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Abstract  
 
We present a finite element formulation of the full Bloch-Torrey equation for nuclear magnetic resonance (NMR) applications. We 
obtained parametrical expressions that allow us to compute the involved matrices in a simple and fast way for any spatial 
convergence order. The framework here proposed is valid for many problems related to MR, as diffusion and perfusion MRI. 
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1. INTRODUCTION 
Nuclear magnetic resonance (NMR) has proven of enormous 
value in the investigation of porous media. Its use allows 
studying pore-size distributions, tortuosity, and flow 
permeability as a function of the relaxation time, diffusivity, 
and flow [1]. This information plays an important role in 
plenty of applications, ranging from the oil industry to 
medical diagnosis. A complete NMR analysis involves the 
solution of the Bloch-Torrey (BT) equation. However, 
analytically solving this equation becomes intractable for all 
but the simplest geometries [1, 2]. We present an efficient 
numerical method to deal with arbitrarily complex domains. 
 
2. METHODS 
Let Ω =∪ Ω be the domain under analysis, withΓ = Ω ∩
Ω . Then, the BT equation becomes [1, 2]: 

( , ) = ∇ ⋅  D (r)∇m (r, t) − i γ f(t)B(r)m (r, t)− ( , ) −

∇ ⋅ v(r, t)m (r, t) , (r ∈ Ω )    (1)                         

D (r)∇m (r, t) ⋅ n (r)
= κ  m (r, t)−m (r, t) , (r ∈ Γ ,∀n) (2) 

D (r)∇m (r, t) ⋅ n (r) = −κ m (r, t), (r ∈ Γ ),    (3) 

where m is the complex transverse magnetisation we want 
to compute, Γ is the external boundary of Ω , γ is the 
gyromagnetic ratio of protons, D  is the diffusion (rank-2) 
tensor, T  is the relaxation time, vis the velocity of the spins 
due to flow of the medium,n is the unitary outward pointing 
normal to Ω ,κ (κ ) is the permeability constant in Γ (Γ ), 
and f and B are the effective temporal and spatial variations 
of the applied magnetic field. Then, m  is found by solving 
(1)-(3) with initial condition m (r, 0) = ρ (r), for t ∈ [0, TE]. 
After obtaining m  we compute the complex MR signal 
integrating m (r, TE) λ(r) over the domain, with λ(r) 
dependent on the receiver coil [2].  

To solve (1)-(3) we propose a finite element approach. To do 
so we discretise the problem and obtain the weak form of 
the variational formulation using the discontinuous Galerkin 
method. Discretising m (r, t) = Σ φ (r)η (t), [3] we get 

퐌퐥  
∂η
∂t

= −( S + iγf(t) Q +
1
T

M + J + κ  F ) η

− κ  H  η  , 

where: 

M = φ (r) φ (r) dr ;   

S = ∇φ (r) ⋅ D (r)∇φ (r) dr;    

Q = φ (r) B(φ (r), r) dr; 

J = φ (r)∇ ⋅ ( v(r, t)φ (r) )dr;   

 F = φ (r) φ (r) dr; 

   H = φ (r) (φ (r)−φ (r) )dr. 

To obtain numerical expressions of these matrices we 
transformed the integrals to the area and volume coordinate 
systems [3]. This method allows us to compute exact 
expressions as explicit functions of the mesh nodes and 
material properties, which is especially useful for their fast 
computation and to perform other parametrical 
experiments (e.g. as in [4]). For example, when considering 
first order basis functions, we find the elementary [3] mass 
and stiffness matrices to be M = (1 + I )V /20 and S =
(Λ D Λ )/(36V ) respectively, where 1 is the matrix full of 
ones, I is the identity matrix, Λ is a 3x4 matrix depending on 
the elements’ nodes, and e denotes the element under 
study. These expressions were coded in MATLAB, and will be 
freely available in the first’s author website soon. 
 
3. RESULTS 
We tested the algorithm in different scenarios (different spin 
echo sequences, velocity fields, geometries, and physical 
constants), always performing as expected. In Fig. 1 we show 
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a simple example where the relative error in the acquired 
MR signal is plotted as a function of the gradient strength (g) 
considering a bilayer spherical domain with radius [r , r ] =
[2,4]μm (analytical solution from [2]). We considered κ =
10 m/s, D = D = 75 × 10 m /s,κ = 10 m/s, 
T = T = ∞, B linear, and a PGSE sequence [1] with δ =
Δ = 10ms. As expected, the relative error increases with g 
due to the decrease of the MR signal (from 0 to 10 ). The 
computation of the matrices is both fast and errorless. 

 

4. CONCLUSIONS 
We obtained an efficient and parametrical numerical 
solution of the complete BT equation that can be generalised 
to any spatial convergence order. The consideration of the 
flow term allows us to use this method in plenty of 
applications, as brain diffusion and perfusion studies. Future 
work will focus on using this technique to validate existing 
models of diffusion and perfusion signals based on gradient 
sensitising strategies. 
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