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ABSTRACT

The movement of molecules inside living cells is a fundamental feature of biological 

processes. The ability to both observe and analyse the details of molecular diffusion in 

vivo at the single molecule and single cell level can add significant insight into 

understanding molecular architectures of diffusing molecules and the nanoscale 

environment in which the molecules diffuse. The tool of choice for monitoring dynamic 

molecular localization in live cells is fluorescence microscopy, especially so combining 

total internal reflection fluorescence (TIRF) with the use of fluorescent protein (FP) 

reporters in offering exceptional imaging contrast for dynamic processes in the cell 

membrane under relatively physiological conditions compared to competing single 

molecule techniques. There exist several different complex modes of diffusion, and 

discriminating these from each other is challenging at the molecular level due to 

underlying stochastic behaviour. Analysis is traditionally performed using mean 

square displacements of tracked particles, however, this generally requires more 

data points than is typical for single FP tracks due to photophysical instability. 

Presented here is a novel approach allowing robust Ba  yesian r  anking of d  iffusion 

processes (BARD) to discriminate multiple complex modes probabilistically. It is a 

computational approach which biologists can use to understand single molecule 

features in live cells.

Keywords/phrases: Diffusion, confinement, fluorescent proteins, in vivo imaging, 

single particle tracking, membrane heterogeneity

1. INTRODUCTION

Biological processes in the cell membrane are hard to replicate in artificial bio-mimetic 

membranes in vitro as the native protein-lipid architectures and dynamics in the 

membrane environment are far from well understood, even in the simplest prokaryotic 

organisms such as bacteria, let alone in more complex eukaryotic cells. An emerging 

paradigm for membrane sub-structure has changed from that of a freely-mixed system 

embodied by the classic Singer-Nicholson model [1] to the concept of a 

compartmentalized fluid [2-4]. It is the interactions between diffusing proteins and the 
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underlying membrane sub-structure that maintains the observed heterogeneity. Several 

observations have led to this hypothesis; on a macroscopic length scale of several 

hundred nanometres, the diffusion coefficient of  proteins are one to two orders of 

magnitude lower than those observed in artificial membranes [4-9], also the observation 

that membrane proteins have dramatic drops in diffusion rates upon oligomerization or 

aggregation [4, 10, 11], incommensurate with Saffman-Delbrück modelling [12, 13] 

which represents the standard analytical method for characterizing the frictional drag of 

protein molecules in lipid bilayers. Non-specific interactions are also attributed to 

membrane heterogeneity; for example, simple lipid bilayers protein-lipid and lipid-lipid 

interactions can cause proteins to partition into self-associating clusters [14], creating 

protein-rich or poor regions in cells. Also, there is some evidence for regions of lipid 

micro- and nanoscale structure identified in some eukaryotic membranes commonly 

referred to as lipid “rafts”, which often appear to be consistent with mobile regions of 

phase-separated membrane that exist in an ordered, dense liquid phase surrounded by 

a more fluidic phase [15, 16]. These may be of functional advantage to signalling 

systems as well as being implicated in protein partitioning. 

What is apparent is that there exists significant heterogeneity in local membrane 

architecture for a range of important biological functions. A key method for investigating 

the complex environment of the cell membrane is to monitor the fine details of diffusion 

of single molecules and complexes in native membranes. A tool of choice is 

fluorescence microscopy. This offers relatively minimal perturbation to native physiology 

whilst presenting an exceptional imaging contrast at single-molecule sensitivity levels 

that can allow the movement of individual fluorophore-tagged molecules, such as 

proteins and lipids, to be tracked with nanoscale precision [17-19]. 

Single particle tracking (SPT) approaches in general are powerful for 

interrogating dynamic membrane processes. Earlier studies involved colloidal gold for 

tracking [4, 20]. This has a clear advantage of an exceptionally high signal-to-noise ratio 

for particle detection with no danger of probe photobleaching, which permits longer 

tracks to be obtained with very short sampling time intervals at the sub-millisecond 

level. However, a significant disadvantage is the size of the probe at typically tens to 

hundreds of nanometres –  this is often larger than underlying sub-structures of the 
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membrane. SPT of fluorescently-labelled particles in the membrane offers significant 

advantages in using a much smaller probe on the nanometre scale. This was first 

applied using organic dye labelling [21, 22], but the recent use of genomically-encoded 

fluorescent protein (FP) reporters, such as green fluorescent protein (GFP) and its 

different coloured variants, has enabled many SPT studies to be performed on living 

cells with exceptional tagging specificity for the protein under investigation [23]. 

