
M. U. Siregar & J. Derrick                                                 USES Conf. Proc. 01 (2014); doi: 10.15445/01012014.21  

13 

Using Abstraction in Model Checking Z Specifications 
 

M. U. Siregar, J. Derrick 
Verification and Testing Lab., Department of Computer Science, Faculty of Engineering, University of Sheffield. 

 
Abstract 
 
Z notation is a language used for writing formal specifications of a system. However, tool support for this language is lacking. One 
such tool that is not generally available is a model checker. Model checking is a method used to verify that a system has certain 
properties; this is important since it can provide full verification of a finite state system without the user having sophisticated 
knowledge. Originally applied in hardware systems, it is now commonly available for application in software systems. One of the 
drawbacks of model checking is that it applies to finite state systems, since it works by performing a complete state space 
exploration. However, the size of the systems that model checkers can now cope with has increased rapidly. In this paper, the use 
of abstraction as a means to make model checking feasible for arbitrary Z specifications is investigated. Several experiments have 
shown that the abstract models have fewer states than the concrete ones or have the same number of states as the concrete one.  
 
Keywords Abstraction; Model Checking; SAL Model Checker; Z Specification; Z2SAL
1. INTRODUCTION 
Z is a language that can be used to write formal 
specifications. The aim of Z is that it can be used to define a 
specification of a system. As a formal language, Z could make 
a specification free from ambiguities.  
 
Whilst there has been increasing interest in the use of Z, the 
tool support for Z is limited. There are many aspects to this, 
but one of the deficiencies in the tools available is that there 
is no support for model checking Z specifications. Although 
the Community Z Tools (CZT) project has continuously 
developed a set of open source tools for Z, its progress is 
slow [1]. In particular there is currently no model checker 
available for Z either in CZT or elsewhere. 
 
It is well recognised that to build a model checker directly for 
a Z specification would take considerable effort due to the 
abstraction of the language. Therefore, alternative methods 
of providing support have been explored, such as translating 
the input of a Z specification into a language that a model 
checker tool accepts. It is quicker to do such an adaptation 
than write a model checker for the language from scratch. 
 
As part of this work, researchers at the University of 
Sheffield implemented a translation tool which takes a Z 
specification and translates it into the input for model 
checkers found in the SAL tool-kit. Specifically, they used a 
LaTeX mark up of a Z specification as the input to the 
translation tool, which they called Z2SAL, and translated that 
into a representation that SAL could use [2]. 
 
In another case, Smith and Winter reported that a Z 
specification can consist of complex predicates as well as 
large number of or even infinite state spaces [3]. In contrast, 
state space explosion has been showed in many references 
as the most challenging problem on model checking [4]. As a 
result, Smith and Winter have proposed the approach of 
abstraction to Z specification systematically [5]. 

 
Clarke et al. have used several methods of counterexamples 
guided abstraction in order to solve the explosion problem 
of model checking, such as using SAT solver to simulate the 

counterexample and using ILP and machine learning to 
refine the abstract model [5, 6], and using symbolic 
algorithm to refine the abstract model [7]. 
 

Regarding abstraction on Z specification, Jackson has built a 
prototype which integrates abstraction on Z and VDM 
specification and has shown its functionalities during 
verification of some examples in those languages [8]. 

 
In this paper, we investigate the use of abstraction in model 
checking Z specifications by conducting several experiments. 
At the moment, this investigation is done manually for the 
generation of the abstract model, detection of false 
counterexample and refinement of that abstract. However, 
the first abstract model is built by modifying the SAL file of 
the concrete one generated by Z2SAL. Verification is also 
done automatically by using the SAL model checker. 

 
2. METHOD 
The abstraction process refers to the work of Smith and 
Winter as follows [3]:  
Step 1: Abstract generation 
To avoid initial value of output by Z2SAL, that output is 
initialised to 0 for numbered types. Generating the abstract 
model involves several steps as follow: 
1.1. Define “monomials” [9] from atomic predicates of 
properties (LTL theorems).   
1.2. Create state schema whose number of states is equal to 
the number of monomials.  
1.3. Create abstract function which is a mapping from 
monomials to state.  
1.4. Derive initial schema.  
1.5. Derive operational schemas.  
1.6. Derive abstract version of properties. 
Step 2: False counterexample detection 
If the property can be proved or the counterexample 
belongs to the original specification, then go to Step 4. If this 
is not the case, refinement takes place. This brings us to Step 
3. The approach that is used to detect a false 
counterexample is based on Clarke, et al. [10]. 
Step 3: Refine the abstract model 



M. U. Siregar & J. Derrick                                                 USES Conf. Proc. 01 (2014); doi: 10.15445/01012014.21  

14 

This step involves a number of refinements that are called if 
the refined property cannot be proved. This is needed to 
avoid the false counterexample during processing with the 
model checker. Smith and Winter used the approach 
developed by Clarke, et al. [10]. 
 
