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Purpose: In our previous paper we undertook proteomic analysis of the normal developing chick retina to identify proteins
that were differentially expressed during retinal development. In the present paper we use the same proteomic approach
to analyze the development and onset of degeneration in the retinal dysplasia and degeneration (rdd) chick. The pathology
displayed by the rdd chick resembles that observed in some of the more severe forms of human retinitis pigmentosa.
Methods: Two-dimensional gel electrophoresis (pH 4–7), gel image analysis, and mass spectrometry were used to profile
the developing and degenerating retina of the rdd and wild-type (wt) chick retina.
Results: Several proteins were identified by mass spectrometry that displayed differential expression between normal and
rdd retina between embryonic day 12 (E12) and post-hatch day 1 (P1). Secernin 1 displayed the most significant variation
in expression between rdd and wt retina; this may be due to differential phosphorylation in the rdd retina. Secernin 1 has
dipeptidase activity and has been demonstrated to play a role in exocytosis; it has been shown to be overexpressed in
certain types of cancer and has also been suggested as a potential neurotoxicologically relevant target. Its role in the retina
and in particular its differential expression in the degenerate rdd retina remains unknown and will require further
investigation. Other proteins that were differentially expressed in the rdd retina included valosin-containing protein, β-
synuclein, stathmin 1, nucleoside diphosphate kinase, histidine triad nucleotide-binding protein, and 40S ribosomal protein
S12. These proteins are reported to be involved in several cellular processes, including the ubiquitin proteasome pathway,
neuroprotection, metastatic suppression, transcriptional and translational regulation, and regulation of microtubule
dynamics.
Conclusions: This proteomic study is the first such investigation of the rdd retina and represents a unique data set that
has revealed several proteins that are differentially expressed during retinal degeneration in the rdd chick. Secernin 1
showed the most significant differences in expression during this degeneration period. Further investigation of the proteins
identified may provide insight into the complex events underlying retinal degeneration in this animal model.

Retinitis pigmentosa (RP) is a major cause of blindness
affecting approximately one in every 4,000 individuals [1].
RP constitutes a group of genetically heterogeneous
hereditary retinal diseases characterized by degeneration of
the rod photoreceptors leading to a loss of peripheral vision.
This event has a subsequent effect on the viability of the
remaining cone cell population, and these cells may also
become progressively depleted [2,3].

Even though the apparent genetic causes of many forms
of RP have been elucidated, the underlying mechanisms by
which most of these mutations manifest themselves remain
elusive. This therefore warrants analysis of the disease
mechanisms at the level of the effector molecules, proteins.
Consequently, knowledge of protein expression and
posttranslational modification at the outset of disease will
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enable a better understanding of the causal pathology, and this
knowledge may enable earlier diagnosis and direct the
development of new therapeutics [4].

Investigation of human retinal degeneration is often
hampered from the slow progression of the disease and the
significant difficulties in obtaining tissues that characterize
the true progression of the disease process. Given these
difficulties animal models of human retinal pathologies have
been central to the study of retinogenesis and subsequent
degeneration. Animal models offer the possibility to study
pathology in vivo; this has provided new insights into human
diseases that can be used to direct diagnosis and treatment. In
particular, the chick visual system has long been recognized
as one of the most valuable tools to study neural development
and more recently, retinal pathologies. Several studies have
already been undertaken examining the normal retinal
proteome in the chicken [5–7].

The completion of the chicken genome sequencing
project identified one billion base pairs of DNA (about one-
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third as many as humans) and 20,000–30,000 genes (similar
to the human genome) [8]. The conservation of gene order
between chicken and human is similar to that between human
and mouse, in spite of the much greater evolutionary
separation [9]. It is therefore possible to predict both candidate
disease loci and candidate genes by comparison with the
human genome [10]. Chicken models of retinal dystrophy
include: retinal degeneration (rd), a model for one form of
Leber congenital amaurosis [11–14], blindness enlarged
globe [14], retinopathy globe enlarged [10], a delayed
amelanotic strain of chicken [15,16], and retinal dysplasia and
degeneration (rdd) [17,18].

The rdd chicken was first detected in 1979 by Randall
and McLachlan [18]; affected birds exhibited limited vision
at hatching and were less active than sighted birds.
Histological analysis revealed abnormalities in the retina
extending from the retinal pigmented epithelium (RPE)
through to the inner nuclear layer (INL). Photoreceptor
degeneration became obvious around embryonic day 16 (E16)
with subsequent progressive photoreceptor loss; at 5 weeks
post hatch, their numbers were greatly diminished and the INL
was significantly depleted. By sexual maturity at 15 weeks,
most birds were blind, and by 6 months there was no response
to visual stimuli [17,19]. The pathology displayed by the
rdd chick resembles that observed in some of the more severe
forms of human RP. Genetic analysis of the rdd chicken has
revealed a null mutation in the Mpdz/Mupp1 gene (data not
shown). In human, Mpdz/Mupp1 is known to interact with
CRB1, mutations in which cause recessively inherited human
RP and Leber congenital amaurosis (LCA) [20,21]. This
animal model may therefore offer valuable insights into the
pathogenesis of RP, and the potential involvement of MPDZ
mutations in human inherited retinal disease is currently being
investigated.

