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Abstract. We present a numerical solver for the fast conduction system
in the heart using both a CPU and a hybrid CPU/GPU implementation.
To verify both implementations, we construct analytical solutions and
show that the L2-error is similar in both implementations and decreases
linearly with the spatial step size. Finally, we test the performance of the
implementations with networks of varying complexity, where the hybrid
implementation is, on average, 5.8 times faster.

1 Introduction

The cardiac Purkinje fibre network is an important contributor to the coordi-
nated contraction of the heart as it can provide a fast conduction system reaching
out to large areas of the sub-endocardium. The Purkinje fibres form an exten-
sively branching and rejoining network, which is important for the reliability
and fault-tolerance of the propagation of the action potential [1][2]. The ability
to simulate propagation in physiological Purkinje networks is essential for stud-
ies of the healthy heart to obtain realistic activation patterns [3, 4].It is equally
important in the simulation of pathological hearts, where disturbances in the
conduction system can alter the activation pattern greatly, e.g. bundle branch
blocks and long duration ventricular tachycardia [5].

Typically the simulation of the action potential propagation in a Purkinje
network is based on the bidomain equations [6], or on the cable equation with
a reaction term [7]. The approach of Vigmond et al. [7] treats the Purkinje con-
duction system as a branching tree of conducting segments without loops. Our
approach also allows current loops in the Purkinje network, which are observed
in realistic Purkinje networks [2].

We present first briefly the approach of Vigmond et al., and then explain its
implementation on the CPU and on a CPU/GPU hybrid platform. Then, we



present a simple model with exact known solution and use it for verification of
both solvers. Finally, we compare the performance of both implementations.

2 Methods

2.1 Mathematical Model and Solution Method

The electrophysiology of cardiac tissue can be described either by the bidomain
or the monodomain model. The former assumes an extracellular and intracellular
space with different anisotropic conductivity tensors; if these tensors are linearly
dependent the model reduces to the monodomain model [7].

The monodomain equation is considered in one dimension, because the Purk-
inje network can be approximated by a network of 1-D line segments. Here we
assume that the extracellular space is not affected by the Purkinje network, and
ignore it in the following. The monodomain equation reads

∂x(σi∂xVm) = β(Cm∂tVm + Iion(Vm, ξ)), (1)

where x is the local coordinate, Vm is the transmembrane potential, Iion is the
current that flows through the ion channels, ξ are the state variables of the
membrane model, β is the surface-to-volume ratio of the cell membrane, where
σi is the intracellular conductivity, and Cm is the membrane capacitance.

To derive a coupling condition between two or more line segments, needed
to complete (1), we follow the idea of Vigmond et al. [7]. The equations on each
line segment are coupled together by a boundary condition resulting from the
enforcement of continuity of the potential and the conservation of charges (Kirch-
hoff’s law). To satisfy the boundary conditions, the transmembrane potential,
VM , and the current, I, are needed. Since I = σ∂xVm, the spatial derivatives of
the potential need to be computed. The system is discretized using a cubic Her-
mite finite element method (FEM), which allows the current I to be recovered
as a continuous quantity.

In view of the numerical discretization with the Finite Element Method,
each node of the mesh is assumed to be located in the gap junction between
two cells, where the unknowns are the intracellular potential φi and the current
Ig through the gap junction. Two ghost nodes are created on both sides of the
gap junction, where the transmembrane potential V±, and ionic channel current
Iion are defined. The advantage of the ghost nodes is that with the gap junction
modelled as a resistor R, the current Ig can be obtained from Ohm’s law

V± = φi − φe ∓
IgR

2
, (2)

where φe is the extracellular potential, taken constant in this work.

To correct for the introduced gap junction resistance, we use the equivalent
conductivity σ∗ = (σil)/(l + σRπρ2), where l is the length of the Purkinje cell



and ρ the radius. This means, that σi is the conductivity in the cell only, while σ∗

is the conductivity of the cell and the gap junction. In this notation (1) becomes

∂x(σ
∗∂xφ

±

i ) = β(Cm∂tV± + Iion(V±, ξ±)) , (3)

where φ±

i is the intracellular potential in the ghost nodes. Furthermore, we apply
an operator splitting technique to (3):

{

∂tV + L1(V ) = 0
∂tV + L2(V ) = 0

, (4)

where L1 = Iion is part of the differential operator that represents the nonlin-
ear term of (3), whereas L2 = ∂x(σ

∗∂x) represent the diffusion term of (3). A
fractional-step method with a discretization of the temporal derivatives by a
first-order approximation is introduced, where the superscript n refers to the
numerical solution computed at time tn:

V n+1/2 − V n

∆t
= −L1(V

n),
V n+1 − V n+1/2

∆t
= −L2(V

n+1). (5)

Algorithm 1 to Solve the Cable Equation with a Splitting Scheme

Step 1. Recover the transmembrane potential V n
± with (2) from Ing , φ

n
i , φ

n
e .