3. RESULTS AND DISCUSSIONS 
Several experiments have been done. However, due to page 
limitation, only two are considered here.  The first is based 
on the example given by Smith and Winter [3]. The second 
by using the counterMod4 specification.  
 
For the first example, the original model can have many 
states which can request a number or send an allocated 
number. A LTL theorem was added to prove that the system 
can never send the same number more than once. This will 
be proved by SAL model checker. Based on that theorem, 
there is one atomic property which then generates two 
monomials representing two states. Thus, in the first 
abstraction, this system will be modelled by only two states. 
However, the same property cannot be proved, and a 
counterexample was generated instead. After four 
refinement cycles, the property embedded on the abstract 
model can be proved. This latest abstract model has four 
states with the biggest number of states being 10.  
 
For the second, the original model can have four states to do 
modulo four operation. A theorem was added to prove that 
generally from number one, next will be two. The first 
abstraction generated four states, but one state is not 
possible and was later deleted. Moreover, another state was 
too complex and was split into two states instead. Thus, one 
can do further checking before defining the abstract 
function. This abstraction could not be proved by the SAL 
model checker. After one further refinement, it was proved. 
Although the last abstract model also has four states, the 
number of states, if the states are not deleted, is seven. 
 
Based on these experiments, systems with large state spaces 
will get more advantages from this abstraction. On the other 
hand, the simple ones might have the same number of states 
with their abstract models.   
 
 
 

 
4. CONCLUSIONS 
As a conclusion, this abstraction can reduce the number of 
states of complex systems.  Therefore, it can be utilised 
further to gain a beneficial effect in verification of large 
systems, and even infinite systems.  

 
ACKNOWLEDGEMENTS 
This work was initially based on work of John Derrick, 
Siobhan North and Anthony Simons on their Z2SAL. 
Furthermore, last summer, this work has been extended to 
take into account other significant fields of interest offered 
by Graeme Smith and Kirsten Winter on their Abstraction 
paper. This study has been supported financially by 
ISIHEMORA the Republic of Indonesia. 
 

REFERENCES 
1. Derrick, J., North, S., and Simons, A.J.H. Formal Asp. Comput. 

Z2SAL: a Translation-based Model Checker for Z. 2011;23(1):43-
71.  

2. Derrick, J., North, S., and Simons, A.J.H. Issues in Implementing 
a Mode Checker for Z. In: Liu, Z. and He, J. ICFEM. Berlin 
Heidelberg: Springer-Verlag;  2006. p. 678-696. 

3. Smith, G., and Winter, K. Proving Temporal Properties of Z 
Specifications Using Abstraction. In: Bert, D., et al. ZB. Berlin 
Heidelberg: Springer-Verlag; 2003. p. 260-279. 

4. Clarke, E.M., Grumberg, O., and Peled, D. Model Checking. USA: 
MIT Press; 2001. 

5. Clarke, E.M., Gupta, A., and Strichman, O. SAT-based 
counterexample-guided Abstraction Refinement. IEEE Trans. 
on CAD of Integrated Circuits and Systems. 2004;23:1113-1123. 

6. Clarke, E.M., et al. SAT Based Abstraction-Refinement Using ILP 
and Machine Learning Techniques. In: Brinksma, D., and Larsen, 
K.G. CAV. Berlin Heidelberg: Springer-Verlag; 2002. p. 265-279. 

7. Clarke, E.M., et al. Counterexample-guided Abstraction 
Refinement for Symbolic Model Checking. J. ACM. 
2003;50:752-794. 

8. Jackson, D. Abstract Model Checking of Infinite Specifications. 
In: Naftalin, M., Denvir, T., and Bertran, M. FME. Berlin 
Heidelberg: Springer-Verlag; 1994. p. 519-531. 

9. Graf, S., and Saidi, H. Construction of Abstract State Graphs 
with PVS. In: Grumberg, O. CAV. Berlin Heidelberg: Springer-
Verlag; 1997. p. 72-83. 

10. Clarke, E.M., et al. Counterexample-Guided Abstraction 
Refinement. In: Emerson, A.A., and Sistla, A.P. CAV. Berlin 
Heidelberg: Springer-Verlag; 2000. p. 154-169. 

  