The most robust fluorescence imaging method for probing molecular level 

localization in the cell membrane is TIRF microscopy (see [24] for a discussion). This 

uses typically laser excitation at a highly oblique angle of incidence to generate an 

evanescent excitation field in the water-based environment of the sample - this can be 

thought of as an “optical slice”  of ~100 nm thickness on the surface of the glass 

microscope slide/coverslip on which a cell sample is mounted. This results in significant 

excitation of fluorescently-labelled molecules in the cell membrane in the vicinity of the 

slide/coverslip surface. There is minimal excitation of components beyond this, either in 

the cell or from background fluorescence in the physiological buffer, therefore the 

signal-to-noise ratio for imaging membrane components is increased substantially. The 

end result is a very high detection contrast for fluorescently-labelled molecules and 

complexes in the cell membrane.

Four principal different diffusive modes are illustrated schematically in figure 1a, 

b with figure 1c plotting idealized mean square displacement (MSD) versus time interval 

t [25]. Brownian motion represents “normal”  diffusion and is the simplest mode of 

diffusion characterized by a linear relation between MSD and t. However, a tracked 

protein trajectory for which the MSD reaches an asymptote at high t is indicative of 

confined diffusion, suggesting that the tracked protein is being trapped by its local 

environment - such corrals have been hypothesized as being important to forming 

nanoscale reaction chambers thereby greatly enhancing chemical efficiency [4, 9, 26-

28]. Directed motion has an upwardly parabolic MSD function versus t and is seen for 

example during active diffusive processes such as those which occur when molecular 

motors walk on microtubules [29, 30]. The final class of diffusion has many examples in 

biology and is defined by so-called anomalous or sub-diffusive behaviour [31]. This 

motion is usually modelled as an MSD being proportional to tα where α is a coefficient 
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between 0 and 1; this mode may, for example, represent the percolation of a protein 

through the disordered media of the membrane, hopping across corrals or interactions 

with specialized domains [32-35]. 

What is apparent from the in vivo single particle tracking studies that have 

emerged over the past decade is that diffusion of molecules and complexes in living 

cells is in general not simple when viewed over the broad time scale of milliseconds to 

seconds relevant to many essential biological processes, and the reason for this may be 

fundamentally linked to critical sub-structural features of cells which are characterized 

over a length scale of a few to several hundred nanometres. There is therefore a 

compelling biological need to try to understand these complex diffusive processes.

Several analytical approaches have been attempted for characterizing diffusion 

in the cell membrane in addition to standard Saffman-Delbrück modelling, often 

involving heuristic approaches [11, 36]. A common approach has been to measure the 

ratio of the MSD with that expected from simple Brownian motion, embodied by a 

“relative deviation” parameter [26]. For directed motion, this parameter increases with t, 

whereas for confined motion, it decreases. However, these types of MSD analysis 

approaches are weak on several levels when applied to tracks generated from FP-

tagged molecular complexes in vivo. Firstly, trajectories are determined from a low 

signal-to-noise ratio environment in which only tracks of short duration are able to be 

measured due primarily to the poor photophysics of the fluorophore resulting in scant, 

imprecise MSD information at high t [37]. Secondly, trajectories are generated from a 

stochastic process, implying significant deviations from the idealized graphs of figure 1c. 

In addition, this method is highly reliant upon an accurate measurement of the diffusion 

coefficient, which in the noisy, heterogeneous environment of the cell membrane may 

prove very challenging. 

An appeal of MSD analysis lies in its relative simplicity to address qualitative 

questions concerning the membrane environment, for example effects of molecular 

crowding or confinement [38, 39]. However, as figure 1d, e illustrate there is an 

expected statistical spread of the MSD traces for pure Brownian diffusion simply 

on the basis of diffusion being a stochastical process, that could be erroneously 

interpreted as a different diffusive behaviour judged by any individual MSD 
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curve from a single particle trajectory. Population averaging can smooth out such 

variation to obtain average behaviour, but with the unfortunate result that we lose 

informative data concerning the biological heterogeneity of the ensemble of diffusing 

molecular complexes. Recent improvements to MSD analyses have involved 

applications of some diffusion propagators directly. The propagators define the 

probability distributions that a diffusing particle will be at a given distance from its 

origin after a given time. These methods have been used in estimating cumulative 

probability distributions to substantiate the presence of different non-Brownian 

diffusive modes [33, 40, 41]. 

Our new approach here is to present an inference scheme that can separate 

the distinct types of diffusive modes of individual trajectories without population 

averaging, and do so in a probabilistic fashion, given conditions imposed on real 

experimental data. This can then be combined with photophysical information to 

quantify molecular stoichometry of diffusing complexes thus allowing probing of 

non-trivial relations between the size of a molecular complex and how fast it 

moves in vivo. The inference of these diffusive modes is done using a Bayesian 

approach, incorporating a priori knowledge, based on both simulation and 

experiment. We denote this as Ba  yesian r  anking of d  iffusion (BARD).

