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Radioactive caesium (chiefly '3’Cs) is a major environmental pollutant. The mobility of Cs in temperate soils is
primarily controlled by sorption onto clay minerals, particularly the frayed edges of illite interlayers. This
paper investigates the adsorption of Cs to illite at the molecular scale, over both the short and long term.
Transmission electron microscopy (TEM) images showed that after initial absorption into the frayed edges, Cs
migrated into the illite interlayer becoming incorporated within the mineral structure. Caesium initially ex-
changed with hydrated Ca at the frayed edges, causing them to collapse. This process was irreversible as Cs

Ic(;eywords. held in the collapsed interlayers was not exchangeable with Ca. Over the long term Cs did not remain at the
TEM edge of the illite crystals, but diffused into the interlayers by exchange with K. Results from extended X-ray
Illite absorption fine structure spectroscopy (EXAFS) and density functional theory modelling confirmed that Cs was
DFT incorporated into the illite interlayer and revealed its bonding environment.

EXAFS

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The ubiquity of '*’Cs in nuclear waste means that it is one of the
most common radionuclides released into the environment by human
action. Once released, the relatively long half-life (t;,, 30 years) and
large dose rate of 13’Cs mean that it poses a potential long term radia-
tion risk. The nuclear accidents at Chernobyl, and more recently at
Fukushima, demonstrated this most acutely. In both these cases,
radiocaesium remains the key contributor to radioactive dose and
the reason for maintaining the exclusion zone (Jacob et al., 2009;
Kinoshita et al., 2011). Additionally '3’Cs is a common contaminant at
nuclear sites, such as Hanford and Sellafield, due to historic releases
(Chorover et al., 2008; Reeve and Eilbeck, 2009).