Step 2. Solve the first equation of the (5), which is the update of the ionic current
in the ghost nodes

V
n+1/2
± = V

n
± −

Iion(V
n
± , ξ)

Cm
∆t . (6)

Step 3. Compute φi and Ig with the new values of V
n+1/2
± in the real node:

φ
n+1/2
i =

V
n+1/2
+ + V

n+1/2
−

2
+ φ

n
e , I

n+1/2
g =

V
n+1/2
+ − V

n+1/2
−

R
. (7)

Step 4. Use the FEM for the second stage of the operator splitting. By noticing

φi =
φ+

i
+φ−

i

2
and using the linearity of L2, we find:

βCm∂t(φi − φe) = ∂x(σ
∗
∂xφi) . (8)

Introducing a discretization in time results in:

βCm
(φn+1

i − φn+1
e )− (φ

n+1/2
i − φn

e )

∆t
= ∂xσ

∗
∂xφ

n+1

i , (9)

which is solved with the FEM with 1-D cubic Hermite shape functions.

Now the cable equation can be solved in four steps (Algorithm 1). To handle
branching and joining of segments in the network, the node where the three
segments join is triplicated. The triplicated point is used to enforce the boundary
conditions, and thus couple together the solutions obtained for the different



line segments. In the case that segment 1 bifurcates into segments 2 and 3, we
enforce the continuity of the potential φ1 = φ2 = φ3 and the conservation of
current I1 = I2 + I3. In contrast to Vigmond et al., our implementation covers
the case where segments 1 and 2 join to from segment 3, in which case the
coupling condition of the currents is I1 = I3 − I2. These boundary conditions
are introduced in the FEM system matrix associated to (9) and the right hand
side.

2.2 Hardware Implementation

We now outline the CPU and the CPU/GPU hybrid implementations. The solver
for the cable equation used the FEM in Step 4, and was implemented using the
LifeV library (http://www.lifev.org) . Parallelism was achieved using OpenMPI.
We parallelized only Steps 1-3 of the algorithm and solve the linear system in
Step 4 serially. The reason for this is that calculating the ionic model can be
done without knowing the mesh geometry and is computationally intensive. On
the other hand, it is less trivial to parallelize the solving of the linear system.
The resulting computational workflow is shown in Fig. 1.

The Steps 1, 3, and 4 were always implemented on the CPU, only Step 2 is run
on the GPU. In the hybrid implementation, between Steps 1 and 2, an additional
copy of the transmembrane potential V± from the CPU to the GPU is made. To
minimize the time spent copying the data, CUDA streams are used, which allow
asynchronous tasks to be queued to the CPU. All computations were performed
with Dell a Precision-WorkStation-T7500 featuring two Intel(R) Xeon(R) CPUs
E5620 at 2.40GHz and NVIDIA Quadro 4000 GPU with 256 CUDA Cores.Step 1 on allMPI nodes Step 2 on allMPI nodes Step 3 on allMPI nodes opy allunknowns toMPI node 0 MPI node 0does step 4 opy resultto all MPInodesStep 1on CPU Copy potentialto GPUStep 2 on all CUDA oresCopy potentialto CPU Step 3with CPU Step 4with CPU
Fig. 1.Workflow for the CPU (above), and CPU/GPU hybrid (below) implementation.
The CPU implementation needs to copy the potential in the gap junctions and the
current, while the hybrid implementations needs to copy the potential of the ghost
nodes. White boxes represent CPU tasks, and grey GPU tasks.

3 Numerical Experiments

To verify the correct and efficient implementation of the solvers, two numerical
experiments are performed. The first experiment uses an analytical solution to



estimate the absolute error and then to carry out a convergence test. The second
experiment compares the performs of the CPU and CPU/GPU hybrid algorithm.

3.1 Numerical Error and Convergence

We first introduce a simplified model and develop two test problems with ana-
lytical solutions. The non-physiological model is [8]

∂tV = pV, (10)

where V is the transmembrane potential and p is a model parameter. Depending
on the sign of p the cells are stable (p < 0) and return exponentially to 0, or are
unstable (p > 0) and the transmembrane potential increases exponentially.

