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Dynamics of charged particle motion in the vicinity of three dimensional
magnetic null points: Energization and chaos

Andrew Gascoynea)

School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road,
Sheffield S3 7RH, United Kingdom

(Received 27 January 2015; accepted 16 March 2015; published online 27 March 2015)

Using a full orbit test particle approach, we analyse the motion of a single proton in the vicinity of

magnetic null point configurations which are solutions to the kinematic, steady state, resistive

magnetohydrodynamics equations. We consider two magnetic configurations, namely, the sheared

and torsional spine reconnection regimes [E. R. Priest and D. I. Pontin, Phys. Plasmas 16, 122101

(2009); P. Wyper and R. Jain, Phys. Plasmas 17, 092902 (2010)]; each produce an associated

electric field and thus the possibility of accelerating charged particles to high energy levels,

i.e.,>MeV, as observed in solar flares [R. P. Lin, Space Sci. Rev. 124, 233 (2006)]. The particle’s

energy gain is strongly dependent on the location of injection and is characterised by the angle of

approach b, with optimum angle of approach bopt as the value of b which produces the maximum

energy gain. We examine the topological features of each regime and analyse the effect on the

energy gain of the proton. We also calculate the complete Lyapunov spectrum for the considered

dynamical systems in order to correctly quantify the chaotic nature of the particle orbits. We find

that the sheared model is a good candidate for the acceleration of particles, and for increased shear,

we expect a larger population to be accelerated to higher energy levels. In the strong electric field

regime (E0 ¼ 1500V/m), the torsional model produces chaotic particle orbits quantified by the

calculation of multiple positive Lyapunov exponents in the spectrum, whereas the sheared model

produces chaotic orbits only in the neighbourhood of the null point.VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4916402]

I. INTRODUCTION

The spatial location at which the magnitude of a vector

field goes to zero is referred to as a null point. Null points

are useful for studying different topological features.4,5 The

null points of a magnetic field vector are important locations

where strong currents can be found.6 Strong currents play an

important role in energy release processes such as magnetic

reconnection where a change in the magnetic field topology

could release energy to the surrounding plasma. This energy

exchange is sometimes accompanied by rapid acceleration of

charged particles due to the strong magnetic field-aligned

electric fields present (see, for example, Refs. 7–9).

Magnetic reconnection near null points has been implicated

as the key mechanism behind the observed particle accelera-

tion during various dynamical phenomena in the solar sys-

tem. In particular, solar flares,3 plasmoid ejections from the

magnetotails of Earth, Jupiter, Saturn, Mercury, and more

recently Venus.10 Examples of magnetic null points have

also been reported in the laboratory11 and in the Earth’s mag-

netosphere.12 Detection of magnetic null points in numerical

experiments requires both a fast and an accurate method.13

The first step in understanding charged particle motion

in the vicinity of null points was the development of two-

dimensional (2D) models and using a test particle approach,

on either prescribed electromagnetic fields, i.e., X-type null

point configuration14,15 or fields calculated from the snap-

shots of magnetohydrodynamics (MHD) simulations.16 In

recent times, three dimensional (3D) models have also been

studied in this context. The main features of an isolated 3D

magnetic null point are the spine axis and fan plane.17 The

spine axis consists of two oppositely directed isolated field

lines which connect at the null point and the fan plane is a

continuum of field lines emanating from the null point per-

pendicular to the spine axis. The test particle approach to 3D

geometries has been carried out by Refs. 18–20 using the

potential magnetic null point derived by Ref. 17, by investi-

gating the acceleration of charged particles for the spine and

fan reconnection scenarios. The test particle approach has

also been applied to the electromagnetic fields derived by

Refs. 21 and 22 which are solutions to the steady state, resis-

tive, incompressible MHD equations.23,24 The other 3D null

point reconnection regimes developed are the sheared spine/

fan and the torsional spine/fan reconnection regimes.1,2 In

the sheared spine/fan case, generic shearing occurs across ei-

ther the spine axis, fan plane, or both, resulting in a current

sheet at the null point which is localised to either the spine,

fan plane, or both depending on the location of the shear. In

the torsional spine/fan case, field lines in the vicinity of the

fan/spine rotate causing current to become concentrated

along the spine/fan.

