT |, |∇

2φD|, |∇
2p| and|∇2n|. Within each mesh

block, on every grid point,(i, j), the adaptive assessment is computed via:

adaptive assessmenti,j = |u
(1−4)
i+1,j + u

(1−4)
i−1,j + u

(1−4)
i,j+1 + u

(1−4)
i,j−1 − 4u

(1−4)
i,j |. (22)

Then the maximum value of adaptive assessment,umax is selected from these four
variablesu(1−4) to represent this mesh block and compared against the user-defined
refinement/coarsening criteria. The specific choices for these criteria must be obtained
and evaluated from practice. In this case we define the refining criterion to be0.01 and
the coarsening criterion to be0.001. Therefore, if adaptive assessment is greater than
0.01 (i.e. dxdy|∇2umax| > 0.01), this mesh block is marked for refining, or if it is
less than0.001 (i.e. dxdy|∇2umax| < 0.001), then this mesh block is marked for
coarsening. Due to the profile ofp, the highest level of mesh refinement att = 0
covers a much larger area than the initial seed ofφT .

The adaptive meshes and the dynamic AMR are illustrated in Figure 5. The red
color represent the highest mesh refinement level:20482; the pink color is level10242;
the light blue shows5122 mesh level; finally, the dark blue, which only appears in the
top two figures, indicates2562 mesh level.

Within a typical time step in the 2-D simulation, we illustrate our optimal multigrid
convergence rate with five different grid hierarchies in Figure 6. The infinity norm
of residuals from four variables (i.e.φT , µ, φD and n) is used to demonstrate the
multigrid convergence rate. These results suggest the reduction in the residuals (at
least for these four variables) is independent of grid sizes. The difficulty of resolving
the pressurep has previously been identified, and a detailed discussion ispresented in
[19] which supports the observations of Wise et al. [18]

The spatial and the temporal discretization schemes that are used in this work are
both second-order accurate. Therefore, we expect the overall convergence rate to be
second order. This means by halving the time step size and doubling the number of
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t=0 t=50

t=100 t=150

t=200

Figure 4: 2-D simulation, showing the evolution ofφT . These results are generated
from a grid hierarchy which has82 as the coarsest grid and, if refined everywhere,
20482 as the finest grid.
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t=0/50 t=100

t=150 t=200

Figure 5: The adaptive meshes from the 2-D simulation shown in Figure 4. Since
the mesh att = 0 is relatively similar to the one att = 50, these two are illustrated
together here.

grid points in each direction, the error should reduce by a factor of four. In order to
illustrate this, we conduct our convergence tests based upon solution restriction. That
is, let’s consider three example grid hierarchies using 2-Dgrids. They are82 − 162,
82 − 162 − 322 and82 − 162 − 322 − 642. Each grid is associated with aδt: δt16

2

,

δt32
2

= δt16
2

2
andδt64

2

= δt32
2

2
, respectively. The solutions are obtained by solving the

same problem on these three finest grids separately, with their correspondingδt, and
with the assumption that the ending timeT is exactly the same for all runs. To make
a comparison between two solutions we restrict the fine grid solution to the coarse
grid by using a restriction operator (e.g. four-point averaging shown in Equation (1)).
Thus, the solution which is restricted from grid hierarchy82 − 322 can be compared
to the solution from grid hierarchy82 − 162. Similarly, the restricted solution from
hierarchy82 − 642 can be compared to the original solution from hierarchy82 − 322.

