
This is a repository copy of Model structure in observational constraints on transient 
climate response.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/85098/

Version: Accepted Version

Article:

Millar, RJ, Otto, A, Forster, PM et al. (3 more authors) (2015) Model structure in 
observational constraints on transient climate response. Climatic Change, 131 (2). 199 - 
211. ISSN 0165-0009 

https://doi.org/10.1007/s10584-015-1384-4

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Model structure in observational constraints on transient

climate response ∗

Richard J. Millar † 1, Alexander Otto2, Piers M. Forster3, Jason A. Lowe4, William

Ingram1,4 and Myles R. Allen1,2

1Department of Physics, University of Oxford, Oxford, U.K.
2Environmental Change Institute, University of Oxford, Oxford, U.K.
3School of Earth and Environment, University of Leeds, Leeds, U.K.

4Met Office Hadley Centre, Exeter, U.K.

July 12, 2015

Abstract

The transient climate response (TCR) is a highly policy-relevant quantity in climate science. We

show that recent revisions to TCR in the IPCC 5th Assessment Report have more impact on projections

over the next century than revisions to the equilibrium climate sensitivity (ECS). While it is well known

that upper bounds on ECS are dependent on model structure, here we show that the same applies to

TCR. Our results use observations of the planetary energy budget, updated radiative forcing estimates

and a number of simple climate models. We also investigate the ratio TCR:ECS, or realised warming

fraction (RWF), a highly policy-relevant quantity. We show that global climate models (GCMs) don’t

sample a region of low TCR and high RWF consistent with observed climate change under all simple

models considered. Whether the additional constraints from GCMs are sufficient to rule out these low

climate responses is a matter for further research.

1 Introduction

The steady-state global mean surface temperature (GMST) response of the climate system to a doubling of

atmospheric CO2 concentrations, the “equilibrium” climate sensitivity (ECS), is the standard metric of the

response of our climate to external forcing. Typically, general circulation model (GCM) simulations take

many centuries to fully realise this new climate equilibrium, due to long response timescales associated

with the thermal inertia of the deep ocean, but estimates of the effective ECS (evaluated from a regression

of top-of-atmosphere radiative flux against GMST change) can be made from much shorter integrations

(Gregory et al., 2004). ECS is highly relevant to concentration stabilisation scenarios, which remain the

stated goal of the UNFCCC process. However, over the next few decades, and in scenarios where the

radiative forcing continues to increase, or peaks and declines (Frame et al., 2006; Allen et al., 2009),
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the long timescales and potential nonlinear feedbacks (Andrews et al., 2012) associated with ECS do

not make ECS the most relevant measure of the climate response for the next century. It has often been

argued that the transient climate response (TCR) is more policy-relevant for contemporary climate change

(Frame et al., 2006; Hegerl et al., 2007). The TCR is defined as the GMST warming when atmospheric

CO2 concentrations double after 70 years when increased by 1% per year from pre-industrial values.

The TCR describes warming for a climate system in disequilibrium and can be better constrained by

observations of the disequilibrium climate and radiative forcing of the 20th century and the near future.

Various methods have been used to try and constrain the uncertainty on ECS and TCR. One class of

such methods is to use a simple model to constrain the joint distribution of TCR and ECS from obser-

vations of the planetary energy budget. Recent studies estimating TCR and ECS via these methods have

received substantial attention (Otto et al., 2013; Huntingford, 2013; Schmidt et al., 2014), especially as

they have suggested TCR uncertainty intervals that include lower values than sampled by existing GCMs.

These methods, which incorporate direct observations of the climate system and do not use GCMs, are

often referred to as observational estimates of TCR and ECS, which incorrectly implies they are model-

independent. It is well-established that inferences about ECS using such methods depend on the structure

of the simple model used as shown by Knutti et al. (2008) in response to Schwartz (2007). However, it is

often assumed that estimates of TCR are more-or-less independent of the specifics of the simple climate

model.

2 Uncertainty in recent estimates of TCR and ECS

The TCR and ECS are inherently related, both being measures of the climate response to external radiative

forcing, but on different time-scales. In GCMs ECS is approximately linearly related to TCR over low to

mid range realisations of ECS (Knutti et al., 2005; Forster et al., 2013). Figure 1 shows this relationship

in both the CMIP5 multi-model ensemble (MME) and a large perturbed-physics ensemble (PPE) of the

HadCM3 GCM selected based on their emulated ability to reproduce global radiation balance in their

control climate (Yamazaki et al., 2013).