Caesium is highly soluble and is present in groundwater as the
monovalent Cs* cation under all conditions of Eh and pH. Due to this,
its concentration in solution (and thus its environmental mobility) is
primarily controlled by retention on the surfaces of soil minerals,
primarily through cation exchange (Sawhney, 1972; Cornell, 1993;
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Hird et al., 1996). Caesium does not readily adsorb onto iron oxide min-
erals (Todorovic et al., 1992; Wang et al., 2000) and it is therefore prin-
cipally adsorbed on clay mineral surfaces (especially in organic poor
soils) (Grutter et al., 1990; Shenber and Eriksson, 1993b; Chibowski
and Zygmunt, 2002). However, the sorption behaviour of Cs varies
greatly between the different clay minerals and the different exchange
sites on those clays. Caesium adsorption to clays occurs via several dif-
ferent mechanisms, including outer-sphere adsorption to planar sur-
faces, edge adsorption and intercalation into structural sites (Jacobs
and Tamura, 1960; Hird et al., 1996; Bradbury and Baeyens, 2000).
Here, and throughout this paper, outer-sphere adsorption is defined as
electrostatic bonding of a hydrated ion to a surface, inner-sphere ad-
sorption as direct bonding (electrostatic or covalent) of the dehydrated
ion to the surface reactive site and absorption as incorporation into the
clay structure (including within a collapsed interlayer). The dominant
adsorption process within a particular environment, is dependent on a
number of factors, including Cs concentration, clay structure and solu-
tion pH (Fuller et al., 2014). Multiple studies have shown that Cs is
preferentially removed from solution and retained on the surfaces of
soil minerals even when the total ionic-strength of other cations is
very high (Brouwer et al., 1983; Dyer et al., 2000; Chorover et al.,
2008). Studies from soils with varying mineralogy showed that this se-
lective adsorption and retention of Cs was occurring primarily on illite
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(K,Ca,Mg) (AlMg,Fe), (Si,Al)4 010 [(OH),,(H,0)] (Cremers et al., 1988).
The illite structure consists of 2:1 layers with two Si/Al tetrahedral
sheets and a central octahedral sheet (Si/Al/Fe/Mg) which are bound to-
gether by interlayer cations. Illite commonly has K in its interlayer site
which yields an overall basal spacing of 1.0 nm. However, other mono-
valent and divalent cations are able to exchange with the Kions and dis-
tort the structure. Most commonly illite weathers to vermiculite via the
exchange of Kions for Ca (Jackson et al., 1952). As Ca is strongly hydrat-
ed it retains its waters of hydration in the interlayer causing an expan-
sion of the illite basal spacing to 1.4 nm (Jackson et al., 1952; Jackson,
1968). This Ca weathering yields a partially expanded wedge zone be-
tween the hydrated and dehydrated interlayers, commonly called the
frayed edge (Nakao et al., 2008). These frayed edge sites have been
shown to selectively adsorb Cs, in preference to other monovalent and
divalent cations (Chorover et al., 2008; Nakao et al., 2008). It has also
been shown that once caesium is adsorbed into the frayed edge sites it
cannot be readily desorbed back to solution, making these sites ex-
tremely important in controlling the long term retention of Cs in the en-
vironment, and controlling its mobility (Comans et al., 1991; de Koning
and Comans, 2004). Frayed edges may also occur on other micaceous
clays (McKinley et al., 2004; Wampler et al., 2012), however Cs is not
as strongly held on these non-illitic frayed edges as it is in illite
(Ohnuki and Kozai, 2013). Poinssot et al. (1999) and Sawhney (1966)
showed that this sorption to the illite frayed edge sites was controlled
by kinetics, taking more than a year to reach sorption equilibrium. To
explain this Comans et al. (1991) and Comans and Hockley (1992) spec-
ulated that uptake occurs via a two stage adsorption process with both
rapid cation exchange onto frayed edge sites and a much slower mech-
anism, potentially involving the illite interlayer spaces. Caesium is
known to be able to absorb into the interlayer of expanding clays but
via different mechanisms. Specifically Cs is weakly adsorbed electrostat-
ically in outer-sphere complexes (through interstitial waters) in the hy-
drated interlayer of montmorillonite (Bostick et al., 2002; Ohnuki and
Kozai, 2013). It can also absorb into the interlayer space of vermiculite,
in inner-sphere complexes, potentially due to a collapse of the interlay-
er space, or the presence of a frayed edge (Bostick et al., 2002; Wampler
et al,, 2012). In addition to these interlayer sorption processes Cs is also
known to adsorb via simple cation exchange onto the permanent charge
sites on the clay basal plane. This process is not ion specific and is
strongly controlled by solution ionic strength (Fuller et al., 2014).
Although previous authors have offered a detailed description of
macro-scale Cs adsorption on illite; there is a significant gap in under-
standing the molecular-scale mechanisms governing these observa-
tions. However, significant advances have been made in recent years
on understanding the sorption of Cs to other closely related micaceous
minerals at the molecular scale. Most of this work has relied on High
Resolution Transmission Electron Microscopy (HRTEM). McKinley
et al. (2004) were the first to show the potential of TEM imaging to
identify the site of Cs adsorption in biotite and muscovite. They showed
that Cs accumulated around the edge of microscopic (many hundreds of
microns across) biotite crystals. They were also able to observe inclu-
sions of Cs deeper in the crystal, but attributed this to the presence of
frayed edges at intra-particle defects. They were not able to observe
any migration of Cs into the interlayer space, due to the short time
period of the experiments (Comans and Hockley, 1992). More recently,
work by Kogure et al. (2012), Okumura et al. (2014), and Tamura et al.
(2014) has successfully shown that Cs is able to penetrate deep into the
hydrated interlayer of both vermiculite and phlogopite. Specifically,
Kogure et al. (2012) directly observed that Cs was incorporated into
the vermiculite interlayer via exchange with hydrated Mg ions.
Tamura et al. (2014) observed this same process occurring on a Mg
altered phlogopite. Interestingly they noted that Cs would not readily
exchange for the dehydrated K in interlayer spaces of natural (unal-
tered) phlogopite. They suggested that this process may be kinetically
hindered (as previously suggested by Comans and Hockley (1992))
and that the equilibrium times within their experiments were not

long enough. Okumura et al. (2014) recently presented direct observa-
tion of Cs exchange for K-phlogopite interlayer spaces. They observed
that Cs did not uniformly exchange all interlayers but favoured some
over others. They suggested that this may be due to inhomogeneity
within the clay structure, and stressed the importance of determining
if this process occurred in other micaceous clays (with a different 2:1
layer structure). Therefore, although significant advances have been
made in recent years in understanding Cs incorporation into mica; it re-
mains an unanswered question whether these same processes are con-
trolling the long term sorption and retention of Cs in illite. This is
particularly important as Cs is adsorbed and retained by illite in prefer-
ence to other ions (Poinssot et al., 1999; Steefel et al., 2003) and so long
term Cs behaviour at many contaminated sites (such as Sellafield in the
UK) is known to be controlled primarily by illite (Randall et al., 2004;
Dutton et al., 2009).

