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Structure of micro-instabilities in tokamak plasmas: Stiff transport or plasma
eruptions?
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(Received 14 November 2013; accepted 20 December 2013; published online 8 January 2014)

Solutions to a model 2D eigenmode equation describing micro-instabilities in tokamak plasmas are

presented that demonstrate a sensitivity of the mode structure and stability to plasma profiles. In

narrow regions of parameter space, with special plasma profiles, a maximally unstable mode is

found that balloons on the outboard side of the tokamak. This corresponds to the conventional

picture of a ballooning mode. However, for most profiles, this mode cannot exist, and instead, a

more stable mode is found that balloons closer to the top or bottom of the plasma. Good

quantitative agreement with a 1D ballooning analysis is found, provided the constraints associated

with higher order profile effects, often neglected, are taken into account. A sudden transition from

this general mode to the more unstable ballooning mode can occur for a critical flow shear,

providing a candidate model for why some experiments observe small plasma eruptions (Edge

Localised Modes, or ELMs) in place of large Type I ELMs. [http://dx.doi.org/10.1063/1.4861628]

Micro-instabilities in magnetised plasmas are those with

a characteristic length scale across magnetic field lines com-

parable to the ion Larmor radius, qi. The particle drifts play

a key role in the dynamics and, therefore, often characterise

their growth rate, which is weak compared to Alfv�enic

modes. While these micro-instabilities are relatively benign,

they are, nevertheless, important because they drive turbu-

lence that degrades plasma confinement. Understanding tur-

bulence and its influence on confinement is one of the key

challenges facing magnetically confined fusion plasmas.

In this Letter, we consider the generic linear properties

of micro-instabilities that drive turbulence in a toroidal mag-

netic confinement device, such as a tokamak. Our new 2D

calculations of their eigenmode structure are compared with

analytic ‘ballooning formalism’ approaches that reduce the

problem to 1D.1,2 Ballooning models have identified two

types of mode structures: (1) An isolated mode is the most

unstable and is related to the conventional ballooning mode

of ideal magnetohydrodynamics (MHD),3–6 but only exists

in very special circumstances and (2) a more stable general

mode that exists throughout the plasma. Both of these mode

structures are found in our 2D eigenmode calculations, pro-

viding first quantitative numerical tests that confirm balloon-

ing theory. Our results suggest a possible mechanism for a

sudden transition from benign micro-instabilities driving tur-

bulent transport to stronger instabilities that could release

small filamentary eruptions and locally collapse the profiles.

This mechanism may form the basis of a model for small

Edge Localised Modes (ELMs) in tokamaks.8

While our results are generic to any micro-instability in

a tokamak plasma, it is helpful to illustrate the analysis with

a particular model. Thus, we consider a large aspect ratio,

circular cross section tokamak equilibrium, with flux

surfaces labelled by the minor radius, r. We consider only

electrostatic fluctuations and assume an adiabatic electron

response. We solve the gyrokinetic equation for the ion dis-

tribution function, which is expanded assuming that the ion

transit and drift frequencies are small compared to the mode

frequency. For a wavelength across magnetic field lines that

is larger than the ion Larmor radius, quasi-neutrality pro-

vides the following equation for the perturbed electrostatic

potential, /:9
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/ x; hð Þ ¼ 0; (1)

where r ¼ �n=ðqkhqiÞ; ŝ is the magnetic shear, q is the safety

factor, �n ¼ Ln=R, Ln is the density gradient scale length, R is

the major radius, x is the complex mode frequency normal-

ised to the electron diamagnetic frequency, kh is the poloidal

wave number, and gi is the ratio of density to ion temperature

gradient length scales, and we have assumed equal electron

and ion temperatures. The poloidal angle, h, is defined so that

h ¼ 0 at the outboard mid-plane and x ¼ r � rs is the distance

from the rational surface at r ¼ rs. The model is valid in the

core relevant limit gi � 1 which recovers the ion temperature

gradient mode (ITG), which is our focus here.

The 2D eigenmode equation can be conveniently solved

by adopting a Fourier transform representation of / (Ref. 10)

/ x; hð Þ ¼

ð1

�1

A h0ð Þn h; h0ð Þexp inq0xðh0 � hÞ
� �

dh0; (2)

so that nq0h0 can be interpreted as a radial wave-number at

h ¼ 0 (n is the toroidal mode number, q0 ¼ dq=dr, and

nq0 ¼ khŝ). The amplitude factor A h0ð Þ is assumed to varya)Electronic mail: dd502@york.ac.uk
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faster with h0 than n h; h0ð Þ. Substituting Eq. (2) into Eq. (1)

and following a procedure which extends that set out in Ref.