Normal retinal development is characterized by a wave
of neurogenesis and synaptogenesis initiating in the central
retina, with a lag as it migrates to the peripheral retina. The
specific ages that were chosen for this study permitted us to
examine rdd retina during the early phase of degeneration, a
period that corresponds to the major phases of neurogenesis
and synaptogenesis in the wt retina. Histology, two-
dimensional gel profiling, image analysis, and mass
spectrometry (MS) were used to characterize the retinal
architecture and to detect protein expression changes
underlying retinal development and degeneration in rdd
versus wt chick.

METHODS
Whole eye and retinal tissue collection: White leghorn
chickens (Gallus gallus domesticus; Roslin Institute,
Edinburgh, UK), fertilized white leghorn eggs, rdd chickens,
and fertilized rdd eggs (Roslin Institute) were maintained by
standard feeding and husbandry procedures under a Home
Office License. E12 and E13 chicks were killed by chilling in

−80 °C for 15 min; E17 and E19 chicks were killed by
decapitation; and post-hatch day 1 (P1) chicks were killed by
cervical dislocation. The eyes were dissected and retinas for
proteomic analysis were carefully peeled free of RPE. Retinas
were washed in chilled PBS (137 mM NaCl, 2.7 mM KCl,
4.3 mM Na2HPO4, 1.47 mM KH2PO4, pH 7.4) to remove any
extraneous RPE, snap frozen in liquid nitrogen within 10 min
of death, and subsequently stored at −80 °C. All animal
procedures were performed in compliance with the UK
Animals (Scientific Procedures) Act 1986.
Histology: Resected eyes were perforated and immersion
fixed in buffered 4% (w/v) paraformaldehyde (4 h, 4 °C;
Sigma-Aldrich, Poole, UK), dehydrated sequentially in 70%
(v/v; 2×30 min), 95% (v/v; 2x30 min), 100% (2×30 min)
industrial grade methylated spirits followed by immersion in
100% ethanol (2×30 min) and 100% xylene (2×30 min to
render the tissue miscible with wax impregnation, embedded,
and microtome sectioned (5 μm). Retinal sections were
stained with hematoxylin and eosin.
Retinal protein extraction and 2 dimensional gel
electrophoresis (2DE): A total of three wt and rdd chicks were
analyzed at E12, E13, E17, E19, and P1. The retinas from each
chick were pooled, and retinal protein was collected and
processed as previously described [5]. The retinal proteins
were analyzed using two-dimensional PAGE (2D PAGE), as
previously described [5]. Briefly, retinal tissues were ground
to a powder in liquid nitrogen, and protein was extracted in
40 mM ammonium bicarbonate buffer to which dithiothreitol
(DTT; Melford Labs, Suffolk, UK) was added (approximately
5:1 [w/v]). The sample was sonicated (15 min, 4 °C), extracted
for 1 h on ice with vortexing, dialyzed (24 h, 4 °C) using Slide-
A-Lyzer® dialysis cassettes (3,500 molecular-weight cutoff;
Pierce, Leicestershire, UK), lyophilized, and reconstituted in
lysis solution (7 M urea, 2 M thiourea, 2% 3-[(3-
Cholamidopropyl)dimethylammonio]-1-propanesulfonate
[CHAPS], 20mM DTT, 0.5% immobilized pH gradient [IPG]
buffer, pH 4–7). Protein quantification was performed using
a PlusOne 2-D Quant Kit (Amersham Biosciences,
Buckinghamshire, UK). Retinal protein extract (1 mg) was
diluted to generate a final volume of 400 µl with rehydration
buffer (7 M urea, 2 M thiourea, 2% CHAPS, 80 mM DTT,
0.5% IPG buffer containing 3′, 3′’, 5′, 5′’
tetrabromophenolsulfonephthalein (bromophenol blue;
Sigma-Aldrich) and added to 18-cm pH 4–7 IPG strips
(Amersham Biosciences). Following rehydration (18 h, room
temp), isoelectric focusing (IEF) was performed using a
Multiphor II system (20 °C) with a MultiTemp III circulator
and an EPS 3501 XL power supply (200 V for 1 V hour [Vh],
3,500 V for 3,000 Vh, and held at 35,000 V for 52,000 Vh;
Amersham Biosciences).