Next, we introduce two different test cases and derive their analytical solu-
tions. For the first case the domainD1 considered is an infinite line, which is com-
posed of three subintervals D1,1 = (−∞,−a), D1,2 = [−a, a], and D1,3 = (a,∞).
In D1,2 unstable cells are assumed, while in the surrounding regions D1,1, D1,3

the cells are stable, with results in a spatial depend parameter of the simplified
model

p(x) =

{

p2 for x ∈ D1,2

−p1 otherwise
, (11)

where p1, p2 > 0. Inserting the cell model in (1), we need to solve

Cm∂tV = δ∂2
xV − p(x)V

V1(−a) = V2(−a) , V2(a) = V3(a)
V ′
1(x)|x=−a = V ′

2(x)|x=−a , V ′
2 (x)|x=a = V ′

3(x)|x=a

V1(−∞) = 0 , V3(∞) = 0,

, (12)

with δ = σ∗/β. The solution presented by Artebrant et al. [8] is

V =











c1e
√

p1/δx x < −a

cos(
√

p2/δx) ‖x‖ ≤ a

c1e
−

√
p1/δx x > a

with ,
p1 = p2 tan

2(
√

p2/δa),

c1 = cos(−
√

p2/δa)e
√

p1/δa
, (13)

where a and p2 are the model parameters.
In the second test case, the domain D2 is a double-bifurcation with an

analytical solution. The domain consist of two rays, D2,1 = (−∞,−a) and
D2,2 = (−∞,−a) joining to form a line segment D2,3 = [−a, a] in the mid-
dle, which then splits again into two rays D2,4 = (a,∞), D2,5 = (a,∞), resulting
in a domain of five subintervals in total. The line segment D2,3 consists of active
cells, while all the rays consist of passive cells. The problem is symmetric with
respect to zero, so we will look at the negative domain only. Furthermore, the
rays D2,1 and D2,2 are identical, thus it suffices to solve the following problem
for only one of them:

δV ′′
1 − p1V1 = 0, ∀ x ∈ D2,1

δV ′′
3 + p2V3 = 0, ∀ x ∈ D2,3

V1(−a) = V3(−a) , 2 V ′
1(x)|−a = V3(x)

′|
−a , V1(−∞) = 0 ,

(14)



where the two in the derivatives is a result of Kirchhoff’s current law. The
solution is very similar to the problem on one infinite line, with the ansatz
functions V1 = c1e

k1x, V3 = c3 cos(k2x) the constant c1 is still given by (13). A
relation between p1 and p2 follows from

2V ′
1(−a) = V ′

3(−a)
(13)⇒ 2k1(c3 cos(−k2a)e

k1a)e−k1a = −k2c3 sin(−k2a)

⇒ p1 = p2

4 tan2(
√

p2/δa).

(15)

Again, we need to fix V3 at one point to get a unique solution.
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Nodes 6251 16 024 31 319 43 748
Table 1. The computational time for different Purkinje networks in the left ventricle
(LV) and right ventricle (RV).

Comparison of the Absolute Error: For numerical simulations, we used
the parameters p2 = 1 µF/ms, a = 1cm, Cm = 1µF , and c2 = 1. The cell
length has been chosen to l = 62.5 µm, and a radius of ρ = 16.0 µm, which is
within the physiological limits [9]. Furthermore, we make the arbitrary choice
δ = 1 [kS/cm2], R = 0.1 kΩ and recall, that δ = σ∗/β, from which we find the
conductivity σi = 1967 [kS/cm]. The spatial discretisation step h is then chosen
to be a integer multiple of l, i.e. h = nl, n ∈ N, which means that each finite
element contains n − 1 virtual gap junctions and only the nth gap junction is
explicitly included.
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Fig. 2. The absolute error between the analytic solution of the potential and the numer-
ical solution. For the test case on an infinite line (left), and for the simple branching
network (right), where the dotted line has a step size of 0.1 cm, while the solid is
0.00625 cm and the error is multiplied by 10. The active cells are in the mark region.

Convergence Test: For the error convergence test, we ran the simulation with
the same parameters as before for n = {1, 2, 3, 4, 5} in the spatial discretisation
and calculated the L2-Error for each step size (Fig. 3). The CPU and CPU/GPU
hybrid implementation give the same linear convergence of the error. We conjec-
ture that the fourth order of convergence, which is expected for Hermit bases,
is not reached because of the step 1 and 3.