This paper has two key aims. Firstly, to directly characterise the na-
ture of the illite frayed edge and determine the mechanism of Cs adsorp-
tion therein. Secondly, to understand the migration of Cs deeper into the
illite interlayer space. This work is driven by the hypothesis that the
same interlayer incorporation mechanism observed in other micaceous
clays occurs in illite. However, it has been shown that Cs takes a long
time to reach equilibrium with the illite interlayer, likely due to stronger
interlayer forces in illite than in previously studied clays. Therefore to
ensure that sufficient concentrations of Cs were taken into the illite
structure the experiments in this study were performed for long time
periods (up to 1 year) and with a high Cs concentration (to increase
the kinetic driving force, consistent with other authors (Kogure et al.,
2012; Okumura et al., 2014; Tamura et al.,, 2014)). Previous microscopy
studies have focused simply on the end point of Cs incorporation. How-
ever, this paper addresses the entire sorption process, from initial sorp-
tion on the frayed edge to its long term fate therein. This atomic-scale
mechanistic understanding was achieved by utilising aberration
corrected (scanning) transmission electron microscopy ((S)TEM), ener-
gy dispersive X-ray spectroscopy (EDX) and extended X-ray absorption
fine structure spectroscopy (EXAFS), coupled with density functional
theory (DFT) modelling.

2. Materials and methods
2.1. Materials

All the experiments described in this paper were conducted using
llite IMT-1, (Mgo.00 Cao.os K1.37) [Ala.s9 Fe(1ll)o.76 Fe(1l)o.0s Mntr
Mg0,43 Tio,ogl [Si6.77 A11,231020(OH)4 (HOWer and Mowatt, ]966) pur-
chased from the Clay Minerals Society Source Clay Repository. This is
a well characterised reference mineral from the Silver Hills, Montana,
USA. To maximise the available surface area and create fresh un-
frayed edges, the sample was finely crushed to <63 pm with a pestle
and mortar and the particle size was verified by sieving. A 0.1 g sub-
sample of the crushed illite was then weathered by suspension in a
0.1 mol L= CaCl solution for one week, shaken daily. The remaining
material was utilised without any chemical treatment.

Experiments were conducted with analytical grade reagents
(or above) obtained from Fischer Scientific. Specifically, the CsCl was
obtained as a dehydrated powder with 99.999% purity. The CaCl was ob-
tained as CaCl,-2H,0 powder with purity of >99.0%. The chemicals
were used as received.

2.2. Batch sorption

Two distinct experimental systems were established, a system to
test the short term adsorption/desorption of Cs on the Ca-weathered
illite and a long term system to investigate the incorporation of Cs into
the un-weathered K-interlayer.

To investigate the sorption of Cs onto the frayed edge sites the 0.1 g
sample of the Ca-weathered illite was suspended in 1.0 mol L™' CsCl at
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a solid:solution ratio of 1:50 in 10 mL polypropylene centrifuge tubes.
The illite was exposed to the CsCl solution for one month and shaken
daily. At the end of this period the tubes were centrifuged at 6000 g
for 10 min to achieve solid-solution separation. The solution was then
decanted and the illite washed 3 times with deionised water (DIW) to
remove any excess salts. Half of the illite was then decanted and dried
at 40 °C. The remaining material was retained to investigate Cs desorp-
tion. Desorption was performed by subjecting the Cs-illite to the same
Ca weathering procedure as the natural K-illite. Specifically the illite
was suspended in the 0.1 mol L~ ! CaCl solution for 1 week and shaken
daily before being sampled as previously described.

For the long term experiments 0.1 g samples of the crushed, un-
weathered illite were suspended in a 1 mol L= CsCl solution at a
solid solution ratio of 1:50 in 10 mL polypropylene centrifuge tubes.
The samples were then shaken weekly. Individual tubes were destruc-
tively sampled at 4, 7 and 12 months. The tubes were centrifuged at
6000 g for 10 min to achieve solid-solution separation. The solution
was then decanted and for samples exposed to Cs the illite was washed
in 0.1 mol L™ ! NaCl to remove any outer-sphere sorbed Cs on the basal
plane sites and ensure only Cs specifically adsorbed into the interlayer
remained. Additionally the sample was then washed 3 times with
DIW to remove excess salts. The washed illite was then oven dried over-
night at 40 °C before being prepared for the TEM.