IPG strips were equilibrated for 15 min in 10 ml
equilibration buffer (50 mM Tris-Cl, pH 8.8, 6 M urea, 30%
[v/v] glycerol, 2% [w/v] sodium dodecyl sulfate [SDS],
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bromophenol blue) containing 100 mg DTT. Following this,
the IPG strips were added to 10 ml of fresh equilibration buffer
containing 250 mg iodoacetamide (Sigma-Aldrich) for a
further 15 min. SDS–PAGE was performed using an
EttanTM DALTsix vertical system (Amersham Biosciences)
with a MultiTemp™ III thermostatic circulator (25 °C;
Amersham Biosciences). Proteins were resolved by 2D PAGE
under 600 V, 400 mA for 30 min; followed by 600 V, 400 mA,
17 W/gel for 4 h. Gels were then fixed, stained with
Coomassie brilliant blue G-colloidal (Sigma-Aldrich), and
destained using standard procedures. Gels were stored in 25%
(v/v) ammonium sulfate (BDH Laboratories, Leicestershire,
UK) solution at 4 °C.
Image analysis: Gels were scanned as 16-bit grayscale tiff
image files with a GS-800 calibrated densitometer (Bio-Rad
Laboratories Inc., Hercules, CA), and the protein spot
intensities were quantified using Progenesis PG220 version
2006 build 2417.2 (Nonlinear Dynamics Ltd., Newcastle upon
Tyne, UK). Gels from wt (n=3 independent biologic
replicates) and rdd (n=3 independent biologic replicates)
retinas from E12, 13, 17, 19, and P1 were imported into five
separate experiments, spots were detected and matched, and
volumes normalized within triplicate (n=3) gel sets to create
an average gel for each age and phenotype. The following
parameters for protein spot detection were used: minimum
spot radius of 16 (the smallest area perceived as a spot),
minimum spot intensity (volume above base level), and split
factor 7 (a value between 1 and 9 controls automatic splitting
of spots that may have merged together; as this number
increases splitting becomes more vigorous). Manual
verification and editing of spot matching were performed, and
only spots matched in at least two-thirds of the gel images
were considered for further analysis. Gels from each
experiment were processed using the normalization mode
(this erases intensity differences of similar spots in different
gels not due to regulation but to experimental variability of
the method, e.g., protein load or Coomassie stain intensity).
To normalize spot volume, the volume of a spot is divided by
the total volume of the entire image (volume is defined as the
optical density [OPD]) and is calculated using the following
formula: (the OPD of a spot) × (the area occupied by a spot).
Subsequently spots were filtered to find significant
differences within certain detection limits; only those filtered
spots exceeding an intensity threshold of 1.5 to twofold
increase or decrease between wt and rdd were subjected to
further analysis. The threshold regulation factor for the
significance level was set at p≤0.05; spots regulated more than
the factor required for significance were further considered as
candidate spots and subsequently subjected to manual
verification. The two average gels (one wt and one rdd) from
each of the five separate experiments were imported into one
new experiment. Any significant differences in spot
intensities that were detected in the previous individual
experiments were analyzed at all other ages in the new

experiment. A Student t-test and Analysis of Variance
(ANOVA) were used to analyze differences in spot values,
and spots that showed significant variation between wt and
rdd retina were identified by MS.
Trypsin digestion and Matrix-assisted laser desorption/
ionization–time of flight (MALDI-TOF) analysis: Calibration
of the mass spectrometer was first performed using
Angiotensin I - 1296.6853, adrenocorticotropin (ACTH) [1–
17] 2093.087, ACTH [18–33] 2465.199, and ACTH III [7–
33] 3657.929. The calibration standard mix must match at
least three of these peaks at a max outlier of 50 ppm. Following
this calibration samples were internally calibrated using
trypsin autolysis peaks at masses 842.500 and 2211.100, the
maximum outlier error of this calibration is 50 ppm. If these
peaks were not detected, we deferred to the default calibration,
which is routinely updated as above. Proteins analyzed by
MALDI-TOF (Durham University, Durham, UK) were
tryptically digested using Genomic Solutions ProGest
(Genomic Solutions®, Ann Arbor, MI), transferred to a
microtiter plate (PE Biosystems Symbiot robot; PE
Biosystems, Warrington, UK), lyophilized in a vacuum
concentrator, resuspended in 10 µl of 0.1% formic acid,
sonicated, and spotted onto a MALDI target plate before MS
analysis, using a Voyager DE-STR MALDI-TOF mass
spectrometer (PE Biosystems).
Database searching: Peptide peak lists were generated with
MASCOT Wizard and submitted to Mascot (version 2.1) for
peptide mass fingerprint database searching of the National
Center for Biotechnology Information (NCBI) database. The
Mowse scoring algorithm [22] was used to determine the
significance of the identity; it indicates if the identity is
significant and if it would be expected to occur at random with
a frequency of less than 5%. Additional criteria were used to
ensure correct protein identifications. These included
ensuring the matched peptides were the most abundant peaks
in the mass spectrum, the theoretical isoelectric point and
molecular weight of the identified protein correlated with the
spot’s position on the 2D gel, and sequence coverage was
high.

Small-molecular-weight proteins are often difficult to
definitively identify because they generate only a small
number of short peptide fragments after tryptic digestion.
Since Mascot does not have an option to search “Gallus
gallus” as the taxonomy, “Protein Prospector” was used to
match small-molecular-weight proteins. The MS-Fit tool in
Protein Prospector offers the option of refining the search
parameters by entering the pI of the protein based on its
position on the 2D gel and refining the taxonomy to Gallus
gallus. After scanning the possible matches generated in
Protein Prospector, the matched peptides were cross-
referenced with the raw spectra. When the matched peptides
were the most intense peaks in the spectra, there was a higher
possibility that the match was correct. Settings used in Protein
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Prospector were: Database Search: NCBInr.2006.02.16; MW
of Protein: All; Protein pI: 4–7; Min No of peptides required
to match: 4; Taxonomy: Gallus gallus; Report MOWSE
scores: PFactor 0.4; Instrument: MALDI TOF; Peptide
masses are: monoisotopic; Mass Tolerance: ±50 ppm; Digest:
Trypsin; Max no of missed cleavages: 1; Cys modified by:
acrylamide.