Figure 1 includes the IPCC likely uncertainty ranges (a 2 in 3 chance of finding the value within this

range) for ECS and TCR from the 4th (AR4 - green) and 5th (AR5 - red) Working Group 1 Assessment

Reports (IPCC, 2007, 2013). In AR4, there was no likely range for TCR given, with TCR uncertainty

assessed as very likely greater than 1.0K and very unlikely less than 3.0 K (Solomon et al., 2007), where

very likely denotes a 9 in 10 probability and very unlikely a 1 in 10 probability. The only TCR likely

range that can be inferred from AR4 without further assumptions is to set it equal to this interval. This is

the most conservative estimate possible and avoids over-interpreting the result from AR4 whilst allowing

comparison with the likely range from AR5. This means the lower limits of the likely ranges of TCR

(1.0K) are taken as equal between AR4 and AR5 and likewise, the upper ECS likely range limit (4.5K) is

taken as equal between AR4 and AR5.

Currently, IPCC estimates for TCR and ECS are given independently without reflection of the corre-

lations shown in figure 1. These independent ranges do not explicitly rule out regions in TCR-ECS space

that have TCR>ECS. Taking this additional constraint (the TCR = ECS line is represented by the dashed

grey line in figure 1) would rule out parts of region A and B in figure 1 as physically implausible.

Figure 2 shows an alternative way to visualise the information shown in figure 1. The TCR:ECS ratio

used as the y-axis in figure 2 is a measure of the fraction of committed warming already realised after a

steady increase in radiative forcing, a clearly policy-relevant quantity. We call this quantity the realised

warming fraction (RWF) hereafter. The lower correlation between the RWF and the TCR demonstrates

that these two quantities are more statistically independent of each other in contemporary GCMs than

TCR and ECS (correlation coefficients of 0.12 and 0.86 respectively for the CMIP5 models). Whilst the

RWF and TCR are mathematically linked (via ECS), this approximate statistical independence in state
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Figure 1: The TCR and the ECS for the CMIP5 MME (yellow circles) and for a PPE of the HadCM3

GCM (purple triangles). The likely ranges from the IPCC AR5 (red) and the inferred AR4 (green) likely

ranges (the inferred limits are marked as dashed lines) are shown along with grey lines of constant RWF

(TCR:ECS ratio). The implicit sensitivity of the impulse-response model used for metric calculations in

AR5 is marked as “IPCC Impulse-response”. Regions not common to both AR4 and AR5 likely estimates

are marked A and B.
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Figure 2: As figure 1 but the y-axis is the RWF (TCR:ECS ratio) and now lines of constant ECS are

marked and shaded in grey.
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of the art climate models makes characterising the climate response in terms of these quantities more

informative than in terms of the more correlated TCR and ECS. There is evidence of negative correlation

between RWF and TCR in the PPE (particularly at high TCR). This is consistent with the frequently

noted deviation of the TCR vs. ECS relationship from linearity at high climate sensitivities (Knutti et al.,

2005), which are sampled more densely in the PPE than the MME.

In terms of understanding future climate response it may be easier to understand the implications

for climate projections if studies focus on estimating these two near-independent quantities, which can

both be estimated from observations (RWF can be estimated from observations via a simple model, e.g.

equation 4), although estimates of any two are of course sufficient to determine the third. It could be

more useful to policy-makers for a body such as the IPCC to report uncertainty ranges in these two more

independent quantities rather than independent ranges for the correlated TCR and ECS. A choice of more

independent parameters would communicate more information about the climate response. Andrews and

Allen (2008) discusses how independent metrics of climate response are preferable for understanding

climate response within a simple model framework. The use of RWF and TCR as independent metrics of

climate response fulfils this criteria and is equally applicable to simple models and GCMs.

Neither the HadCM3 perturbed physics ensemble nor the CMIP5 ensemble give an indication of a

decrease in RWF for low TCR. Similarly, recent observational estimates of TCR and ECS using simple

climate models are also consistent with a high RWF at low TCR (e.g. (Otto et al., 2013)). As such, the

AR5 likely region, which includes region A in figure 2 whilst excluding region B, represents a region more

consistent with our overall understanding of TCR and ECS uncertainties based on published evidence

from multiple methods.

3 The constant climate resistance approximation

Several recent investigations have attempted to constrain TCR and ECS using recent observations of the

planetary energy budget (Padilla et al., 2011; Schwartz, 2012; Otto et al., 2013; Lewis, 2013). In order to

relate such observations to measures of climate response, such as TCR and ECS, a simple climate model

structure must be assumed.