 Our study outlines the principles of the inference in light of the theory of diffusive 

processes. We describe the details of simulation using the different diffusive modes, 

and the inference algorithm used in separating out diffusive modes in a quantitative, 

probabilistic manner. We validate the inference using realistic simulated data, and apply 

to two different cell strains expressing FP fusion constructs to different membrane 

proteins. We obtain these live-cell data using TIRF microscopy. One cell strain 

expresses a single transmembrane helix probe in the cell membrane with a GFP fusion 

protein. The second strain is a yellow fluorescent protein (YFP) fusion to single twin-

arginine translocation (Tat) protein complexes expressed in the cytoplasmic membranes 

of living bacteria, which exhibit significant real heterogeneity in terms of molecular 

stoichiometry, architecture and mobility. 

The key concepts of these analyses are described in the Materials and Methods 

section of the main paper, with the specifics in the Supplementary Material.
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2. MATERIALS AND METHODS

(a) Bacterial cell strain and preparation

Two different Escherichia coli strains were used in our in vivo microscopy investigations. 

One was cell strain AyBC, as studied previously [11], using identical cell preparation 

conditions. This represents a heterogeneous, oligomeric membrane protein system. The 

cell strain contained a construct specifying a C-terminal enhanced YFP tag (Clontech 

Laboratories Inc., Mountain View, CA) to the native E. coli protein TatA on the 

cytoplasmic side of the membrane. The Tat system of bacteria translocates natively 

folded protein substrates across the cytoplasmic membrane through a nanopore whose 

walls are composed of subunits of the TatA protein (figure 2a). In addition to TatA, there 

are two other essential proteins in the Tat system, TatB and TatC, implicated both in 

substrate recruitment and gating of the TatA nanopore (figure 2b). 

A second fusion construct was also investigated, denoted Helix1021-GFP 

(figure 2b). This represents a far less complex membrane protein system, which 

consisted of just a simple model membrane protein of a single membrane-spanning 

alpha-helix fused to a GFP tag on the cytoplasmic side of the membrane [42]. The 

fusion gene coding for this model membrane protein used the open reading frame 

sll1021 in the cyanobacterium Synechocystis sp. PCC6803 as a start point, but 

expressing this as a membrane protein in E. coli for which there were no identified 

orthologues. The protein has an undetermined function but has been identified in the 

plasma membrane of Synechocystis [43], with the predicted gene product consisting of 

673 amino-acids with a single predicted transmembrane alpha-helix close to the N-

terminus. A portion of the sll1021 sequence coding for 38 amino-acids including the 

predicted transmembrane alpha-helix was fused in-frame to the gene coding for 

GFPmut3* [44] with a linker of 5 asparagine residues. This construct was expressed in 

E. coli cells from the arabinose-inducible pBAD24 vector [45], with a predicted topology 

for the model fusion protein suggesting a 3 C-terminus residue overhang into the 

periplasm, 19 residues which then constitute the transmembrane alpha-helix spanning 

the cytoplasmic membrane, and 16 residues which overhang on the N-terminus side 

into the cytoplasm, followed by the GFP tag.  
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Cells of both strains were grown in Luria-Bertani (LB) medium [46] aerobically 

with shaking overnight at 37°C, and supplemented with 50 μg/ml ampicillin for correct 

antibiotic-resistant colony selection. Cells were diluted by 1:100 from the saturated 

cultured into M63 minimal media for sub-culturing, and were grown to mid-exponential 

phase typically for 3.5 hours at 30°C. For the Helix1021-GFP strain, L-arabinose was 

added to the culture at a final concentration of 2 mM. Cells were injected into a 5-10 µl 

flow-cell with poly-L-lysine-coated glass coverslips as the lower surface, allowed to 

settle for 10 min, washed with excess M63 and incubated with a 0.1% suspension of 

202 nm diameter latex microspheres (Invitrogen Ltd., Paisley, UK) for 2 min to mark the 

coverslip surface, and washed with excess M63 buffer.