RESULTS
Histology was performed to characterize the progression of
retinal development and subsequent degeneration in the rdd
retina with age-matched wt chick retina. This data aided the
interpretation of 2D profiles and observed protein expression
changes. Histology revealed that the characteristic developing
laminated retinal architecture was comparable at E13 (Figure
1A,B) in wt and rdd retina. By E18, however, the outer
plexiform layer (OPL) and outer nuclear layer (ONL)
displayed a degree of disorganization in which the
characteristic demarcation between these two layers had
started to deform; this in turn led to folding in the ONL and
INL (Figure 1C,D). By P1 the photoreceptor layer displayed
distinct disorganization. At this stage rdd chicks have only
limited vision [17] and the pathological changes in the retinal
architecture were quite pronounced, with buckling of the OPL
and detachment of photoreceptors from the RPE (Figure
1E,F). Magnified images of the ONL and OPL in the rdd chick
at E13 (Figure 1I), E18 (Figure 1J), and P1 (Figure 1K) clearly
demonstrate the degenerative changes occurring in the outer
layers of the retina with buckling of the OPL and detachment
of the photoreceptors from the RPE. By P21 the rdd retina was
reduced in thickness to about half that of the wt retina, the INL
thickness was greatly diminished, and the OPL, ONL, and
outer segments were no longer distinguishable as these layers
had atrophied and merged in rdd chicks (Figure 1G,H). This
verifies the lack of electroretinogram (ERG) response by 3
weeks post hatch [17].

Proteomic analysis was performed to identify proteins
that were differentially expressed in the wt versus rdd retinas.
An average of 1,531 spots per gel were detected in the pH
range 4–7 (Figure 2A), which was chosen for these analyses
because it provided the best resolution of the major protein
population present in the retinal samples. Using Progenesis
image analysis, seven proteins were detected that
demonstrated significant variation in expression in the rdd
versus wt retina. These proteins were identified by MS (Table
1, Figure 2A) and included valosin-containing protein, β-
synuclein, stathmin 1, histidine triad nucleotide-binding
protein, nucleoside diphosphate kinase, 40S ribosomal protein
S12, and secernin 1. γ-Actin and β-tubulin were also identified
by MS and used as loading controls for the gels. There was no
significant difference in the levels of actin and tubulin in the
wt and rdd gels from E12 to P1 (Figure 2B). Fold changes in
the expression of the identified proteins were calculated
(Table 2), probability values were determined using the

Student t-test, and one-way ANOVA were performed to
compare the average normalized volumes of proteins
identified by MS from wt and rdd retina (Table 3).

The most significant outcome in this study was the
differential expression of secernin 1 in the rdd retina. It
appeared to resolve as four distinct spots (Figure 3A), two of
which were identified by MS; resolution of secernin 1 along
the acidic–basic axis is indicative of a posttranslational
modification (PTM). Scansite Molecular Weight and
Isoelectric Point Calculator analysis of the observed interspot
pI distances (0.03 pI units) suggested that the observed
interspot pI distances were compatible with differential
phosphorylation states of secernin 1; however, this was not
established definitively and would require further in depth MS
analysis. Secernin 1 spots were present at all ages in the wt
and rdd retina; however, there were significant differences
between the expression of “isoform a” and “isoform b”
(Figure 3C right panel and Figure 3C middle panel), with a
13.6 fold increase in the expression of “isoform a” in the
rdd retina at E13 relative to wt expression at the same age. In
fact, the expression of isoform “a” was significantly increased
in the rdd retina up to P1 (Table 2). The total expression of all
four isoforms of secernin 1 (Figure 3C left panel) was summed
and compared using a Student t-test to determine if the total
expression of secernin 1 in wt and rdd retina differed. This
analysis revealed no significant difference in total expression
at each age, thus indicating that the differences were due to
PTM.

DISCUSSION
This is the first semiquantitative proteomic analysis of the
developing and degenerating rdd retina, which presents with
retinal degeneration akin to several severe forms of human
retina degeneration. The mechanisms underlying retinal
degeneration in RP remain poorly understood despite several
decades of primarily genetic-driven research; these studies
have exploited the increasing sophistication of genomic
analysis of both human and animal models of retinal
degeneration. Nonetheless, given the divergence of mutant
genes identified, the progression of the underlying spectrum
of pathologies is largely characterized by the general process
of photoreceptor death, and yet these processes remain ill
defined. The present study used histology to view the onset
and progression of retinal degeneration, and proteomic
analysis was used to identify proteins that were differentially
expressed in the rdd retina.

Interestingly, four of the differentially expressed proteins
identified in the rdd retina—valosin-containing protein,
stathmin 1, 40S ribosomal protein S12, and nucleoside
diphosphate kinase—have been shown to exhibit altered
expression following proteomic analysis in animal models of
the human neurodegenerative pathologies, Alzheimer and
Parkinson diseases [23]. Valosin-containing protein is a
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member of the ubiquitously expressed multifunctional AAA
+ (ATPase associated with various activities) protein family
and has been implicated in a range of cellular functions,
including organelle biogenesis and regulation of the
ubiquitin–proteasome system [24]. Valosin-containing
protein exhibited a lower parallel level of expression in the
developing and early degenerate rdd versus the wt retina.
Given the diversity of cellular roles attributed to valosin-
containing protein, this observation in the rdd versus wt retina
may reflect an overall decrease in cellular function.