A common method to estimate TCR from observations of the planetary energy budget relies on ap-

proximating the net heat uptake by the climate system (“energetic disequilibrium of the climate”) as a heat

sink proportional to the change in GMST, as seen approximately in GCMs with steadily increasing forc-

ing (Gregory and Forster, 2008). The energy balance of the climate can be represented in a global-mean

formulation as,

∆Q = ∆F −λ∆T, (1)

where ∆Q is the heat uptake of the climate system (dominated by the ocean heat uptake on climatological

timescales), ∆F is the tropopause radiative forcing of the climate system, λ the climate feedback parame-

ter and ∆T the GMST change due to the forcing. Making the assumption ∆Q= κ∆T (known from here on

as the “constant climate resistance” approximation) is equivalent to assuming that the deep ocean acts as

an infinite heat sink. This allows equation (1) to be rewritten as ∆F = (κ +λ )∆T (Gregory and Forster,

2008). If we assume that the sum of κ and λ is constant over time, this model contains no response

timescales and implies that GMST change is directly proportional to the radiative forcing change. Then

the TCR can be estimated from observations as:

T̂CR = F2×
∆T (t)

∆F(t)
. (2)

F2× is the radiative forcing from doubling atmospheric CO2 concentrations relative to pre-industrial,

∆T (t) and ∆F(t) are respectively the GMST warming and change in radiative forcing at any point in
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time, t, relative to a reference period, and x̂ is used to denote an observational-estimate for a property

of the system, x. T̂CR, might be called an effective TCR (as it is estimated from observed climate

change), but in many ways this would be misleading as, unlike the climate sensitivity parameter, for

which there is evidence of genuine time dependence in GCMs (Senior and Mitchell, 2000), the TCR

itself is a time-independent quantity. Incorporating observations of changes in planetary heat uptake, ∆Q,

an observational quantity that has a large uncertainty and a short observational timeseries (Levitus et al.,

2012), allows the ECS to be estimated within the same framework:

ÊCS =
F2×∆T (t)

∆F(t)−∆Q(t)
. (3)

Under the “constant climate resistance” approximation, the RWF becomes,

RWF =
T̂CR

ÊCS
= 1−

κ

F2×
T̂CR = 1−

∆Q

∆F
. (4)

For GCMs to lie along a straight line in figure 2 the ratio κ : F2× would need to be constant between

models. For a given TCR, the RWF (or ECS) would be determined by the ratio κ : F2×. It may be

productive for future studies to examine whether this absence of GCMs with ECS significantly below 2K

is physically-based via this ratio of more statistically independent climate parameters.

4 The impact of AR5 TCR and ECS uncertainty ranges on future

climate projections

A simple energy balance model that incorporates response timescales of the climate system is a two-box

impulse-response model (Boucher and Reddy, 2008). The use of two constraints allows the parameters

of the impulse-response model consistent with a particular TCR and ECS combination to be formulated

assuming fixed response timescales (see Supplementary Information). We can use the impulse-response

model to examine the impact of changes in the IPCC uncertainty ranges for TCR and ECS between AR4

and AR5 on future projections of climate change (Rogelj et al., 2014).

For specific values of TCR and ECS, the impulse-response function can be integrated with the ob-

served historical radiative forcing and future scenarios. However, to assess the consistency of different

TCR and ECS impulse-response models with observations of historical climate change, uncertainty in

historical radiative forcing must also be considered.

We follow Padilla et al. (2011) in assigning all the uncertainty in the historical radiative forcing time

series to anthropogenic aerosols, as the IPCC assigns the greatest radiative forcing uncertainty to this

component. This is expressed via the use of an aerosol forcing scaling factor,

F(t) = Fother(t)+ xFaero(t), (5)

with Faero the best estimate of the component of radiative forcing due to anthropogenic aerosols, Fother

all other components of the radiative forcing, and x the non-dimensional scaling factor. As the model re-

sponse is linear in its forcing inputs, this scaling factor propagates into a scaling factor in the temperature

response,

T (t) = Tother(t)+ xTaero(t). (6)

By constraining temperature change over a certain period to agree with observations, we can calculate

the aerosol forcing scaling factor required to make a climate response function of specified ECS and

TCR consistent with observed climate change whilst ensuring that total forcing is consistent with AR5
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Figure 3: GMST projections for the four RCP scenarios derived using the impulse-response simple cli-

mate model (described in the Supplementary Information). Note that the y-axis scales are not identical.