2.3. (S)TEM imaging

For (S)TEM imaging a subsample of the illite was dispersed on a
carbon-coated copper grid. A representative subsample was suspended
in isopropyl alcohol and sonicated for around 5 min. A few drops of the
suspension were then transferred onto the grid using a glass Pasteur pi-
pette. This gave homogenous coverage of the grid with crystallites pres-
ent at many different orientations. Bright field TEM imaging and spot
EDX analyses of the Ca/Cs-illite system were performed using a Tecnai
TF20 FEGTEM with an operating voltage of 200 keV and at room tem-
perature (293 K). Ultra-high resolution bright and dark field STEM im-
ages and EDX maps were obtained using a FEI Titan G2 S/TEM at room
temperature and with an operating voltage of 200 keV, with a beam
current of 0.1 nA, a convergence angle of 18 mrad and a HAADF inner
angle of 54 mrad. Illite is strongly affected by beam damage in the
TEM (see SI) therefore all structural images were collected within 60 s
of exposure. This rapid beam damage limited the maximum achievable
magnification and resolution, and also precluded any repositioning of
the samples during high resolution imaging.

2.4. TEM image and EDX analysis

The image processing for this work was performed using Gatan
DigitalMicograph. To determine the change in illite basal spacing associ-
ated with Cs interlayer incorporation, measurements were taken of the
basal spacing of both dark (assumed K filled) and bright (assumed Cs
filled) interlayers. These basal spacing measurements were acquired
in the following manner. Cross sections were taken from the HAADF im-
ages and yielded phase contrast histograms. In these histograms peaks
and troughs represented the aluminosilicate 2:1 layers and interlayer
spaces of the illite structure (see example in SI Fig. S1). The peak to
peak or trough to trough distance between multiple peaks/troughs
was measured and from this an average peak distance was determined.
The average distance between the peaks then correlates to the average
basal spacing in that transect. This process was repeated many times for
both regions with both dark and bright interlayers (number of mea-
sured K/Cs interlayers, n, shown in Fig. 2). This gave a range of values
for which a mean, mode and standard deviation were determined.
Difference between the average (mean and modal) basal spacing of
both the K-layers and the Cs-layers was then determined. A Mann
Whitney U test was also performed to determine the statistical validity
of this difference.

The high concentration of the background electrolyte precluded
analysis of changes in the solution chemistry (e.g. decreasing Cs concen-
tration due to sorption). Therefore changes in chemical composition of
the clays were determined directly by energy dispersive X-ray spectros-
copy (EDX). The EDX data from the DIW control and Ca/Cs system was
processed using INCA. For the long term system EDX maps of the differ-
ent elements were analysed using Bruker ESPRIT software. Background
subtracted EDX spectra for entire mapped particle were then extracted
from the elemental maps. The atomic percentage of the different ele-
ments within the particle were then determined via a standardless
Cliff-Lorimer analysis.

2.5. Density functional theory calculations

Density functional theory calculations were performed using the
projector-augmented-wave implementation (Blochl, 1994; Kresse and
Joubert, 1999) of the VASP code (Kresse and Furthmiiller, 1996a,
1996b). The illite models comprised 83 atoms, with the chemical com-
position: (Ms)[Als Fe(Ill); Mg][Si14 Al2]040(OH)g, (where M = K or
Cs), in order to match the sample used in the experiments as well as
possible. Isomorphic substitutions in the tetrahedral sheet were placed
far apart, in line with the observations of Militzer et al. (2011). Changing
the arrangement of isomorphic substitution caused variations in basal
spacing of about 0.01 A.