(b) TIRF microscopy and single particle tracking

A home-built inverted TIRF microscope was used with either a 473 nm laser for GFP 

excitation, or a 532 nm excitation wavelength for YFP excitation, with excitation intensity 

in the range 250-500 W cm-2 and measured depth of evanescent field penetration 

110 ± 10 nm, with specifications as described previously [7, 11, 28, 47-50], using either 

473 nm or 532 nm laser dichroic mirrors and notch-rejection filters (Semrock) as 

appropriate. The focal plane was set at 100 nm from the coverslip surface to image the 

cell membrane conjugated to the glass coverslip. Fluorescence emission was imaged at 

~40 nm/pixel in frame-transfer mode at 25 Hz by a 128x128-pixel, cooled, back-thinned 

electron-multiplying charge-coupled device camera (iXon+ DV860-BI, Andor 

Technology). Images were sampled for typically ~8 s. Fluorescent particle positions on 

each time-stamped image frame were detected and fitted using automated custom-

written image-analysis software which fitted a two-dimensional radial Gaussian function 

plus planar local background to the image intensity data for each candidate particle. 

This generated the fluorescence intensity for each distinct diffusing “spot”  of 

fluorescence in the cell of typical width 300-400 nm, either due to a TatA-YFP complex 

or an assemblage of Helix1021-GFP molecules, plus the local background intensity per 

pixel due to any autofluorescence and/or diffuse fluorescence components, and 

outputted the intensity centroid to a sub-pixel precision of ~40 nm for single FP 

8



molecules, and down to 5-10 nm for molecular complexes/assemblages containing 

more typically ~tens of FP molecules. 

Tracks were generated from each particle provided tolerance criteria in 

subsequent image frames were satisfied on the basis of size, intensity and position of 

detected particles in subsequent image frames, for at least five consecutive image 

frames.  The MSD versus time interval relation was then calculated for each particle 

trajectory, as described previously [11]. Using a Fourier spectral approach we were able 

to estimate the stoichiometry of these complexes through step-wise photobleaching of 

the relevant fluorescent protein molecule [7]. 

(c) Implementing and validating the BARD algorithm

Generation of synthetic tracks for validation. Two-dimensional simulated tracks for 

use in validation were generated in a standard way by a stochastic random walk 

process in MATLAB (The MathWorks, Natick, MA) to approximate real diffusion for the 

fluorescently-labelled proteins in cytoplasmic membranes of E. coli cells, sampling at 

the same 40 ms video-rate time interval as for experimental imaging, with track 

durations of typically 0.8 s (see figure S1, Supplementary Material).

Bayesian formulation. The general principle of Bayesian inference is to quantify 

the present state of knowledge and refine this on the basis of new data, under-

pinned by Bayes’ theorem, emerging from the definition of conditional probabilities (fur-

ther details, see Supplementary Material). In words this is simply: 

Posterior=(Likelihood x Prior)/Evidence

There are two stages in our statistical inference; parameter inference and model se-

lection. Both use an application of Bayes’  Theorem. The first stage infers the pos-

terior distributions about each model parameter, which is defined as:

( ) ( ) ( )
( )

| , |
| ,

|

P d w M P w M
P w d M

P d M
=

.

Here, M is a specific diffusion model, w is a model parameter and d represents SPT 

data, and a phrase “P(A|B)” means “the probability of A occurring given that B has 

occurred” . This stage is independent of other models, but is conditioned on one 
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single model, M. Both the posterior and likelihood are conditioned upon the data d. 

We can now explain the three names of the terms above:

• The likelihood, P(d|w,M): the probability distribution of the data for a 

given parameter.

• The prior, P(w|M): the initial distribution prior to any conditioning by 

the data. Priors embody our initial estimate of the system, such as 

distribution of the parameters or the expected order of magnitude. 

• The posterior, P(w|d,M): the distribution of the parameter following the 

conditioning by the data.

The second stage in our statistical inference is model selection. This invokes anoth-

er application of Bayes’ Theorem:

( ) ( ) ( )
( )

|
|

P d M P M
P M d

P d
=

.

P(M|d) is a number which is the model posterior, or probability. P(M) is a number 

which is the model prior, P(d|M) is a number which is the model likelihood and P(d) 

is a number which is a normalising factor which accounts for all possible models. 

This now generates the posterior (i.e. probability) for a specific model.

Linking the two stages in our statistical inference is the term P(d|M), the mod-

el likelihood. This is also the normalisation term in the first stage. As model priors 

are usually flat (i.e. all models are expected equally), P  (d|M) is often referred to as 

the “evidence”, a portable unitless quantity. In the general case, comparing the P  (d|

M) values for each independent model allows us to rank and select models (Supple-

mentary Material)

Diffusion Models. As proof-of-principle, we used four standard diffusion models 

which are typical of observed molecular scale motion in living cells (Tables S1 and 

S2, Supplementary Material). These were Brownian, anomalous, confined and 

directed diffusion, and we used the underlying propagators associated with each 

different diffusion model directly (full details in Supplementary Material).