The red shading shows the projection envelope consistent with AR5 ECS and TCR likely ranges and

scaled forcings. The green shading shows the same for the AR4 likely ranges. All temperature changes

are given relative to the 1860-1880 average. The range of the CMIP5 models for the near-term and

long-term GMST projections from AR5 are included. The blue line shows scenario projections under the

impulse-response model used for metric calculations in AR5 Ch 8 (Myhre et al., 2013b). The inset panel

shows system heat uptake for the limits of the likely ranges with the grey shaded bar marking the standard

deviation around the 2000-2009 average.

estimates. We integrate the upper/lower limits of the AR5 likely TCR and ECS ranges with the anthro-

pogenic aerosol timeseries scaled to give lower/upper likely estimates of 2011 total radiative forcing in

AR5.

The panels showing the projections for RCP6.0 and RCP8.5 in figure 3 show that the reduction of the

lower ECS likely bound (the lower limits of the projection envelopes, in which the only difference between

the AR4 and AR5 case is the lower ECS limit in AR5) in AR5-based projections has a barely discernible

effect relative to the AR4-based projections out until around 2150, where the longer timescale climatic

response, mainly associated with ECS, starts to emerge. The main effect of the AR5 TCR and ECS

uncertainty updates is to reduce the likelihood of the high end of AR4-based projections, corresponding

to the downgrading of the upper limit of the TCR estimate. Therefore, for policy-relevant projections, the

revision of TCR range is much more important than revisions to the ECS range.

RCP2.6 shows a faster cooling after the temperature peak in the AR4 high-sensitivity case than the

AR5 high-sensitivity case, despite a greater peak temperature change being achieved mid-century under

the AR4 high-sensitivity integration. This is consistent with the higher TCR in the AR4 high-sensitivity

limit causing a faster decrease of temperatures in response to the net negative emissions technologies

incorporated in the RCP2.6 scenario. However, we should be cautious about giving too much weight
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to the projections of a simple climate model beyond the peak of any forcing timeseries (Schaller et al.,

2014).

It is clear that models that fit the observational record can still simulate a large variety of climate

futures. Unlike the long-term CMIP5 projections, the near-term CMIP5 projections span a range that

extends above the projection envelope indicated by the AR5 TCR, ECS and forcing uncertainties. In

all scenarios (except for RCP2.6 where the radiative forcing peaks and declines) the long-term GMST

projections are either completely contained within the AR5 uncertainty envelope or extend beyond it by

a lower percentage than in the near-term projections. This analysis supports the scaling down of the raw

CMIP5 model projections for the near-term warming (2016-2035) but an unadjusted long-term warming

(2081-2100) when forming the likely projection ranges quoted in AR5 in order to be consistent with the

sensitivity and forcing uncertainties quoted elsewhere in the report (IPCC, 2013). In the RCP scenarios

with fast growing radiative forcing (RCP6.0 and RCP8.5), the long-term CMIP5 projection ranges lie over

the warmer part of the simple model AR5 uncertainty envelope. This would be consistent with increases

in the climate sensitivity parameter at higher GMST in the GCMs associated with potential additional

feedbacks that are not captured in the fixed sensitivity simple model (Gregory and Forster, 2008; Winton

et al., 2010).

In this section, we have considered the literal interpretation of independent ECS and TCR ranges in

AR4 and AR5 for future temperatures under standard emission scenarios. In allowing the TCR to change

and ECS to be held constant (varying RWF) between the high sensitivity limits of the AR4 and AR5

cases (and vice versa for the low sensitivity limits) we offer only a literal interpretation of which of these

assumed independent parameters make the most difference for future temperature projections. As shown

clearly in figure 1, ECS and TCR are correlated, and assuming they can vary independently does not

reflect the representaions of climate response in current GCMs. This offers further evidence for the value

of summarising future GMST response using the more independent quantities RWF and TCR.