The models were optimized with a kinetic energy cut-off for the
plane-wave expansion of 800 eV and Brillouin-zone sampling restricted
to the I'-point. These settings ensured that calculated basal spacings
were converged to within about 0.01 A. The potentials were generated
using the electronic configurations: 2p®3s? for magnesium, 3d’4s" for
iron, 5s25p®6s' for caesium, 3s>3p’ for aluminium, 1s' for hydrogen,
3s%3p? for silicon, and 2s?2p* for oxygen. The calculations were spin
polarised with iron modelled in a high-spin state. All calculations were
performed using both the local density approximation (LDA) (Perdew
and Zunger, 1981) and PBE formulation of the generalised gradient
approximation (GGA) (Perdew et al., 1996).

2.6. EXAFS

Cs K-edge (35,985 keV) spectra were gathered on beamline B18 at
the Diamond Light Source, Didcot, UK. During data collection the sample
was held in an Oxford Instruments cryostat at 80 K to enhance data
quality and reduce the chance of radiation damage. Cs K-edge spectra
were then gathered in fluorescence mode using a 9 element Ge
solid state detector. To improve the signal to noise ratio a total of 144
5-minute scans were gathered and averaged using Athena (Ravel and
Newville, 2005). The default background subtraction provided by Athe-
na was accepted and this final data was used for fitting.

The EXAFS data was analysed using Artemis (Ravel and Newville,
2005) running Feff6.0 (Rehr and Albers, 2000). The initial model used
was constructed using data from the density functional theory (DFT)
calculations.

3. Results and discussion
3.1. Formation of and Cs absorption into the frayed edge sites

Initially a series of experiments were performed to investigate the
formation of the frayed edge sites and the absorption of Cs therein.
Fig. 1 shows bright field TEM micrographs of the illite material
(a) prior to any chemical treatment (b) after suspension in 1 mol L™}
CaCl (c) after suspension of the CaCl weathered illite in 1 mol L~" CsCl
and finally (d) after suspension of the Cs-illite in CaCl. In the original
material all the imaged crystals were found to have a constant 1.0 nm
basal spacing (i.e. 2:1 layer + interlayer space) along their full length
(Fig. 1a) confirming that the material was unweathered and no frayed
edge sites were present. This structure remained stable when immersed
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Fig. 1. Expansion and collapse of the illite interlayer. (a) The initial illite material shows a
stable 1.0 nm basal spacing. (b) The edges of the illite expand to 1.4 nm upon sorption of
Ca. (c) Exchange of the edge sorbed Ca for Cs causes a dehydration and re-collapse of the
interlayer (d) Cs held in this collapsed interlayer was not exchanged by Ca and the struc-
ture did not re-expand.

in deionised water for 4 months and there was no detectable reduction
in K concentration (SI section S2 and Figs. S2 and S3). However, when
the illite was suspended in CaCl the edges of the crystals expanded,
giving a basal spacing of 1.4 nm (Fig. 1b). EDX confirmed that there
was Ca present in these expanded edge regions and that they were de-
ficient in K, relative to the original material (SI Fig. S4b). This frayed
edge region extended up to 5 nm into the interlayer. Fig. 1a and b
shows the well documented mechanism of illite weathering which lib-
erates the interlayer K ions (Jackson and During, 1979; Sparks and
Huang, 1985; Moritsuka et al., 2004) and causes the formation of the
frayed edge sites. The 1.4 nm spacing is only possible if the Ca remains
in hydrated outer-sphere complexes, where it is easily exchanged
(Comans et al.,, 1991; Nakao et al., 2008). Therefore the frayed edges
are more hydrated than the stable K-illite interlayers.

Once the illite had been successfully weathered with Ca and ‘frayed
edges’ formed it was possible to investigate the absorption of Cs into the
‘frayed edge’. Fig. 1c shows that after suspension of the Ca-illite in Cs for
one month the edges had recollapsed from 1.4 nm to 1.0 nm. After this
treatment no Ca was detected in the edges by EDX (SI Fig. S4c). Instead,
a small concentration of Cs was detected in the structure. Therefore it
can be asserted that the Cs was absorbed into the frayed edge site via
cation exchange with the Ca ions. This exchange caused the edges to
collapse back down to 1.0 nm. This likely occurred due to dehydration
of the interlayer space as Cs is less strongly hydrated than Ca (Rosso
et al,, 2001). This mechanism of expansion and collapse has been pro-
posed for many decades in both the radiochemistry and mineral
weathering literature (Jackson et al., 1952; Sawhney, 1967; Benedicto
etal., 2014). In this current work this process is observed to be occurring
with Cs in illite. To investigate the reversibility of this Cs absorption, the
samples were resuspended in a Ca solution to attempt to re-expand the
Cs-interlayers with Ca. However this appeared to be unsuccessful. No Ca
sorption was detected in EDX chemical analysis (SI Fig. S4d) and Fig. 1d
shows that the structure remained unexpanded at 1.0 nm. This un-
expandable nature of the Cs-interlayer was proposed by de Koning
and Comans (2004) as a likely explanation for irreversibility of Cs ab-
sorption into illite. This lack of Cs desorption from illite has been widely