1 (and analysed in detail in Ref. 2), we can then reduce

Eq. (1) to a sequence of 1D ordinary differential equations

by expanding in n, which is assumed to be large. This yields

to leading order the ballooning equation for n h; h0ð Þ

r2

x2

d2

dh2
þ k2hq

2
i ŝ

2 h� h0ð Þ2 þ
2�n
x

cos hþ ŝ h� h0ð Þsin h½ �

�

þ
x� 1

xþ gi
� k2hq

2
i

�

n h; h0ð Þ ¼ 0; (3)

providing an eigenvalue condition that relates x; h0, and x

written as x ¼ X x; h0ð Þ. X x; h0ð Þ is obtained by solving

Eq. (3) numerically over all h0 for the range of interest in x,

noting that the equilibrium parameters vary slowly with x.

Restricting consideration to small x (anticipating modes local-

ised about r ¼ rs), we can Taylor expand X ¼ X0 h0ð Þ
þXx h0ð Þxþ ½Xxxðh0Þ=2�x

2 þ � � �. Multiplying by / and trans-

forming into Fourier space, it is straightforward to show that

x/ is proportional to ði=nq0ÞdA=dh0 and x2/ to

�1=ðnq0Þ2d2A=dh20, so we have

Xxx h0ð Þ

2 nq0ð Þ2
d2A

dh20
�
iXx h0ð Þ

nq0
dA

dh0
þ x� X0 h0ð Þ½ �A ¼ 0: (4)

It follows from Eq. (3) that n h; h0ð Þ ¼ n hþ 2lp; h0 þ 2lpð Þ
for any integer l, so from Eq. (2), / is periodic in h provided

A is periodic in h0. This provides the boundary condition that

determines x as an eigenvalue of Eq. (4). Solving for A h0ð Þ,
together with n h; h0ð Þ, provides the 2D eigenfunction

/ x; hð Þ.
Analytically, we can deduce two types of solution from

Eq. (4), which are the ‘isolated’ and ‘general’ modes of

Ref. 1. The isolated mode exists at the special radial loca-

tion where Xx ¼ 0; this is the classic ballooning mode origi-

nally derived for ideal MHD.3–6 A h0ð Þ is highly localised

around the h0 value where X0 h0ð Þ is stationary, say

h0 ¼ hm. Expanding about that position, Eq. (4) becomes a

Hermite equation, with solution

A h0ð Þ ¼ exp �
nq0

2

Xh0h0

Xxx

� �1=2

h0 � hmð Þ2

" #

; (5)

where the sign of the square root is chosen to give a bounded

solution in h0. A h0ð Þ has a width �n�1=2, justifying our

Taylor expansion of X0ðh0Þ about h0 ¼ hm. The eigenvalue

condition provides

x ¼ X0 h0 ¼ hmð Þ �
XxxXh0h0ð Þ1=2

2nq0
þO n�2ð Þ: (6)

Note that the isolated mode growth rate is determined from

the 1-D ballooning equation by evaluating the eigenvalue at

the x and h0 values which maximise the growth rate.

Furthermore, if A h0ð Þ is highly localised, the Fourier trans-

form of Eq. (2) will be dominated by the region around

h0 ¼ hm. This, together with the fact that n h; h0ð Þ peaks close

to h ¼ h0, leads to an expression for the potential, / which

peaks at h ¼ hm. For our up-down symmetric model, hm ¼ 0,

and an isolated mode will be localised on the outboard side

of the tokamak.

To summarise, the isolated mode exists when Xx ¼ 0;

one selects the value of h0 to maximise the growth rate, and

the mode is localised about h ¼ h0, which is often at the out-

board mid-plane. While this is intuitive from a physics point

of view, if Xx 6¼ 0 (which is usually the case), the constraints

of the higher order theory do not allow such a mode to exist,

as we now discuss.

In general, the first order radial derivative in Eq. (4) can-

not be neglected. Often Xx is complex, and it can only be

neglected when its real and imaginary parts vanish at the

same value of x; hence, the isolated mode only exists under

very special situations. In the more general case with finite

Xx, we can neglect the Xxx term of Eq. (4). Dividing the

remaining terms by AXx and integrating over a full period in

h0, we derive the eigenvalue condition x ¼ hX0X
�1
x i=hX�1

x i,
where angled brackets denote averaging over h0.

Substituting this value of x into Eq. (4) and integrating

yields the required periodic expression for A h0ð Þ. One finds

that A h0ð Þ is still localised in h0, provided X x; h0ð Þ is com-

plex, but now around the value of h0 where x ¼ X0 h0ð Þ; in
our simple model, this position is typically at the top or bot-

tom of the tokamak,7 corresponding to h0 ¼ 6p=2. This gen-
eral mode is more stable than the isolated mode, with a

growth rate which is the average of X0 over h0 rather than

the maximum, and the mode sits away from the outboard

mid-plane. Due to the difference in stability, the general mode

will have a higher critical gradient than the isolated mode.