The nonlinear motion of particles around a complex

electromagnetic structure provides an interesting example of

a dynamical system where chaotic trajectories have been

found to exist.18 Reference 14 performed numerical simula-

tions of the non-relativistic particle motion in an X-type

magnetic null configuration and found that particle trajecto-

ries in the non-adiabatic region close to the null are chaotica)a.d.gascoyne@sheffield.ac.uk
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in nature and quantified this by calculating a positive value

for the maximum Lyapunov exponent.

In this paper, we investigate the motion of a positively

charged particle in the vicinity of a 3D magnetic null point

for the sheared and torsional spine reconnection scenarios,1,2

both of which are solutions to the kinematic, steady state,

resistive MHD equations. We use a full orbit test particle

approach to study the dynamics of a proton injected into the

prescribed electromagnetic field. We are interested in

whether or not the particle is accelerated in the chosen null

point profile. We also deduce the existence of chaotic orbits

by calculating the full Lyapunov spectrum.

The paper is structured as follows. In Sec. II, we present

the governing equations of particle motion and outline the

numerical method used for calculating particle trajectories.

Subsections III A and III B are for the sheared and torsional

spine magnetic null point profiles, respectively. We describe

the model field, where the derivation of the electric field

induced by the prescribed magnetic field and discuss the

results of various simulated trajectories. In Sec. IV, we

investigate the dynamical nature of each system by calculat-

ing the complete Lyapunov spectrum for various trajectories.

In Sec. V, we give a brief summary and conclusion regarding

which model yields accelerated particles and chaotic orbits.

II. GOVERNING EQUATIONS

A set of nonlinear ordinary differential equations

describing the motion of a charged particle in the presence

of an electric and magnetic field, using Lorentz force ~F
¼ qð~E þ~v � ~BÞ and the relativistic momentum defined as

~p ¼ cm0~v, are given by

d~x

dt
¼ ~p

m0c
; (1)

d~p

dt
¼ q ~E þ 1

m0c
~p � ~B
� �

� �

: (2)

Here, t is the time,~x and~p are the particle’s position and mo-

mentum, q and m0 are its charge and rest mass, and c is the

relativistic (Lorentz) factor. The electric and magnetic fields

are represented by ~E and ~B, respectively. Solving this set of

equations numerically requires rewriting them in a non-

dimensional form. Thus, we define

X ¼ x

L
; Y ¼ y

L
; Z ¼ z

L
; T ¼ t

Tg
; ~q ¼ ~p

m0c
;

~b ¼
~B

B0

; ~� ¼
~E

cB0

; l ¼ E0

cB0

; a ¼ Tgc

L
; qn ¼

q

jqj ;

(3)

where L and B0 are the characteristic length scale and field

strength, respectively, c is the speed of light, l0 is the mag-

netic permeability, and Tg ¼ 2pm0=ðjqjB0Þ is the nonrelativ-
istic gyroperiod. Rewriting Eqs. (1) and (2) in dimensionless

form using (3), we obtain

d~X

dT
¼ a

~q

c
; (4)

d~q

dT
¼ 2pqn ~� þ 1

c
~q � ~b
� �

� �

: (5)

We solve the 6th order set of coupled equations (4) and

(5) numerically using a 7-step Adams-Bashforth-Moulton

(ABM) predictor-corrector scheme. To ensure the stability of

the code, we monitor the total energy of the particle during

its motion. This quantity should remain constant and is cal-

culated as the sum of kinetic and potential energy,

W ¼ K þ qU; (6)

where we derive U from the electric field ~E ¼ �~rU (see

Sec. III for the full explanation of its derivation). The relativ-

istic kinetic energy is calculated by using

K ¼ ðc� 1Þm0c
2: (7)

We find that the total energy is conserved up to 5 significant

figures for the trajectories presented in this paper, demon-

strating the validity of our code.