observed (Shenber and Eriksson, 1993a; Bellenger and Staunton, 2008;
Gil-Garcia et al., 2008) and attributed to specific retention in the frayed
edges (Willms et al., 2004). The new results presented here confirmed
this lack of re-expansion of the collapsed frayed edges and offer an ex-
planation for the irreversibility of Cs absorption, even after short contact
periods, consistent with de Koning and Comans (2004).

3.2. Long term Cs interlayer incorporation

Beyond the short term absorption of Cs to expanded Ca-interlayers
it is important to understand the long term fate of Cs in the collapsed
K-interlayer region. Cs absorption can take over a year to reach equilib-
rium (Sawhney, 1966; Comans et al., 1991; Comans and Hockley, 1992;
Konoplev et al., 1996; Poinssot et al., 1999) so it was crucial to study the
progress of illite incorporation over this timescale. Fig. 2 presents High
Angle Annular Dark Field (HAADF) STEM micrographs of illite viewed
along the clay layers at different stages during the process of Cs absorp-
tion. Assuming uniform thickness, the intensity of the HAADF image is
proportional to the square of the mean atomic number; allowing layers
with different compositions within the clay structure to be identified.
Specifically in the natural illite starting material (Fig. 2a) EDX analysis
(SI Fig. S5a) confirmed that the structure consisted dominantly of Si
(Z=14),Al (Z=13) and O (Z = 8) atoms in the 2:1 layers and K
(Z = 19) in the interlayer. However, the 2:1 layers appear brighter
than the interlayer due to significant Fe (Z = 26) substitution in the oc-
tahedral sheet. In contrast, HAADF images of the samples exposed to Cs
for 4 or 7 months showed interlayer spaces that varied in intensity, even
within a single crystal (Fig. 2b and c). In these samples a number of the
interlayers were brighter than the 2:1 layers (Fig. 2b). Additionally in
some of the illite crystallites a single interlayer was partially brighter
than the 2:1 layer and partially darker (Fig. 2c). The brightness in
these interlayers indicates that the mean atomic number (Z) is greater
than either the 2:1 layers or the darker interlayers. Caesium (Z = 55)
will give higher intensity than either K (Z = 19) or the Fe (Z = 26) in
the 2:1 layers in a HAADF image, suggesting that these bright interlayers
contain Cs. The presence of Cs in both of these samples was also con-
firmed by EDX (SI Fig. S5b). This phenomenon of heterogeneous inter-
layer filling was also observed by Okumura et al. (2014) for Cs
incorporation into phlogopite. The reason for this heterogeneous distri-
bution of Cs between interlayers is unclear but may be due to variation
in layer charge on the aluminosilicate 2:1 layers leading to a difference
in Cs/K exchange rates. Once exchange has begun the interlayer pro-
vides a fast diffusion path, meaning it is then possible for the Cs ions
to diffuse into and exchange the whole interlayer space to attain the en-
ergetically more favourable Cs substituted structure (Rosso et al., 2001).
Alternatively, Cs may be absorbed into vacant interlayer sites (rather
than exchanged with K) that are present in these interlayer spaces,
but not in others. By 12 months the majority of the interlayers in the im-
aged sample appear to be bright, consistent with them being Cs filled
(Fig. 2d). An EDX analysis of the 12 month sample also showed signifi-
cant concentrations of Cs in the structure (SI Fig, S5d and Table S1).