To provide quantitative numerical tests of this theory,

we solve Eq. (3) for a specific parameter set:

n ¼ 50; ŝ ¼ 2; khqi ¼ 0:33; R=a ¼ 10; q r ¼ rsð Þ ¼ 1:8, and
q rð Þ ¼ 3:45 r=að Þ2. We further assume that all parameters in

Eq. (1) are independent of x except for gi. In this system, an

isolated mode should exist if gi has a maximum in x (as we

shall illustrate), while a linear gi profile should yield a

general mode. For the various gi profiles chosen, we fix

gi ¼ 5 at r ¼ rs giving the same local eigenvalue at

x ¼ 0; X x ¼ 0; h0ð Þ, for each case. While q is held constant

in the co-efficients of Eq. (1), ŝ 6¼ 0 is required to provide a

distribution of rational surfaces across the minor radius.

Figure 1 shows X x; h0ð Þ from solving Eq. (3) for two

types of gi profile: A quadratic profile peaking near the

rational surface (Figures 1(a) and 1(b)), and one which

decreases linearly in x (Figures 1(c) and 1(d)). Both exhibit

X0 � cos h0, while Xx and Xxx are approximately independ-

ent of h0.

For the peaked gi profile, Xx ¼ 0 at r ¼ rs, and we

expect an isolated mode. (This is a special situation: If we

were to include radial variations in the other equilibrium pa-

rameters of our model then, even for the peaked gi profile,

the real and imaginary parts of X would not be stationary at

the same x, and no position would exist where Xx ¼ 0.) The

complex mode frequency from the 1D ballooning procedure

is x ¼ �0:025þ i0:319.
With the linear gi profile, X x; h0ð Þ no longer has a maxi-

mum at x¼ 0. Employing the averaging procedure relevant
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to the general mode, we obtain x ¼ �0:108þ i0:230,
revealing a substantially more stable situation than for the

peaked gi profile. Recall that in both cases the local equilib-

rium parameters are identical at x¼ 0. Solving Eq. (4) for

A h0ð Þ with this general mode eigenvalue, we find that

lnA h0ð Þ � sinh0 (with a complex coefficient), so A h0ð Þ is

strongly peaked around h0 ¼ p=2. For our circular geometry,

this results in a mode structure for / x; hð Þ that is localised at

the top of the plasma. Whether the localisation is at the top

or bottom of the plasma depends upon the sign of Xh0=Xx.

We test this generalised ballooning theory quantitatively

using full 2D numerical solutions to Eq. (1). We first decom-

pose / x; hð Þ into poloidal Fourier harmonics, / x; hð Þ
¼

P

mum xð Þexp imhð Þ, and then solve the set of coupled equa-
tions for the radial dependence of the coefficients, um xð Þ, to
determine the complex mode frequency, x, as an eigenvalue

of the system. Radially localised modes are sought, and we

therefore employ zero Dirichlet boundary conditions in the ra-

dial direction. The results for the two different eigenmode

structures are shown in Figure 2. With the peaked gi profile,

the mode is indeed localised on the outboard side, while for

the linear profile, it is peaked at the top of the plasma. We

find no 2D eigenmode on the outboard side when the gi pro-

file is linear. These mode structures can also be obtained from

the 1D ballooning procedure; we do not show them here

because they are visibly indistinguishable from these 2D

solutions. The eigenvalues from the 2D analysis are x ¼
�0:025þ i0:316 and x ¼ �0:110þ i0:239 for the peaked

and linear gi profiles, respectively. These results are in excel-

lent agreement with the 1D ballooning analysis.

In Ref. 11, Kim and Wakatani argued that a continuum

of modes can exist when Xx 6¼ 0. However, these are not

eigenmodes of the system. Such a continuum arises because

there is a range of solutions to Eq. (4), which provide the

desired localisation of A h0ð Þ and hence the existence of the

Fourier transform, Eq. (2). However, in general, those solu-

tions do not provide a form for A that is periodic in h0, which

is required for / to be periodic in h. For this reason, the

Kim-Wakatani modes are not physical eigenmodes, as was

also noted in Ref. 12. We do not see Kim-Wakatani modes

in our 2D eigenmode solutions, confirming the conclusions

of Ref. 12.