III. MODEL FIELD CONFIGURATIONS

We consider two electromagnetic field configurations

which are a solution to the kinematic, steady state, resistive

MHD equations near a 3D null point. The first case we shall

consider is a sheared case where, the field lines are sheared

in the fan plane perpendicular to the spine.17 The second

case we shall consider is a torsional one where the field lines

are locally twisted around the spine.1,2

A. Case I: Sheared magnetic profile

We consider magnetic field as

~B ¼ B0

L
x; y;�2zþ l0L

B0

J0ye
�4R2

� �

; (8)

with null point (0,0,0). Here, R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2 þ y2Þ
p

=L and the

induced current density is

~J ¼ 1

l0

~r � ~B ¼ J0 1� 8
y2

L2
; 8

xy

L2
; 0

� �

e�4R2

: (9)

In order to calculate the electric field, we first calculate the

electric potential

U ¼ �
ð

g~J � ~Bds; (10)

we integrate along the field lines using ds ¼ dx
Bx
¼ dy

By
¼ dz

Bz
,

therefore

U ¼ �E0

x

R

ffiffiffi

p
p

4
erf 2Rð Þ; (11)

where E0 ¼ gJ0 is the characteristic electric field strength

given in terms of a constant resistivity g. The x and y compo-

nents of electric field (~E ¼ �~rU) are thus
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Ex ¼ E0

1

R3

x2

L2
Re�4R2 þ

ffiffiffi

p
p

4

y2

L2
erf 2Rð Þ

� �

; (12)

Ey ¼ E0

xy

L2R3
Re�4R2 �

ffiffiffi

p
p

4
erf 2Rð Þ

� �

; (13)

where erfðxÞ is the error function and Ez¼ 0. Using (3), the

non-dimensional form for the magnetic and electric field can

be given by
~b ¼ ðX; Y;�2Z þ j0Ye

�4R2Þ; (14)

~� ¼ l0

"

1

R3
X2Re�4R2 þ

ffiffiffi

p
p

4
Y2erf 2Rð Þ

� �

;

XY

R3
Re�4R2 �

ffiffiffi

p
p

4
erf 2Rð Þ

� �

; 0

#

; (15)

where j0 ¼ ðl0L
B0

J0Þ is a dimensionless parameter associated

with the strength of the current determining to what degree

the magnetic field is sheared. By perturbing the fan plane in

the vertical direction, this causes a current to be produced in

the xy-plane. The magnetic field, electric field, and the cur-

rent density in x-y plane are shown in Figure 1.

The plasma flow velocity perpendicular to the magnetic

field can be obtained by taking the vector product of Ohm’s

law with ~B, which reduces to

~v? ¼
~E � g~J

� �

� ~B

B2
: (16)

This is plotted for two different values of j0 in Figure 2. It

can be clearly seen that there are distinct inflow and outflow

regions, indicating the possibility of particle acceleration. In

the neighbourhood of the null point when the particle dis-

tance, as measured from the null-point, becomes comparable

to the size of its orbit (Larmor radius in the nonadiabatic

region), the adiabatic approximation fails. In this “non

adiabatic” region, the particles are freely accelerated by the

strong electric field, and the amount of energy gained during

its motion is determined by the length of time the particle

remains there. For large values of j0 (increased shear), strong

gradients in the magnetic field occur close to the spine axis

away from the null point. If the Larmor radius exceeds the

length scale of the magnetic field gradient, the adiabatic

approximation breaks down and the particle can then be

FIG. 1. Top panel: Field plots for the

sheared magnetic field profile for

j0 ¼ 10. Solid lines correspond to field

lines. Bottom panel: The electric field

and current density.

FIG. 2. Field plots for the flow velocity

~v? in the yz-plane for (a) j0 ¼ 2 (weak

shear) and (b) j0 ¼ 10 (strong shear).
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freely accelerated by the parallel electric field (see Figure 4

for j0 ¼ 10 and b ¼ �70�).
Proton particle trajectories are calculated for this elec-

tromagnetic field configuration by the method mentioned in

Sec. II. Input parameters used for the injection of particles,

unless stated otherwise, are magnetic field strength B0 ¼ 100

G and scale length L¼ 10 km. The particle is injected into an

inflow region in the yz-plane (see the second quadrant in

Figure 2) where the electric field is the strongest. The par-

ticle’s initial position is represented by the parameter b

which is the angle with the y-axis on the unit circle centred

on the null point. The particle’s initial momentum is charac-

terised by an initial energy of 300 eV at a direction repre-

sented by the pitch angle, the angle between the initial

momentum vector and the magnetic field at the point of

injection.