In addition to the phase contrast and EDX evidence for the incorpo-
ration of Cs into the interlayer space the effect of changing interlayer
cation on the mineral structure was also examined. To determine this
change, a large number of unit layers (2:1 layer and interlayer space),
with both dark (n = 180) and bright (n = 31) interlayers, were mea-
sured. Fig. 2e shows the range and frequency of measured basal spac-
ings. From these results it was determined that the basal spacing of
those regions with brighter interlayers was on average 0.07 nm larger
than the less bright interlayers (Fig. 2e), showing a significant expan-
sion (Mann Whitney U; p < 0.001). Density functional theory modelling
was then used to determine if these basal spacings, and the associated
change, were caused by the exchange of K for Cs in the interlayer site.
A density function theory model was constructed with either K or Cs
in the interlayer site. The modelling was performed using both the
local density approximation (LDA) and the generalised gradient
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Fig. 2. HAADF images of Cs interlayer incorporation. (a) Starting illite shows planes with uniform brightness and a constant basal spacing of 1.00 nm suggesting that the material has a
constant composition throughout the structure. (b) After 4 months and (c) 7 months Cs exposure some of the illite interlayer spaces are brighter than others, indicating local interlayer
regions with a higher atomic number. (d) In illite exposed to Cs for 12 months all of the interlayers are again of uniform intensity but now with an expanded basal spacing of 1.07 nm
suggesting that all interlayers are Cs filled. (e) The basal spacing measured from the dark K interlayers (black bars) and bright Cs interlayers (white bars) n, number of measured interlayers

across all samples (used to determine means).

approximation (GGA). The resulting lattice parameters are shown in the
SI (Table S2). The basal spacings predicted using the LDA and GGA differ
by about 0.05 nm. This is in accordance with the well-known fact that
the LDA underestimates lattice parameters, while the GGA overesti-
mates them. The average measured basal spacing for the K- and Cs-
illite from the experimental samples was between the two model pre-
dictions. Specifically for the K-illite the LDA model gave a basal spacing
0f 0.97 nm, GGA gave 1.03 nm and the measured result was on average
1.00 nm. For Cs-illite, LDA gave 1.04 nm and GGA gave 1.09 nm where

the average measured spacing was 1.08 nm. Additionally, close agree-
ment was found between the modelled changes in basal spacing,
when going from K to Cs, being 0.064 nm with the LDA approximation
and 0.071 for GGA. This was also consistent with the measured change
in basal spacing of 0.07 nm. Therefore, density functional theory model-
ling and direct measurements strongly support the conclusion that the
bright interlayer spaces in the HAADF images are due to Cs absorption
into the illite structure. This change in layer-spacing has been previously
proposed to occur when Cs incorporates into aluminosilicates (Kogure
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Fig. 3. Structural coordination of Cs in the illite interlayer (a) k-space EXAFS spectra and Fourier transform of the EXAFS (solid line) with the refined fit (dotted lines) for 12 oxygen atoms at
3.0-3.3 A and 12 silicon atoms at 4.0 A. (b) Crystallographic model of the Cs substituted illite determined by DFT calculations. Atoms and interatomic distances used to fit the EXAFS data
are annotated.



AJ. Fuller et al. / Applied Clay Science 108 (2015) 128-134 133

et al,, 2012; Tamura et al., 2014), further supporting the validity of the
measurements presented here.

Extended X-ray absorption fine structure spectroscopy (EXAFS) was
used to determine the nature of the bonding environment for Cs incor-
porated into the illite interlayer space. Fig. 3a shows the EXAFS data and
calculated fit (dotted line). The fit to the EXAFS data was based on the Cs
local environment determined from DFT calculations for Cs-filled illite,
shown in Fig. 3b (SI Table S2). From the DFT it was determined that
the Cs should be coordinated by 12 oxygen atoms at 3.0-3.4 A and 12
silicon atoms at 4.0 A (coordinating atoms and interatomic distances
shown in Fig. 3b). For the EXAFS fit similar length paths were grouped
together, such that the initial model of O neighbours used was 2 at
3.04 A, 4 at 3.12 A and 6 at 3.40 A with 12 Si atoms at 3.94 A
(Table 1). Differentiating between Si and Al in EXAFS is difficult;
hence this last shell accounts for the signal due to both Si and Al scat-
terers. The inter-atomic distance and Debye-Waller factor for each
shell, EO and S were refined in R-space using a range of 1.9-3.9 A in
R-space, keeping the number of atoms in each shell constant. To reduce
the number of variables the Debye-Waller factors for the first two O
shells were fixed to be the same value. The fit was made to the k, k?
and k3-weighted Fourier transforms using a range 2.5-11 A~ ! in k-
space simultaneously. Once the best fit had been achieved each shell
was removed in turn to check its significance. No reasonable fit could
be achieved with only 3 shells of atoms. The Debye-Waller factors for
the third O shell and the Si-Al shell are somewhat large, because they
represent the average of individual scattering paths covering a wide
spread of distances (ca 0.25 and 0.14 A respectively).