We can use our 2D solutions to explore the relation

between isolated and general modes. We start with an gi pro-

file which is peaked at x¼ 0 so that the more unstable iso-

lated mode exists. Adding a linear contribution to the gi
profile simply shifts the position of the maximum of gi: The

isolated mode still exists, but adjusts its position to sit at the

point where gi is a maximum. A more interesting situation

arises when one introduces flow shear into the problem as

this then shifts the position where the local frequency is sta-

tionary relative to that where the local growth rate peaks. No

isolated mode is then possible. Thus in Eq. (1), we introduce

a Doppler shift x ! xþ nq0cEx, working in the rest frame

of the rational surface. The shearing rate, cE ¼ dXu=dq,
parameterises the shear in the toroidal rotation, Xu. Figures

3(a) and 3(b) show how the mode frequency and growth rate

derived from 2D solutions respond to cE; they are symmetric

under cE ! �cE. Note how the isolated mode that exists at

cE ¼ 0, smoothly evolves into the general mode, as expected

from analytic theory,2,13 for a relatively low value of

jcEj � 0:015 � c, where c is the ITG growth rate. Thus, the

FIG. 1. Contours of the local frequency ((a) and (c)) and growth rate ((b)

and (d)) as a function of x and h0 derived from the 1D ballooning code solu-

tion of Eq. (3) for the peaked and linear gi profiles, respectively.

FIG. 2. 2D eigenmode structure for the potential / ((a) and (b)) in the poloi-

dal plane for the peaked and linear gi profiles, respectively. The (orange)

shaded region in the poloidal cross-section shows the simulation domain.

FIG. 3. The mode frequency and growth rate ((a) and (b)) as a function of

the flow shear parameter, cE. Also shown are the 2D mode structures for

cE ¼ �0:0036 (c) and cE ¼ �0:0090 (d).
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window of existence for the isolated mode is very narrow in

cE. We also show in Figures 3(c) and 3(d) how the eigen-

mode structure evolves in the poloidal plane from the out-

board mid-plane for cE ¼ 0 (Figure 2(a)) to the top of the

plasma at cE � �0:01. With a positive value of cE, the mode

moves towards the bottom of the plasma. Adding flow shear

to a general mode usually has little impact on stability as the

mode type does not change, and hence, the averaging proce-

dure used in the ballooning analysis to determine the growth

rate is unchanged. The radial width of the mode will, how-

ever, be affected because of its dependence on Xx.

In conclusion, we have presented numerical 2D eigen-

mode solutions for micro-instabilities in toroidal geometry.

These confirm the analytic asymptotic approaches demon-

strated in Refs. 1 and 2. In particular, we find that the com-

mon approach to ballooning theory, selecting the value of h0
to maximise the growth rate which usually gives rise to a

mode that balloons on the outboard side, is only valid in very

special situations. More generally, one should average the

local (1D ballooning) growth rate over h0, and the dominant

mode amplitude will exist off the outboard midplane.

Eigenmode frequencies determined from our 2D calculations

for a representative model of toroidal drift waves demon-

strate excellent agreement with those determined from the

1D ballooning theory, provided one treats h0 correctly.

Considering the effect of flow shear, we have shown that an

isolated mode smoothly transforms into the more stable gen-

eral mode as the flow shear is increased, and we have dem-

onstrated the very narrow region of parameter space where

the isolated mode exists.

Our analysis is generic to any micro-instability in a

tokamak plasma, and may be relevant to situations where

plasma gradients, generally clamped by stiff transport from

microturbulence, are transiently relaxed by bursty energy

releases. In the tokamak high confinement-mode, steep den-

sity and temperature gradients form a pedestal close to the

plasma edge. The pedestal periodically collapses due to

ELMs, with the profiles subsequently rebuilding until the

next ELM is triggered. Large ELMs are believed to be due to

the onset of intermediate-n ideal MHD peeling-ballooning

modes,14–16 which become unstable for sufficiently high and

wide pedestals. Small ELM regimes are less well under-

stood. The linear growth rate and mode frequency of the

high n micro-instabilities responsible for transport in the

steep pedestal region, will not typically be stationary at the

same location, x; h0ð Þ, so that isolated modes will not usually

exist. Turbulence from the more stable general mode will

therefore typically constrain the pedestal gradients. As pro-

files rebuild between ELMs, however, the locations where

the frequency and growth rate are stationary also evolve and

may transiently become collocated, allowing an isolated

mode to exist. At that instant, the gradient would be close to

the general mode’s critical gradient, well above that associ-

ated with the isolated mode. Therefore the isolated mode

would suddenly become highly unstable, potentially trigger-

ing a rapid crash in the gradients (i.e., a small ELM). Such

localised crashes of the pedestal profiles may prevent the

equilibrium from ever reaching the ideal MHD instability

boundary associated with larger type-I ELMs. This could

form the basis of a theory for small ELMs in tokamaks.
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