Stathmin was detected in our previous report where it was
shown to decrease significantly during normal retinal
development in the chick [5]. In general, the pattern of
stathmin expression observed in the developing rdd retina was
more uniform with an overall decrease in expression at P1.
Analysis of retinal regeneration in the newt Cynops

pyrrhogaster detected increased stathmin expression from an
early phase, and its expression continued until the retinal
architecture was restored [25]. The observed stathmin
modulation in the degenerate rdd retina versus the wt retina
would be supportive of the concept that stathmin plays an
important role in the construction and maintenance of retinal
structure and its neural network [25].

Secernin 1 is a cystolic 50-kDa protein reported to
regulate exocytosis in permeabilized mast cells [26]; however,
its expression in the normal wt chick retina, bovine and rat
brain, and in 12 normal human tissues with highest expression
in nervous tissue would suggest a more generic function
[26]. This view is supported by the ubiquitous expression of
three secernin genes in many different murine [27] and human
cells and is indicative of a widespread function rather than a
specific role in mast cell exocytosis. This preliminary study

Figure 1. Retinal dysplasia and degeneration (rdd) retinal histology. Microtome sections of retina stained with hematoxylin and eosin. Normal
retinal morphology is evident in the developing wt chick at embryonic day (E)13 (A), E18 (C), and post-hatch day (P)1 (E). At E13 the gross
retinal morphology of the rdd retina (B) is similar to that of the wt retina; however, the degenerative changes are obvious in the rdd retina at
E18 (D) and P1 (F). Magnified images of the outer plexiform layer (OPL) and outer nuclear layer (ONL) show the progressive disorganization
of the outer retinal layers of the rdd chick from E13 (I), E18 (J), and P1 (K).
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has shown there is significant differential expression of
secernin 1 in the rdd retina. Although there was no significant
change in the total expression of secernin 1, there were

significant differences in the expression of the different
isoforms, namely isoform “a,” which was significantly
upregulated at all ages in the rdd chick. Scansite Molecular

Figure 2. Protein profiles from wild type (wt) and retina dysplasia and degeneration (rdd) retina. A-D: Representative 2D protein profiles from
embryonic day (E)12, E13, E17, E19, and post hatch day (P)1 rdd and wt chick retina displaying positions of proteins that were identified by
MS (Table 1). The positions of two housekeeping proteins (β-tubulin and actin) are also shown. Proteins were extracted using 40 mM
ammonium bicarbonate; 1 mg of retinal protein was separated in the first dimension on an 18-cm pH 4–7 IPG strip and in the second dimension
on a 12% polyacrylamide gel. The protein spots were visualized with Coomassie brilliant blue G-colloidal. B: Levels of actin and tubulin in
the rdd and wt retina. γ-Actin and β-tubulin were identified by MS and used as loading controls for the gels. There was no significant difference
in the levels of actin or tubulin in the wt and rdd gels from E12 to P1 (B). Bar charts show age plotted against arbitrary units, with SEM.
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Weight and Isoelectric Point Calculator analysis, which
calculates the isoelectric point of a protein given different
phosphorylation sites, predicted that these isoforms may
represent phosphorylation events; however, this remains
unsubstantiated and will require further analysis.
Additionally, the different isoforms could be due to the
expression of two or more secernin genes; two secernin genes
have been identified in the chicken genome, secernin1
(located on chromosome 2) and secernin 2 (located on
chromosome 7). The human genome contains three secernin
genes, and there are at least two splice variants of secernin 2.
Therefore different genes and splice variants may account for
the four secernin 1 proteins identified in chick retina.

Given the widespread expression of secernin 1 in many
tissues, secernin 1 is likely to have other functions beyond the
regulation of mast cell exocytosis. Indeed, secernin 1
expression was upregulated in gastric cancer and colon cancer
where it was implicated in cell growth [28], and it was found
to be one of several novel genes overexpressed in Barrett's
esophagus high-grade dysplasia [29]. Several proteomic
studies have identified secernin 1 as being upregulated in the
dorsolateral prefrontal cortex of patients with schizophrenia
[30], and consistent with a decline in neuronal function, it was
downregulated in the cerebral cortex of sleep-deprived mice
[31]. Other studies suggest that secernin 1 is a
neurotoxicologically relevant target as proteomic analysis of
rat striatal synaptosomes identified secernin 1 as one protein
that was progressively and significantly adducted during
acrylamide intoxication [32]. At present, however, it is
difficult to suggest a reasoned function for secernin within the
retina and for its variant expression in the rdd retina, and as
such, it is not possible to attribute any linkage between
secernin 1 and Mupp1. Nevertheless, the data presented in this
study clearly show a real alteration in secernin 1 expression
in the degenerating retina that warrants further study.