This refined EXAFS fit yielded parameters which matched the dis-
tances and coordination numbers determined by the DFT model (within
error) (Table 1). Therefore it can be asserted that after 12 months, ~90%
of the Cs in the sample is present in the illite interlayer, consistent with
the HAADF STEM imaging. Previous EXAFS studies of Cs adsorption to
various clays offered quite different spectra and coordination environ-
ments for Cs, as they failed to get interlayer incorporation (Bostick
et al., 2002) or had a signal dominated by outer-sphere complexes
(Nakano et al., 2003; Fan et al., 2014). The high loadings and long expo-
sure times used in this study yielded a high enough concentration of Cs
in the interlayer space to fully resolve its coordination environment,
when held in inner-sphere complexes.

Table 1

Artemis model fitting parameters for Cs K-edge EXAFS: n, site occupancy; r, inter-
atomic bond distance; 0?, Debye-Waller factor. Reduced Chi squared for this fit = 116,
R-Factor = 0.020 S3 = 1.05,Eo = 6.4 eV.

Shell n r(A) o?

0 2 3.00 (+0.03) 0.0062 (+0.04)
) 4 316 (+0.02) 0.0062 (+0.04)
0 6 334 (+0.03) 0.0131 (+0.04)
si/Al 12 3.99 (+0.03) 0.0320 (+0.04)

EDX maps were gathered to further confirm that Cs was incorporat-
ed into the illite structure, rather than being sorbed to the basal plane.
Fig. 4 shows a HAADF image and accompanying EDX maps looking
down onto two illite crystals (i.e. perpendicular to the layers). The
maps clearly show that both Cs and K are homogenously distributed
throughout the crystals at the length scale imaged. There is no evidence
for any enhancement in Cs concentration at the edge, with Cs detected
up to ~100 nm from the edge of the crystal. In EDX maps signal intensity
is related to atomic abundance and sample thickness (Fitting et al.,
1977). Normalisation of the EDX spectra from the two crystals shown
reveals that they have an identical Cs/K ratio (Fig. 4f). Therefore, the dif-
ference in HAADF intensity observed is ascribed to thickness effects. The
Cs signal varies with thickness proportionally to the other elements (SI
Fig. S6) suggesting that the Cs must be within the interlayer space, as Cs
present solely on the surface would have an EDX intensity unrelated to
crystal thickness.
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Fig. 4. EDX maps of the 12 month sample. a, HAADF image of planar surface of one thicker
(brighter) and one thinner (darker) illite crystal. b, EDX map of the Al signal, stronger sig-
nal from the lower crystal is due to its greater thickness. ¢, Si EDX map. d, KEDX map. e, Cs
EDX map. f, Normalised (on Si) EDX spectra from the two labelled cystals showing the
presence of both K and Cs in the structure (full spectra SI Fig. S5).

4. Conclusions

Overall, it has been shown that Cs can initially absorb to and become
irreversibly trapped in illite interlayers due to collapse of the frayed
edge sites. Therefore it can be robustly concluded that Cs held in these
specific frayed edge sites will not be bio-available or mobile (in solution)
in contaminated environments. Over the longer term Cs was observed to
diffuse from the edges into the interior interlayer space. Although the ex-
periments in this study were conducted at artificially high concentrations
(to accelerate the kinetics) it is possible that these same mechanisms may
operate at environmental levels, but over a much longer time period. This
would explain the continuing long-term increases in Cs uptake to illite
observed in previous experiments (Comans and Hockley, 1992). There-
fore this interlayer incorporation is the likely long term sink for Cs in
contaminated soils. Additionally, as Cs cannot be easily remobilised
from this interlayer space, any effective remediation measures must ei-
ther separate or degrade the illite clay fraction. This must be accounted
for when considering any potential strategies for management and po-
tential remediation of sites contaminated with radiocaesium.
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