The infinity norm and the discrete two norm of the differenceswithin the solutions
are computed from these comparable solutions on the coarsergrid. The infinity norm
error measure is defined as the following:

||e||∞ := max(|urestricted
i,j − ui,j|), (23)

whereurestricted is the restricted solution from the finer grid hierarchy,u is the solution
from the coarser grid hierarchy,i, j = 1, . . . , N and N is the number of internal
grid points in each axis direction on the finest grid of the coarser grid hierarchy. The
discrete two norm error measure is given as

||e||2 :=

√

∑N

i=1

∑N

j=1(u
restricted
i,j − ui,j)2

N × N
. (24)
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128x128
256x256
512x512
1024x1024
2048x2048

Figure 6: The optimal multigrid convergence rate within a typical time step. There are
five different grid hierarchies and the same coarsest grid:162 is used, but the number
of grid points on the finest grid quadruples as the number of grids grows each time.
For example,1024 × 1024 indicates there are7 grids from162 to 10242. The infinity
norm of residual ismax(r(φT ), r(µ), r(φD), r(n)).
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When adaptive grids are used, we consider all grid points fromthe finest refinement
level, as well as the next coarser one. For the tumour model, the infinity norm and the
two norm are computed separately for all five variables using5 different grid hierar-
chies. The finest grid used, if refined everywhere, has a grid resolution equivalent to
20482. The results for convergence tests are presented in Table 2.The evidence for
having obtained second order convergence is compelling.

For 3-D simulations, the imposed initial condition ofφT are defined by three ellip-
soids as

φT (x, y, z) = 1 if
(x − 19)2

1.1
+ (y − 19)2 + (z − 19)2 ≤ 22,

or (x − 20)2 +
(y − 20)2

1.1
+ (z − 20)2 ≤ 22,

or (x − 21)2 + (y − 19)2 +
(z − 19)2

1.1
≤ 22,

= 0 otherwise.

(25)

This model of tumour growth is solved in 3-D with the parameters stated in Table 1 and
the 3-D initial condition in Equation (25) in a 3-D domainΩ which has the Cartesian
coordinates(x, y, z) ∈ Ω = [0, 40] × [0, 40] × [0, 40]. The finest grid resolution used,
if refined everywhere, is2563. The solutions ofφT at all grid points which have values
in range of0.5 to 1.0 are illustrated in Figures 7 and 8.

With the capability to run our solver in a parallel environment, here we present
results from parallel efficiency tests up to64 cores. We run the simulation of tumour
growth for10 time steps start fromt = 150, and results of time cost are illustrated in
Figure 9. The choice of mesh block size is163, and within this simulation, the coarsest
grid is 323, the finest grid, if refined everywhere, is2563. The actual number of leaf
nodes is8, 060, 928 from 1, 968 mesh blocks. In this figure, the deterioration from
16 to 64 cores is caused, in part, by the fact that there is not enough workload on the
coarsest grid (which only has8 mesh blocks). Finding a robust solution to this issue
is non-trivial, and there are a number of trade-offs that needto be considered. First of
all, one may suggest to reduce the block size, in order to havemore mesh blocks at
the coarsest grid level. However, this results in the use of many more guard cells, thus
causing a heavy burden on the memory as well as the parallel communication. Another
logical suggestion would be using a finer coarsest grid (i.e.643 in this case), however,
the nonlinear multigrid with FAS solves the nonlinear problem on each level. Due
to the nonlinearity, to obtain an “exact” solution on a finer coarsest grid may require
many more iterations of the coarsest grid and this deteriorates the overall performance
of our solver.

4 Conclusion

We have introduced our software framework, Campfire, which isbased upon a mesh
generator called PARAMESH. Our built-in nonlinear, optimalmultigrid solver with
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For variableφT

Finest levels δt Time steps Infinity norm Ratio Two norm Ratio
5 8 × 10−3 1250 - - - -
6 4 × 10−3 2500 0.719 × 100 - 4.969 × 10−2 -
7 2 × 10−3 5000 6.228 × 10−2 11.5 4.876 × 10−3 10.2
8 1 × 10−3 10000 1.249 × 10−2 4.99 1.142 × 10−3 4.27
9 5 × 10−4 20000 3.054 × 10−3 4.09 2.806 × 10−4 4.07

For variableµ
5 8 × 10−3 1250 - - - -
6 4 × 10−3 2500 1.367 × 10−2 - 1.279 × 10−3 -
7 2 × 10−3 5000 1.205 × 10−3 11.3 1.103 × 10−4 11.6
8 1 × 10−3 10000 3.241 × 10−4 3.72 2.888 × 10−5 3.82
9 5 × 10−4 20000 8.226 × 10−5 3.94 7.275 × 10−6 3.97