Preliminary analysis using the only secernin 1 antisera
currently available detected numerous anomalous bands
following western blot analysis, and while it did detect a cell
population in the retina, these observations cannot be relied
upon because of potential cross-reaction of antisera with
unknown antigens expressed in retinal tissue.

The pathology displayed by the rdd chick resembles that
observed in some of the more severe forms of human RP. It
is now known that the rdd chicken carries a null mutation in
the Mpdz/Mupp1 gene (Ali et al., manuscript in preparation).
At present there are no reports in the literature of a direct
association between mutations in Mpdz/Mupp1 and rdd in
humans; there is, however, evidence to show that Mpdz/
Mupp1is directly associated with Crumbs homolog 1 (Crb1).
Crb1 is localized to the subapical region adjacent to the
adherens junction complex at the outer limiting membrane in
the retina, and loss of Crb1 function leads to either recessively
inherited RP or LCA in humans [33]. This animal model may
therefore offer valuable insights into the pathogenesis of RP,
and the potential involvement of Mpdz/Mupp1 mutations in
human inherited retinal disease is currently being
investigated. The current proteomic analysis did not detect
Mupp1, which has a molecular weight of approximately
220 kDa, not surprising given it is a large protein beyond the
molecular-weight range arrayed in this study.

In summary, this investigation has successfully identified
and provided novel data on several proteins differentially
expressed during retinogenesis and with the onset of
degeneration in the rdd chick. These proteins are involved in
signaling, nucleoside biosynthesis, regulation of
transcription, and protein synthesis. This study has generated
novel data as some of these proteins have not previously been
implicated in retinal degeneration. In particular this is the first
report to demonstrate modulation of secernin 1 in relation to
a retinal pathology. Consequently, the rdd chick would appear

TABLE 1. GALLUS GALLUS PROTEINS IDENTIFIED BY MASS SPECTROMETRY

Spot
number Protein Accession #

Mowse
score

%
Sequence
coverage Mr (Da)

Calculated
pI

Number
peptides
matched

1 Valosin containing protein (VCP) gi|113206112** 348 66 89953 5.14 18
2 Synuclein, beta (β-synuclein) 574 44.4 14063 4.4 5
3 Stathmin 1/ oncoprotein 18 gi|50053682

**
97 47 17072 6.18 12

4 PREDICTED: Similar to Histidine triad
nucleotide binding protein (Hint-1)

1450 58.7 13759 6.3 9

5 PREDICTED: Similar to Nucleoside
diphosphate kinase (NDK1)

355 86.9 17337 5.6 11

6 PREDICTED: Similar to 40S ribosomal
protein S12

gi|50742739** 81 75 14935 6.81 8

7 PREDICTED: Similar to KIAA0193/
Secernin 1 (SCRN1)

gi|118086002** 106 43 46638 4.69 18

Proteins identified by mass spectrometry that displayed significant differences in expression in the wild type (wt) and retinal
dysplasia and degeneration (rdd ) retina.
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Figure 3. Differential expression of secernin 1 in the retinal dysplasia and degeneration (rdd) retina. A: Representative 2D montage images
generated using Progenesis 2D image analysis software, revealing the modulated expression of secernin 1 in the wt and rdd chick. Two
isoforms of secernin 1 (isoforms “a” and “b”) were identified by MS (arrows). The expression of isoform “a” is significantly increased from
E13 onwards in the rdd retina, while it is only present at very low levels in the wt retina. B: 3D images of the 2D gels generated using Progenesis
of the two isoforms of secernin 1 identified by MS. The increased expression of isoform “a” is evident from E13 onwards in the rdd retina.
C: Graphical representation of expression of secernin 1 in the wt and rdd chick displaying the expression of isoform “a” (right panel), isoform
“b” (middle panel), and total expression of secernin 1 (left panel). Age is plotted against average normalized volume (n=3±SEM).
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to be an important new animal model for the study of human
RP.

ACKNOWLEDGMENTS
The authors are grateful for technical assistance from Graeme
Robertson. SF was awarded a postgraduate studentship from
the Department for Employment and Learning and funding
from the McCauley Endowment. MRC Grant G0501050
awarded to M.A. provided maintenance for the chick flocks,
and The Roslin Institute is supported by a core grant from the
Biotechnology and Biologic Sciences Research Council.

REFERENCES
1. Hartong DT, Berson EL, Dryja TP. Retinitis pigmentosa.

Lancet 2006; 368:1795-809. [PMID: 17113430]
2. Jones BW, Watt CB, Frederick JM, Baehr W, Chen CK, Levine

EM, Milam AH, Lavail MM, Marc RE. Retinal remodeling
triggered by photoreceptor degenerations. J Comp Neurol
2003; 464:1-16. [PMID: 12866125]

3. Phelan JK, Bok D. A brief review of retinitis pigmentosa and
the identified retinitis pigmentosa genes. Mol Vis 2000;
6:116-24. [PMID: 10889272]

4. Hanash S. Disease proteomics. Nature 2003; 422:226-32.
[PMID: 12634796]

5. Finnegan S, Robson JL, Wylie M, Healy A, Stitt AW, Curry
WJ. Protein expression profiling during chick retinal
maturation: a proteomics-based approach. Proteome Sci
2008; 6:34. [PMID: 19077203]