Two regimes are investigated: the weak electric field re-

gime (E0 ¼ 100V/m) where particle motion is governed pri-

marily by the magnetic field but the particle drifts due to the

presence of an electric field albeit weak in strength (see

Figure 3). In this case, the particle gains no energy and boun-

ces back and forth between mirror points where the magnetic

field converges enough to reflect the particle back to regions

of weaker magnetic field strength. The strength of the mag-

netic shear measured by the value of parameter j0, only

changes the path taken by the particle; the overall dynamics

in the weak field regime are essentially the same (i.e., bounce

and orbital motion) as shown in Figure 3.

The second and more dynamic regime is the strong elec-

tric field regime (E0 ¼ 1500V/m) shown in Figure 4.

Initially, the particle motion is governed by the flow velocity

~v?. The particle drifts towards the null point undergo

acceleration in the non-adiabatic region and is ejected with

sizeable energy gain (Figure 5). After the particle has accel-

erated away from the null point, its motion is then governed

primarily by the magnetic field similar to the weak electric

field regime. These two regimes of particle motion were

identified by Ref. 15 and further studied by Ref. 18. Particles

which travel very close to the null point gain the most energy

since they are directly accelerated by the electric field there.

The angle of projection b essentially determines how close

the particle gets to the null point thus we can find the opti-

mum angle of approach bopt for which particle acceleration

is maximum. In Figure 6, we plot bopt as a function of j0. We

find bopt � 50� for j0 ¼ 2 and bopt � 60� for j0 ¼ 10. The

optimum angle of approach increases initially with magnetic

shear before saturating around j0 � 70�. For strongly sheared

magnetic fields of this type, particles which enter the non-

adiabatic region in inflow regions close to the spine will ex-

perience the greatest acceleration. The range of b values for

which particles reach energy levels >104 eV for the j0 ¼ 2

weak shear case are b � ð48�; 55�Þ and for j0 ¼ 10 strong

shear case b � ð57�; 70�Þ. Thus, strongly sheared magnetic

fields will accelerate a wider range of particles to high

energy levels. The particle changes state from being unmag-

netised to magnetised after being accelerated, this is evident

in the blue and green trajectories where the particle performs

the bounce motion. This is the cause of the bumps seen in

the kinetic energy plots for these trajectories (Figure 5). As

the particle returns toward the null point after being reflected

(mirror point close to the fan plane), part of its energy is lost

in opposing the electric field and the particle is reflected

again (mirror point close to the spine axis) back towards the

null point. It gains a small amount of energy back now that

FIG. 3. Particle trajectories for the weak

electric field regime E0 ¼ 100V/m.

The initial position of the particle on

the unit circle with angle b ¼ �60�

with the horizontal axis, initial pitch

angle 100�; j0 ¼ 2 (top panel) and

j0 ¼ 10 (bottom panel). Dashed lines

are the magnetic field lines.

032907-4 Andrew Gascoyne Phys. Plasmas 22, 032907 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

143.167.6.191 On: Mon, 30 Mar 2015 14:29:53



the electric field is in the same direction of the particles tra-

jectory. This process occurs several times with continually

less effect until the particle is out range of the strong electric

field near the null point.

B. Case II: Torsional spine magnetic profile

The second profile we consider is a torsional spine 3D

magnetic null configuration described by the following

equation:2

~B ¼ B0

L

�

x� l0L

B0

J0yR
3e�4R2�bz2R4=L2 ;

yþ l0L

B0

J0xR
3e�4R2�bz2R4=L2 ;�2z

�

; (17)

where b is a dimensionless parameter which localises the

twist in height; increasing b localises the twist closer to the

fan plane. A value of b¼ 0 causes the twist to be unbounded

along the spine (see Figure 7). Using (3) the magnetic field

has the following non-dimensional form:

~b ¼ ðX � j0YR
3e�ZR ; Y þ j0XR

3e�ZR ;�2ZÞ; (18)

where ZR ¼ 4R2 þ bZ2R4. The current density and electric

potential are calculated in the same manner as in Sec.