For variableφD

5 8 × 10−3 1250 - - - -
6 4 × 10−3 2500 0.245 × 100 - 1.923 × 10−2 -
7 2 × 10−3 5000 1.663 × 10−2 14.7 1.976 × 10−3 14.7
8 1 × 10−3 10000 4.303 × 10−3 3.86 4.837 × 10−4 4.08
9 5 × 10−4 20000 1.076 × 10−3 4.00 1.206 × 10−4 4.01

For variablep
5 8 × 10−3 1250 - - - -
6 4 × 10−3 2500 4.918 × 10−2 - 1.203 × 10−2 -
7 2 × 10−3 5000 5.940 × 10−3 8.28 1.726 × 10−3 6.97
8 1 × 10−3 10000 1.469 × 10−3 4.04 4.487 × 10−4 3.85
9 5 × 10−4 20000 3.673 × 10−4 4.00 1.127 × 10−4 3.98

For variablen
5 8 × 10−3 1250 - - - -
6 4 × 10−3 2500 0.102 × 10−0 - 1.012 × 10−2 -
7 2 × 10−3 5000 7.385 × 10−3 13.8 1.003 × 10−3 10.1
8 1 × 10−3 10000 1.508 × 10−3 4.90 2.365 × 10−4 4.24
9 5 × 10−4 20000 3.696 × 10−4 4.08 5.913 × 10−5 4.00

Table 2: Results show the differences in consecutive solutions measured in the stated
norm, followed by the ratio of consecutive differences.
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t=50 t=100

t=150 t=200

Figure 7: 3-D solutions of variableφT at t = 50, 100, 150 and200. Images in this
figure display the[0.5 − 1.0] solutions ofφT .
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Figure 8: Images of three cross-sections through the middleof each plane for the
solution ofφT at all grid points which have values in range of0.5 to 1.0 at t = 200.
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Figure 9: Parallel efficiency tested for10 time steps with a middle developed tumour
up to64 cores.
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FAS can be applied to general nonlinear, time-dependent parabolic systems. In addi-
tion, it is further coupled with dynamic AMR, adaptive time-stepping and parallelism
through domain decomposition and parallel communication through MPI. We have
briefly described the nonlinear multigrid method with FAS, its variation with MLAT
and its grid transfer operators. For commonly coupled nonlinear systems, we have
proposed a nonlinear block Jacobi method as the multigrid smoother.

This software framework is demonstrated for an applicationbase upon a multi-
phase-field model of tumour growth [18]. We have illustratedour dynamic evolving
meshes, as well as the optimal multigrid convergence. Through the use of penalty
terms and a smoothed Heaviside function, we are able to obtain, for the first time,
an overall second order convergence rate (only first order solutions were obtained in
[18]). This model is also solved in a computationally demanding 3-D space. We
present our solution, as well as results from a parallel efficiency test. Although there
are issues with our parallel scaling, these can be diminished as the amount of com-
putational work on the finest grid level is increased (for example, in [3], satisfactory
parallel efficiency is observed on up to1024 processes for a sufficiently large problem
- in a different application domain to that considered here). The reasons for the chal-
lenges associated with obtaining high parallel efficiency are multiple and have been
discussed. The way in which the coarse grid problem is solvedis of great importance,
for example. Further work could therefore be undertaken to overcome this bottleneck
on the coarsest grids, possibly through the use of only some of the cores at the coarsest
levels. This technique, namely agglomeration, has been briefly mentioned in [17]. The
dynamic load-balancing algorithm itself could also be improved: currently we focus
only on the efficiency of the parallel smoothing, but this results in relatively inefficient
grid transfer operators (in terms of data movement). Finally, one may seek a change in
the multigrid algorithm, for example, using a Newton multigrid approach (see [4, 19]
for detail). Due to the global Newton linearization, we may be able to afford a much
finer coarsest grid (with its linear problem) and this may improve the parallel scaling.
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