6. Mizukami M, Kanamoto T, Souchelnytskyi N, Kiuchi Y.
Proteome profiling of embryo chick retina. Proteome Sci
2008; 6:3. [PMID: 18208622]

7. Lam TC, Li KK, Lo SC, Guggenheim JA, To CH. A chick
retinal proteome database and differential retinal protein
expressions during early ocular development. J Proteome Res
2006; 5:771-84. [PMID: 16602683]

8. Consortium ICGS. Sequence and comparative analysis of the
chicken genome provide unique perspectives on vertebrate
evolution. Nature 2004; 432:695-716. [PMID: 15592404]

9. Burt DW, Bruley C, Dunn IC, Jones CT, Ramage A, Law AS,
Morrice DR, Paton IR, Smith J, Windsor D, Sazanov A, Fries
R, Waddington D. The dynamics of chromosome evolution
in birds and mammals. Nature 1999; 402:411-3. [PMID:
10586880]

10. Inglehearn CF, Morrice DR, Lester DH, Robertson GW,
Mohamed MD, Simmons I, Downey LM, Thaung C, Bridges
LR, Paton IR, Smith J, Petersen-Jones S, Hocking PM, Burt
DW. Genetic, ophthalmic, morphometric and
histopathological analysis of the Retinopathy Globe Enlarged
(rge) chicken. Mol Vis 2003; 9:295-300. [PMID: 12847422]

11. Ulshafer RJ, Allen C, Dawson WW, Wolf ED. Hereditary
retinal degeneration in the Rhode Island Red chicken. I.
Histology and ERG. Exp Eye Res 1984; 39:125-35. [PMID:
6489467]

12. Ulshafer RJ, Allen CB. Hereditary retinal degeneration in the
Rhode Island Red chicken: ultrastructural analysis. Exp Eye
Res 1985; 40:865-77. [PMID: 4018169]

13. Ulshafer RJ, Allen CB. Ultrastructural changes in the retinal
pigment epithelium of congenitally blind chickens. Curr Eye
Res 1985; 4:1009-21. [PMID: 4064726]

14. Semple-Rowland SL, Lee NR, Van Hooser JP, Palczewski K,
Baehr W. A null mutation in the photoreceptor guanylate
cyclase gene causes the retinal degeneration chicken
phenotype. Proc Natl Acad Sci USA 1998; 95:1271-6.
[PMID: 9448321]

15. Lahiri D, Bailey CF. A comparison of phagocytosis by the
retinal pigment epithelium in normal and delayed amelanotic
chickens. Exp Eye Res 1993; 56:625-34. [PMID: 8595805]

16. Smyth JR Jr, Boissy RE, Fite KV. The DAM chicken: a model
for spontaneous postnatal cutaneous and ocular amelanosis. J
Hered 1981; 72:150-6. [PMID: 7276522]

17. Burt DW, Morrice DR, Lester DH, Robertson GW, Mohamed
MD, Simmons I, Downey LM, Thaung C, Bridges LR, Paton
IR, Gentle M, Smith J, Hocking PM, Inglehearn CF. Analysis
of the rdd locus in chicken: a model for human retinitis
pigmentosa. Mol Vis 2003; 9:164-70. [PMID: 12724645]

18. Randall CJ, McLachlan I. Retinopathy in commercial layers.
Vet Rec 1979; 105:41-2. [PMID: 555119]

19. Randall CJ, Wilson MA, Pollock BJ, Clayton RM, Ross AS,
Bard JB, McLachlan I. Partial retinal dysplasia and
subsequent degeneration in a mutant strain of domestic fowl
(rdd). Exp Eye Res 1983; 37:337-47. [PMID: 6641818]

20. den Hollander AI, Davis J, van der Velde-Visser SD, Zonneveld
MN, Pierrottet CO, Koenekoop RK, Kellner U, van den Born
LI, Heckenlively JR, Hoyng CB, Handford PA, Roepman R,
Cremers FP. CRB1 mutation spectrum in inherited retinal
dystrophies. Hum Mutat 2004; 24:355-69. [PMID:
15459956]

21. Cremers FP, van den Hurk JA, den Hollander AI. Molecular
genetics of Leber congenital amaurosis. Hum Mol Genet
2002; 11:1169-76. [PMID: 12015276]

22. Pappin DJ, Hojrup P, Bleasby AJ. Rapid identification of
proteins by peptide-mass fingerprinting. Curr Biol 1993;
3:327-32. [PMID: 15335725]

23. Sowell RA, Owen JB, Butterfield DA. Proteomics in animal
models of Alzheimer's and Parkinson's diseases. Ageing Res
Rev 2009; 8:1-17. [PMID: 18703168]

24. Guinto JB, Ritson GP, Taylor JP, Forman MS. Valosin-
containing protein and the pathogenesis of frontotemporal
dementia associated with inclusion body myopathy. Acta
Neuropathol 2007; 114:55-61. [PMID: 17457594]

25. Hasegawa A, Hisatomi O, Yamamoto S, Ono E, Tokunaga F.
Stathmin expression during newt retina regeneration. Exp Eye
Res 2007; 85:518-27. [PMID: 17707372]