III A. The electric potential in non-dimensional form is

given by

FIG. 5. Kinetic energy vs time for tra-

jectories in Figure 4. Left and right

panels correspond to j0 ¼ 2 and

j0 ¼ 10, respectively.

FIG. 4. Particle trajectories for E0

¼ 1500V/m, initial pitch angle 90�

and j0 ¼ 2 and 10, respectively. Initial

position on the unit circle b ¼ �½30�;
48�; 50�; 60�� (top panel) and b

¼ �½50�; 57�; 60�; 70�� (bottom panel).

FIG. 6. Optimum angle of approach bopt (for which particle acceleration is

maximum) as a function of shear strength j0.
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U ¼ l
R4b

4
þ 5

32
R2bþ 15

256
bþ 2

� �

ZR3e�ZR

	

þ 4�4bZ2R4 � 15

512
b

� � ffiffiffi

p

4

r

erf
ffiffiffi

a
p

R
� �

ZR2e�bZ2R4




:

(19)

This magnetic field configuration generates a vast different

electric field to case I, the key difference being that the elec-

tric field is zero at the null point (see Figure 7). The electric

field is lot more confined to specific bands and is very irregu-

lar for larger values of b (see Figure 8 for b¼ 10).

The perpendicular plasma flow velocity ~v? is obtained

using Eq. (16). Figure 9 shows the plots. For b¼ 0

(unbounded twist), the flow is symmetric in the y and z axes

but the absence of inflow regions near the null point, means

that the particles will not drift towards the null point. This is

also true for b¼ 10 (localised twist) but for this case the

direction of the plasma flow flips in specific bands above and

below the fan plane as shown in right panel of Figure 9. The

flow in the xy-plane (not shown here) consists of a spiralling

clockwise motion about and away from the spine. This spi-

ralling motion changes direction at certain radii from the

spine corresponding to the bands, above and below the fan

plane for b¼ 10.

Particle trajectories are calculated in the same manner as

Sec. III A with the same input parameters, except that the

angle b now relates to the unit circle in the xy-plane, thus b

is the angle with the x-axis; b ¼ 60� throughout this section

and the unit circle is centred at (0,0,z). Once again two

regimes of particle motion are again investigated: in the

weak field regime (E0 ¼ 100V/m, Figure 10) behaviour of

the particle is similar as in the sheared case but due to the

torsional geometry and consequentially the bulk velocities in

bands the particle traces out an aesthetically very interesting.

This path is due to several factors, the main contributors

being: the bounce motion due to the increasing field strength

with radius and the clockwise plasma flow in the xy-plane

induced by this field geometry. One mirror point occurs on

the fan plane a significant distance from the null point and

the other occurs along the spine above or below the null

FIG. 7. Field plots for the torsional

spine magnetic profile for j0 ¼ 40 and

b¼ 0. Solid lines in the top panels cor-

respond to field lines.

FIG. 8. Electric and current density

field plots for the torsional spine mag-

netic profile for j0 ¼ 40 and b¼ 10.
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point depending on initial conditions. Localising the twist

close to the fan plane changes the structure of the trajectory

but the overall particle motion is essentially the same. The

particle undergoes no acceleration in this regime which is

expected since the electric field is weak.

Moving to the strong electric field regime (E0 ¼ 1500V/

m), the dynamics change, as expected, with the plasma flow

velocity dominates the particles motion. For particles with ini-

tial position on or above, the fan plane trajectories spiral radi-

ally outward tending to the fan plane. This holds true for both

b¼ 0 (unbounded twist) and b¼ 10 (localised twist) (Figure

11). For particles with initial position below the fan plane for

the b¼ 0 case, the trajectory exhibits an oscillating motion

similar to bounce motions as discussed previously, whilst

drifting clockwise around the spine. This bounce motion is

due to the opposing flow velocity and electric field in the yz-

plane below z¼ 0 (Figures 9(a) and 7, respectively), as

opposed to the reflection between mirror points due to the

magnetic field as previously seen. The effect of this bounce

motion can be seen in the kinetic energy fluctuation of the

particle with time, which is very much periodic (Figure 12).