5 Estimating TCR and ECS from observations and simple models

Constraining climate response from observations always requires a model to relate the observations to

the climate response. This section contrasts the use of the two-timescale impulse-response model with

the previously used “constant climate resistance” approximation in order to show the impact of simple

model structure on inferences about the transient climate response. In this section we choose to focus

on uncertainties in TCR estimates rather than in ECS estimates. This is both because dependence of

uncertainties in observationally-based estimates of ECS are already well-established (Knutti et al., 2008),

and because the varying radiative forcing in the TCR definition is more relevant to policy decisions that

have to be taken over the next few decades in which the radiative forcing is likely to still be increasing

and the climate system is substantially out of equilibrium due to heat uptake by the oceans. Indeed, the

analysis in section 4 shows that when TCR and ECS are considered independent the TCR is more im-

portant for climate projections out until around 2150. TCR is a more relevant metric of climate response

to future projections as it better predicts the transient response to cumulative emissions (TCRE) (Gillett

et al., 2013) and is also relevant to any scenario in which concentrations peak and decline (Frame et al.,

2006).

The “constant climate resistance” approximation, where the temperatures respond instantaneously to

the forcing, is the limiting case of the impulse-response model in which the short time-constant tends to

zero and the long time-constant tends to infinity. This makes the approximation for TCR in (2) exact.

Under a linear forcing ramp in which CO2 concentrations are increased by 1% each year for 70 years,

the “constant climate resistance” approximation underestimates the GCM-calibrated impulse-response

model’s actual TCR due to the inclusion of thermal delay in the impulse-response model.

We use a likelihood-maximising method to sample uncertainties in the last decade of observations
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Figure 4: a) The best fit model to observations with a variety of values for d1, the short timescale in the

impulse-response model. b) The best estimate and 5 - 95% confidence intervals for TCR for different

values of d1. The dashed purple bar shows the estimate derived in Otto et al. (2013). Its position on the

x-axis is arbitrary. c) The 90% maximum likelihood regions for the GCM-tuned impulse-response model

(light blue) and “constant climate resistance" approximation (royal blue) on the same axes as in figure 2.

d) The same information transformed onto the axes of figure 1.
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of the planetary energy budget and then infer joint distributions of TCR and ECS consistent with these

observational uncertainties using the simple climate models. An ensemble of effective radiative forcing

is derived by splitting the total radiative forcing into the 11 components of the timeseries of historical

radiative forcing given by Myhre et al. (2013a) and randomly sampling each component based on the

5-95% confidence intervals and best estimates of each forcing component given in AR5 (Myhre et al.,

2013b). We exactly follow Otto et al. (2013) in sampling the observed GMST anomaly uncertainty

and the uncertainty in ocean heat uptake observations. All changes are expressed as the difference of the

2000-2009 average from a reference period of 1860-1879 over which ocean heat uptake is assumed small.

From these observational Gaussians for temperature change and ocean heat uptake we again sample

a large number of realisations of the data. From these independent realisations of the GMST change,

planetary heat uptake anomaly and radiative forcing we use our simple model to infer the values of the

c1 and c2 parameters that are consistent with each realisation of the observational data, assuming given

response timescales, d1 and d2. Realisations that produce model parameters that obviously correspond

to non-physical representations of the climate (negative climate sensitivities) are excluded from the cal-

culated distributions. We then follow the method of Allen et al. (2009) (Supplementary Information) to

draw our likelihood region contours.

The panels in figure 4 show inferences about TCR and its uncertainty from the observational data as

a function of the short timescale of the climate response used in the impulse-response function, d1. As

the short response timescale is the dominant mode over the observed historical period, inferences about

TCR are largely insensitive to the long response timescale (not shown).

The observational GMST data can be fit well for a variety of impulse-response models (figure 4a).

The main difference of fit between the models occurs where they are responding to strongly negative

but short-lived forcing such as from volcanic eruptions. These appear (assuming all forcing efficacies

to be unity) to allow us to exclude the shortest timescale version of the impulse-response (equivalent

to the “constant climate resistance” model) but do not distinguish the other models. Using volcanoes

to constrain response timescales is also complicated by dynamical features of the volcanic response not

captured by an energy-balance model.

Figure 4b shows that the choice of short timescale leads to considerable difference in upper bound

of the TCR confidence interval. We here focus on frequentist confidence intervals to make our approach

more transparent and avoid issues over prior distributions. We show distributions for multiple values of

the short response timescale solely in order to demonstrate structural uncertainty in this method. As we

are not attempting to construct a Bayesian posterior representing a degree of belief in the exact TCR of the

real climate system, we do not comment on the relative likelihoods of different short response timescales

and our discussion here serves merely to highlight the sensitivity of the results to this parameter. While

the best estimate TCR and lower confidence interval bound are relatively insensitive to d1, the upper con-

fidence interval bound shows a nonlinear dependence on d1, demonstrating the choice of simple climate

model is important. The dashed purple bar shows the TCR confidence interval from Otto et al. (2013).