3.2 Performance Comparison

To compare the efficiency of the two implementations, four Purkinje fibre net-
works were generated with the method presented in [10]. The last two networks
are realistic networks for the left ventricle and for both ventricles, respectively.
The simulation was performed with a spatial resolution of 0.1mm and a temporal
step size of 0.02ms. The duration of 45ms was chosen because all networks were
fully depolarised by that time. The membrane model of Di Francesco-Noble was
used [11]. The CPU code was run with eight parallel processes, while the hybrid
code was run with one CPU. Table 1 shows both the networks and the total
computational time spent obtaining the respective solutions. Furthermore, the
same figure shows the time spent solving the diffusion problem and the reaction
problem separately. In the pure CPU implementation, the majority of the time
is used to solve the ionic models. This is due to the fact that a detailed ionic
model with 15 state variables was used, while the linear system for the diffusion
step is comparably simple to solve, as the moving activation front is limited to
the vicinity of a few node points. For the hybrid implementation the situation
changes, and the time for solving the reaction and diffusion steps are the roughly
the same, because the GPU offers a larger number of parallel cores. As a result
the solution of the reaction step is ca. 4.7 times faster with the GPU. We also
notice a decrease in the time spent solving the diffusion step. This can be a result
of several factors, including that there is no memory copy between the CPUs,
and the CPU can be used in turbo mode, because of CPU core switches.



4 Conclusion

10−2 10−1
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Fig. 3. Linear convergence in h (dashed line) and the convergence rates of the potential
computed with the CPU (dotted line), and from the CPU/GPU hybrid (solid line).
Results are for the single line case (left) and for the simple branching network (right).

We presented an extension of the work of Vigmond et al. to solve more re-
alistic Purkinje networks, and implemented it both on a CPU and in a hybrid
CPU/GPU architecture. To evaluate the accuracy of both we performed a con-
vergence test of the L2-Error, and showed that the solver converges linearly with
the step size. The branching points introduce a small additional error in the nu-
merical solution. Both implementations had equivalent numerical accuracy.

The performance test indicated that the hybrid implementation using 256
CUDA cores and 1 CPU was in average 5.8 times faster than the CPU imple-
mentation run with 8 CPUs. This motivates our future work on developing an
implementation, which performs all the remaining steps of the algorithm on the
GPU to realize even greater performance gains.

Acknowledgements

Simone Palamara has been funded by “Fondazione Cassa di Risparmio di Trento
e Rovereto” (CARITRO) within the project “Numerical modelling of the electri-
cal activity of the heart for the study of the ventricular dyssynchrony”. Christian
Vergara has been partially supported by the Italian MIUR PRIN09 project no.
2009Y4RC3B 001.

References

[1] Cooper, L.L., Odening, K.E., Hwang, M.-S., Chaves, L., Schofield, L., Taylor, C.,
Gemignani, A.S., Mitchell, G.F., Forder, J.R., Choi, B.-R., Koren, G.: Electrome-
chanical and structural alterations in the aging rabbit heart and aorta. Am. J.
Physiol. Heart Circ. Physiol. 302, H1625–H1635 (2012)

[2] Ansari, A., Ho, S. Y., Anderson,R. H.: Distribution of the Purkinje fibres in the
sheep heart. Anat. Rec., 254, 92-97 (1999).



[3] Vergara, C., Palamara, S., Catanzariti, D., Nobile, F., Faggiano, E., Pangrazzi,
C. Maurizio Centonze, Massimiliano Maines, Alfio Quarteroni, Giuseppe Vergara :
Patient-specific generation of the Purkinje network driven by clinical measurements
of a normal propagation. Med Biol Eng Comput, 52(10), 813–826, (2014)

[4] Palamara S., Vergara C., Catanzariti D., Faggiano E., Centonze M., Pangrazzi C.,
Maines M., Quarteroni A.: Computational generation of the Purkinje network driven
by clinical measurements: The case of pathological propagations. Int. J. Num. Meth.
Biomed. Eng., 30(12), 1558–1577, (2014)

[5] Bogun, F., Good, E., Reich, S., Elmouchi, D., Igic, P., Tschopp, D., Dey S., Wim-
mer, A., Jongnarangsin, K., Oral, H., Chugh, A., Pelosi, F., Morady, F.: Role of
Purkinje Fibers in Post-Infarction Ventricular Tachycardia. J Am Coll Cardiol.
48(12), 2500–2507 (2006)

[6] Bordas, R.M., Gillow, K., Gavaghan, D., Rodriguez, B., Kay, D.: A Bidomain model
of the ventricular specialized conduction system of the heart. SIAM J. Appl. Math.
72, 1618–1643 (2012)

[7] Vigmond, E.J., Clements, C: Construction of a computer model to investigate saw-
tooth effects in the Purkinje system. IEEE Trans. Biomed. Eng. 54, 389–99 (2007)

[8] Artebrant, R., Tveito, A., Lines, G.T.: A method for analyzing the stability of the
resting state for a model of pacemaker cells surrounded by stable cells. Math. Biosci.
Eng. 7, 505–526 (2010)
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