For the b¼ 10 case, this bounce motion below z¼ 0 ceases to

exist due to the localised and sporadic electric field, instead

the particle simply leaves the null point region tending toward

the spine. The torsional magnetic geometry produces particle

trajectories which are unlikely to be efficient particle accelera-

tors since the particles do not drift toward the null point. The

kinetic energy gain seen (Figure 12) is due to the initial posi-

tion of the particle rather than due to the particle drifting

towards the null point which is the case for the sheared mag-

netic geometry (Sec. III A).

IV. CHAOTIC BEHAVIOUR

The particle trajectories investigated here contain a very

distinct structure similar to the various classical dynamical

systems (Lorenz, Rossler, etc.). Chaotic orbits have been

found to exist in the study of magnetic null geometries,

namely, in the work by Refs. 14 and 18. Thus, it would be

prudent to investigate whether any chaotic orbits exist in our

chosen dynamical systems. We define chaotic orbits in our

FIG. 9. Field plots for the flow velocity

~v? in the yz-plane for j0 ¼ 40 and (a)

b¼ 0 (unbounded twist) and (b) b¼ 10

(local twist).

FIG. 10. Particle trajectories for the

weak electric field regime E0 ¼ 100,

initial pitch angle 130�, initial position
z¼ 0, on the unit circle b ¼ 60�, with
current j0 ¼ 40, b¼ 0 (top panel) and

b¼ 10 (bottom panel).
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context as; infinitesimal differences in initial conditions yield

widely diverging orbits. We determine the presences of cha-

otic orbits with the calculation of positive Lyapunov expo-

nents in its spectrum.

A. Calculating the complete Lyapunov spectrum

One of the common methods to quantify chaotic behav-

iour of a system’s dynamics is to calculate the Lyapunov char-

acteristic exponents (LCEs). Lyapunov exponents measure

the separation in time of two orbits starting from arbitrary

close initial points. If we regard this small initial separation as

a hypersphere of initial points in phase space, and evolve this

set through time the dynamics of the system will causes the

axes to expand and contract in different directions. The aver-

age exponential expansion and contraction rate of each axis

are measured by the complete spectrum of Lyapunov expo-

nents. To calculate the full spectrum of LCEs for the two dy-

namical systems investigated (sheared and torsional spine),

we adopt the algorithm discussed in Refs. 25–27.

The 6-dimensional autonomous smooth dynamical sys-

tem defined by Eqs. (4) and (5) can be written in the general-

ised form

_~x ¼ ~Fð~xÞ: (20)

Suppose (20) has a solution ~f tð~xÞ, thus satisfies ~Fð~f tð~xÞÞ
¼ _~f tð~xÞ. Given the initial condition~x0 we have ~f tð~x0Þ, where
~f 0ð~x0Þ ¼~x0 thus the set ½~f tð~x0Þ : t 2 R� is a trajectory of the

system with starting point ~x0 and time t. If we consider a

small perturbation ~u0 thus obtaining two nearby points ~x0
and ~x0 þ~u0 there respective trajectories after some time are

~f tð~x0Þ and ~f tð~x0 þ~u0Þ giving there new separation as

~ut ¼ ~f tð~x0 þ~u0Þ �~f tð~x0Þ ¼ D~x0
~f tð~x0Þ �~u0; (21)

where D~x0 is the derivative with respect to ~x0 thus the

last term is obtained by linearising ~f t. Therefore, the

Lyapunov exponent for the expansion of the two trajectories

is defined as

k ~x0;~u0ð Þ ¼ lim
t!1

1

t
ln

jj~utjj
jj~u0 jj

¼ lim
t!1

1

t
lnjjD~x0

~f t ~x0ð Þjj; (22)

where jj � jj is defined as the Euclidean norm. Equation (22)

provides us with only one LCE since we have only

FIG. 11. Particle trajectories for

E0 ¼ 1500V/m, initial pitch angle 130�

and j0 ¼ 40. Initial position on the unit

circle b ¼ 60� for z ¼ ½0; 0:3ðgreenÞ;
0:6ðredÞ; �0:3ðblueÞ; �0:6ðmagentaÞ�,
respectively. Top and bottom panels

correspond to b¼ 0 (unbounded

twist) and b¼ 10 (localised twist),

respectively.