That study used the “constant climate resistance” approximation, with the deviation from the blue bar

(our “constant climate resistance” model) arising from the updated radiative forcing uncertainties used

here. The increased radiative forcing uncertainty again primarily impacts the upper bound of the TCR

confidence interval.

Figure 4c and d show the 90% likelihood regions for the GCM-calibrated impulse-response model and

the “constant climate resistance” approximation in the two-dimensional space shown in figure 2 and figure

1 respectively. The dependence of our inferences about the climate response on simple-model structure is

again shown via the difference between the two contours. However, a common feature of the inferences

from observations using the simple models considered here is a region of high RWF at low TCR that

is consistent with these observationally-based methods but is not sampled by the GCMs. The HadCM3

perturbed-physics ensemble samples higher RWFs than the CMIP5 ensemble (although not at the same

time reaching the low TCR values necessary to match the contours from the simple models). However,
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these models have had no tuning or validation beyond their ability to reproduce top-of-atmosphere fluxes

in a control climate.

Comparing GCM sensitivities from CO2-only integrations with sensitivities derived from the histori-

cal observational period, in which multiple forcing agents have been forcing the climate system with in-

homogeneous spatial coverage and different efficacies (the relative efficiency of a unit of radiative forcing

from a gas in driving GMST change relative to a unit of CO2 radiative forcing), are potential explanations

of this low sensitivity discrepancy between the two methods (Shindell, 2014; Kummer and Dessler, 2014).

Additional caveats are the limitations of the simple climate model used to analyse the observational data.

The simple model used contains no representation of internal variability in GMST, which may conflate

decadal scale variability with forced response which has knock-on effects for estimates of climate sensi-

tivity (Huber and Knutti, 2014). A particularly important limitations of these energy balance models is

that the climate feedback parameter is assumed to be constant in time, which is seemingly contradicted in

the CMIP ensemble (Winton et al., 2010). Accounting for these simplifications in the simple model, may

be partly responsible for the RWF discrepancy between the observational and simple model RWF ranges

and the CMIP5 ensemble. However, as no systematic attempts have been made to explore the regions of

GCM climate response space consistent with a low TCR and a high RWF, it is unclear whether GCMs

cannot simulate this region of climate response space that is consistent with observational and simple

model estimates, let alone whether this inability is physically-based. The physical plausibility of a GCM

ocean with a very high RWF should be a matter for future research.

6 Summary and wider implications

To understand 21st century climate change, an understanding of the sensitivity of the climate to steadily

increasing radiative forcing is important as this will be the dominant mode of climate change experienced

on policy-relevant time-scales, unless significant mitigation actions are taken soon. We have analysed the

implications of the latest IPCC uncertainty ranges for TCR and ECS. We suggest that the more statisti-

cally independent quantities, RWF (the TCR:ECS ratio) and TCR (both of which can be estimated from

observations), might be more policy-useful than the highly correlated ECS and TCR.

When estimating TCR or ECS from observations a model is always needed to relate the observations

to the fundamental climate response parameters of the system. We have discussed two different simple

models of GMST response. We have shown that, like ECS, inferences about the upper bound of the

confidence interval for TCR are dependent on the structure of the simple model. Therefore, a truly ‘model

independent’ estimate of TCR is not possible. Inferences about the upper bound on the TCR confidence

interval are important for economic analysis of climate policy because much of the risk associated with

future climate change typically comes from the upper end of the projection distribution.

Recent work using the “constant climate resistance” approximation has downplayed the role of struc-

tural uncertainty in simple energy balance estimates of TCR (Lewis and Curry, 2014). Whilst the lower

bound of the confidence interval and best estimates of the TCR using simple models with multiple re-

sponse timescales are captured well by the “constant climate resistance” approximation, this work has

shown that this is not true for the upper bound of the TCR confidence interval.

Revisions of uncertainty assessments of the TCR and ECS in the AR5 have a limited impact on

climate projections until around the middle of next century. The downgrading of the upper TCR likely

bound is more important than revisions to the lower likely bound of ECS in terms of projections over

policy-relevant timescales.

Simple energy balance methods using observations and simple climate models indicate a region of

low TCR and low ECS that is common to the simple models considered here but not sampled by GCMs.

Although issues of data masking, different forcing efficacies and inhomogeneous forcing distributions

may account for some of this discrepancy, it is not clear that there are as of yet sufficient constraints
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from GCMs to assuredly rule out this region of response space. This may be a interesting issue for future

research.
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