26. Way G, Morrice N, Smythe C, O'Sullivan AJ. Purification and
identification of secernin, a novel cytosolic protein that
regulates exocytosis in mast cells. Mol Biol Cell 2002;
13:3344-54. [PMID: 12221138]

27. Kawai J, Shinagawa A, Shibata K, Yoshino M, Itoh M, Ishii Y,
Arakawa T, Hara A, Fukunishi Y, Konno H, Adachi J, Fukuda
S, Aizawa K, Izawa M, Nishi K, Kiyosawa H, Kondo S,
Yamanaka I, Saito T, Okazaki Y, Gojobori T, Bono H,
Kasukawa T, Saito R, Kadota K, Matsuda H, Ashburner M,
Batalov S, Casavant T, Fleischmann W, Gaasterland T, Gissi
C, King B, Kochiwa H, Kuehl P, Lewis S, Matsuo Y, Nikaido
I, Pesole G, Quackenbush J, Schriml LM, Staubli F, Suzuki
R, Tomita M, Wagner L, Washio T, Sakai K, Okido T, Furuno
M, Aono H, Baldarelli R, Barsh G, Blake J, Boffelli D,
Bojunga N, Carninci P, de Bonaldo MF, Brownstein MJ, Bult
C, Fletcher C, Fujita M, Gariboldi M, Gustincich S, Hill D,

Molecular Vision 2010; 16:7-17 <http://www.molvis.org/molvis/v16/a2> © 2010 Molecular Vision

16

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17113430
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=12866125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=10889272
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=12634796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=12634796
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=19077203
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=18208622
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16602683
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15592404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=10586880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=10586880
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=12847422
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=6489467
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=6489467
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=4018169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=4064726
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=9448321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=9448321
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=8595805
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=7276522
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=12724645
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=555119
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=6641818
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15459956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15459956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=12015276
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15335725
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=18703168
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17457594
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17707372
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=12221138
http://www.molvis.org/molvis/v16/a2


Hofmann M, Hume DA, Kamiya M, Lee NH, Lyons P,
Marchionni L, Mashima J, Mazzarelli J, Mombaerts P,
Nordone P, Ring B, Ringwald M, Rodriguez I, Sakamoto N,
Sasaki H, Sato K, Schönbach C, Seya T, Shibata Y, Storch
KF, Suzuki H, Toyo-oka K, Wang KH, Weitz C, Whittaker
C, Wilming L, Wynshaw-Boris A, Yoshida K, Hasegawa Y,
Kawaji H, Kohtsuki S, Hayashizaki Y. RIKEN Genome
Exploration Research Group Phase II Team and the
FANTOM Consortium. Functional annotation of a full-length
mouse cDNA collection. Nature 2001; 409:685-90. [PMID:
11217851]

28. Suda T, Tsunoda T, Uchida N, Watanabe T, Hasegawa S, Satoh
S, Ohgi S, Furukawa Y, Nakamura Y, Tahara H.
Identification of secernin 1 as a novel immunotherapy target
for gastric cancer using the expression profiles of cDNA
microarray. Cancer Sci 2006; 97:411-9. [PMID: 16630140]

29. Sabo E, Meitner PA, Tavares R, Corless CL, Lauwers GY, Moss
SF, Resnick MB. Expression analysis of Barrett's esophagus-
associated high-grade dysplasia in laser capture
microdissected archival tissue. Clin Cancer Res 2008;
14:6440-8. [PMID: 18927283]

30. Pennington K, Beasley CL, Dicker P, Fagan A, English J,
Pariante CM, Wait R, Dunn MJ, Cotter DR. Prominent
synaptic and metabolic abnormalities revealed by proteomic
analysis of the dorsolateral prefrontal cortex in schizophrenia
and bipolar disorder. Mol Psychiatry 2008; 13:1102-17.
[PMID: 17938637]

31. Pawlyk AC, Ferber M, Shah A, Pack AI, Naidoo N. Proteomic
analysis of the effects and interactions of sleep deprivation
and aging in mouse cerebral cortex. J Neurochem 2007;
103:2301-13. [PMID: 17919293]

32. Barber DS, Stevens S, LoPachin RM. Proteomic analysis of rat
striatal synaptosomes during acrylamide intoxication at a low
dose rate. Toxicol Sci 2007; 100:156-67. [PMID: 17698512]

33. van de Pavert SA, Kantardzhieva A, Malysheva A, Meuleman
J, Versteeg I, Levelt C, Klooster J, Geiger S, Seeliger MW,
Rashbass P, Le Bivic A, Wijnholds J. Crumbs homologue 1
is required for maintenance of photoreceptor cell polarization
and adhesion during light exposure. J Cell Sci 2004;
117:4169-77. [PMID: 15316081]

Molecular Vision 2010; 16:7-17 <http://www.molvis.org/molvis/v16/a2> © 2010 Molecular Vision

The print version of this article was created on 7 January 2010. This reflects all typographical corrections and errata to the article
through that date. Details of any changes may be found in the online version of the article.

17

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=11217851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=11217851
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=16630140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=18927283
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17938637
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17938637
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17919293
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=17698512
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=abstract&list_uids=15316081
http://www.molvis.org/molvis/v16/a2