FIG. 12. Kinetic energy vs time for

trajectories in Figure 11. Left and right

panels correspond to b¼ 0 and b¼ 10,

respectively.
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considered a single tangent vector ~u0. We can extend this

definition by considering the LCEs of order 6 which describe

the mean rate of growth of a 6-dimensional volume i.e., a

parallelepiped whose edges correspond to the set of 6 line-

arly independent vectors U0 ¼ ½~u1;…;~u6�, thus the LCEs of

order 6

k6 ~x0;U0ð Þ ¼ lim
t!1

1

t
ln½Vol6ðD~x

~f t U0ð ÞÞ�; (23)

where Vol6 is the 6-dimensional volume of the parallelepi-

ped. Equation (23) can be expanded to obtain27 in descend-

ing order

k6ð~x0;U0Þ ¼ kð~x;~u1Þ þ � � � þ kð~x;~u6Þ; (24)

we define k1 ¼ kð~x;~u1Þ etc. Since the dynamical system con-

cerned here is conservative it is a measure-preserving flow

and thus
P6

i¼1 ki ¼ 0. Summarising, we calculate the

“fiducial” trajectory (centre of the volume) by the action of

the set of nonlinear equations on the initial condition x0. The

trajectory of the volume is calculated by the action of the lin-

earised set of equations on the initial vectors U0 which are

anchored infinitesimally close to x0 (see Eq. (21)). The line-

arised set of equations take the following form:

_Ut ¼ J � Ut; (25)

where J is the Jacobian matrix of the nonlinear system (20).

The spectral calculation of the Lyapunov exponents requires

the integration of the nonlinear system of 6 equations, (20),

together with the integration of the linearised system of 36

equations, (25). Such a calculation has a tendency to align

the axes (Ut) in the direction of the most rapid growth thus

no longer maintaining there orthonormality, resulting in only

calculating the largest LCE.26 This problem can be overcome

by repeatedly applying the Gram-Schmidt reorthonormalisa-

tion (GSR) procedure on the vector frame Ut ¼ ½~u1;…;~u6�
at time t,

~w1 ¼ ~u1; ~v1 ¼
~w1

jj~w1jj
;

~w2 ¼ ~u2 � h~u2;~v1i~v1; ~v2 ¼
~w2

jj~w2jj
;

.

.

.
.
.
.

~w6 ¼ ~u6 �
X

5

i¼1

h~u6;~vii~vi; ~v6 ¼
~w6

jj~w6jj
;

(26)

where h�i signifies the inner product. The GSR procedure

provides us with the orthonormal set Vt ¼ ½~v1;…;~v6�. It is
clear that the orientation of the first vector ~u1 is unchanged

by GSR and thus seeks out the direction in tangent space

which is most rapidly growing. It follows from (26) that the

volume of the 6-dimensional parallelepiped spanned by Ut

satisfies

Vol6½~u1;…;~u6� ¼ jj~w1jj � � � jj~w6jj: (27)

The 6th order LCEs (23) can be rewritten to obtain for the

sth step

k6 ~x0;U0ð Þ ¼ lim
s!1

1

sdh

X

s

i¼1

ln jj~w1jj � � � jj~w6jjð Þi; (28)

where dh denotes the step size and ðjj~w1jj � � � jj~w6jjÞi denotes
the set of orthogonal vectors calculated at the ith step. Each

individual exponent can be continually calculated for a suita-

ble value of dh as

1

sdh

X

s

i¼1

ln jj~w1jjð Þi � k1;…;
1

sdh

X

s

i¼1

ln jj~w6jjð Þi � k6: (29)

Table I contains the numerically calculated Lyapunov spec-

trum for the sheared and torsional magnetic profiles investi-

gated in this paper. We find that in the weak electric field

regime in both profiles produce periodic orbits which are not

chaotic since each exponent is approximately zero. In the

strong electric field regime, the sheared model produces

TABLE I. Lyapunov spectrum for the two dynamical systems studied for various initial parameters as computed numerically using the method outlined in

Sec. IVA.

System Parameter values Lyapunov spectrum

Sheared magnetic field Figure 3 trajectories k1 ¼ 0; k4 ¼ 0

E0 ¼ 100V/m k2 ¼ 0; k5 ¼ 0

j0 ¼ 2,10 k3 ¼ 0; k6 ¼ 0

Figure 13, trajectory k1 ¼ 0:05; k4 ¼ �0:0028

E0 ¼ 1500V/m k2 ¼ 0:005; k5 ¼ �0:0226

j0 ¼ 10 k3 ¼ �0:001; k6 ¼ �0:0287

Torsional magnetic field Figure 10, trajectories k1 ¼ 0; k4 ¼ 0

E0 ¼ 100V/m k2 ¼ 0; k5 ¼ 0

b¼ 0,10 k3 ¼ 0; k6 ¼ 0

Figure 11, trajectory k1 ¼ 0:2846; k4 ¼ 0:0049

E0 ¼ 1500V/m k2 ¼ 0:109; k5 ¼ �0:1133

b¼ 0 k3 ¼ 0:0021; k6 ¼ �0:2874

Figure 11, trajectory k1 ¼ 0:2675; k4 ¼ �0:0074

E0 ¼ 1500V/m k2 ¼ 0:1089; k5 ¼ �0:0975

b¼ 0 k3 ¼ 0:0386; k6 ¼ 0:31
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weak hyperchaotic trajectories if the particle approaches the

null point very closely (as in Figure 13). We define hyper-

chaotic orbits as having two or more positive Lyapunov

exponents.26 The torsional model produces hyperchaotic

orbits for particles with initial position off the fan plane.

This suggests the chaotic orbits exist if the particle propa-

gates into regions of strong electric field since the orbits are

not chaotic in weak or zero electric field regions (fan plane

for the torsional model and anywhere away from the spine

for the sheared model). Since both the models obey the con-

servation of energy, they are measure preserving flows.

Thus, the sum of the Lyapunov exponents should be zero as

discussed earlier. From Table I, we see that this is indeed the

case.

V. CONCLUSION

We investigated the dynamics of particle motion in a

new class of electromagnetic field configurations, namely,

the sheared and torsional spine reconnection scenarios which

are solutions to the kinematic, steady state, resistive MHD

equations at a 3D null point. The particle trajectories were

calculated by using a numerical code which solved the 6th

order set of nonlinear ordinary differential equations describ-

ing the motion of a particle under the influence of a magnetic

and electric field. The method applied to solve the governing

equations is the 7-step ABM predictor corrector scheme (see

Sec. II).

We found that the two model magnetic fields produced

very different electric fields and as a consequence very dif-

ferent plasma flows ~v? perpendicular to the magnetic field.

The sheared model produced plasma flows with well defined

inflow and outflow regions. Such magnetic configuration

may be a possible particle accelerator; significant particle

acceleration occurs for particles which drift into the non-

adiabatic region close to the null point and the particle is

freely accelerated by the strong electric field located there.

The parameter j0 controlled the amount of shear across the

fan plane and we found that for increased shear the optimum

angle of approach occurs at higher latitudes and the range of

accelerated particles also increases. On the other hand, parti-

cle acceleration in the torsional case looked unlikely due to

the flows being mainly outward (Figure 9). Although for the

b¼ 0 case of unbounded twist, the particles with initial posi-

tion below the fan plane exhibit a bounce motion whilst or-

biting the spine due to the opposing electric and flow field

(Figure 11). For most initial positions and model parameters,

the particles simply follow the bulk velocity moving away

from the null point.

We carried out further investigations to truly confirm the

existence of chaotic orbits. We calculated the full spectrum of

Lyapunov characteristic exponents which measure the aver-

age exponential rate of divergence or convergence of orbits

starting from nearby initial conditions. We found that for the

sheared model the chaotic orbits exist only for trajectories

that are close to the null point; however, the nearby trajecto-

ries diverge slowly as suggested by the very small, largest

Lyapunov exponent (see Table I). The torsional model on the

other hand produces hyperchaotic orbits in the strong electric

field regime for particles with initial conditions not on the fan

plane. This is evident from multiple positive Lyapunov expo-

nents. The main conclusion from this study is that although

the sheared magnetic field model is the most promising parti-

cle accelerator, the torsional magnetic field model is far more

interesting dynamically due to the highly chaotic nature of

particle motions in this configuration.
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