Inference in BARD. The inference scheme was split into two forms. One uses the 

likelihoods based on the mean square displacement distribution of each track, which 

we call the MSD method. The second uses the probability distribution functions 
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directly on the individual frame-by-frame spatial displacements measured for each 

track, which we call the PDF method. These form the likelihoods, P(w|d,M) 

(Supplementary Material). 

As discussed in the Results section, the PDF method performed more 

accurately in many applications for comparing just two different non-confined 

diffusion models, such as anomalous diffusion with Brownian, but could not be 

applied to cases of confined diffusion, in which circumstance the MSD method was 

applied. Both approaches result in an estimate for the preliminary likelihood 

associated with each given single particle track.

The prior distribution for the diffusion coefficients D for Brownian diffusion, 

and the equivalent transport coefficient Kα for anomalous diffusion, were modelled 

as Gamma distributions (Supplementary Material, and see ref. [51] for a 

discussion of using a Gamma distribution). The prior distributions for the effective 

characteristic confinement radius R for the confined diffusion model, and for the 

mean drift speed v for the directed diffusion model, were both approximated as 

exponential distributions with expected sizes in the range of values that had been 

measured from several earlier studies in other biological systems (see Table S3, 

Supplementary Material). The α  factor in the anomalous diffusion model was 

assumed to be uniform (i.e. flat) in the range 0.5-1.0 without further modelling. 

We have no a priori expectations to indicate how this factor would be distributed. 

The literature at present suggests multiple models of sub-diffusion, so the 

sensible consensus prior in light of this would be flat. However, an extension 

would be to discriminate between these different families.  Either way, our uniform 

assumption can account for the experimental observations of anomalous diffusion 

with an anomalous coefficient of ~0.7-0.8.

BARD Implementation. To implement our BARD algorithm, the following steps 

were taken:

1. Quantify all of the microscopic diffusion coefficients, Dm, from the single 

particle tracking data (shown here for simulated Brownian diffusion tracks 

in figure 4a). Here, Dm gives a measure of the short time scale rate of 

diffusion and is estimated from a linear fit of the MSD data of each 
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individual track using the first four data points (full details in Supplementary 

Material). 

2. Fit a Gamma distribution to the distribution of all Dm (figure 4b) and use this fit 

to generate the two characteristic shape parameters of this function. Then use 

these shape parameters to generate the diffusion coefficient prior (see Equation 

S11 and S12, Supplementary Material, and figure 4c, top panel). 

3. Calculate the other parameter priors for α, R and v for the anomalous, confined 

and directed diffusion models (Table S3, Supplementary Material).

4. For each separate single particle track we then calculated the likelihood (either 

using Equation S8 for the PDF method, or Equation S9 for the MSD method, see 

Supplementary Material).

5. We then estimated the unnormalized posterior for each single particle track 

against each diffusion model, taken for the pure Brownian diffusion model as:

Posterior = Likelihood(Brownian propagator) x Prior(Dm)

For the anomalous diffusion model as:

Posterior = Likelihood(anomalous propagator) x Prior(Kα) x Prior(α)

For the confined diffusion model as:

Posterior = Likelihood(confined propagator) x Prior(Dm) x Prior(R)

And for the directed diffusion model as:

Posterior = Likelihood(directed propagator) x Prior(Dm) x Prior(v)

An example of the unnormalized Brownian model posterior distribution for a 

typical simulated track is shown in figure 4c, lower panel. The posteriors for 

the other diffusion models are shown for the same example track in figure 

4d- f.

6. Normalize the parameter posterior distributions from stage 4 (details in 

Supplementary Material, equation S4), calculating the evidence term. This is the 

final step in the parameter inference section, which bridges to the second 

inference stage (i.e. model selection).

7. Model selection: Calculate the model posterior. Rank the models on the basis 

of the size of the model posterior (a numeric probability). This final step 

then yields a probability estimate for a given model, relative to all the other 
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models investigated: P(M|d). For example, for the example track shown in 

figure 4a, which was simulated using a pure Brownian diffusion propagator 

function, the inference ranking probabilities which were generated from the 

four candidate diffusion models of anomalous, Brownian, directed and 

confined are 33.1%, 65.6%, 1.1% and 0.2% respectively, and so in this 

instance Brownian diffusion is the favoured model. This is not to say that 

the absolute probability that the Brownian diffusion model is the correct 

one is ~66%, but rather that it has the highest probability of being true 

from the set of candidate models investigated.

8. For the top-ranked diffusion model for each single particle track we then 

automatically locate the centroid of the posterior, to indicate the specific 

value of the transport parameter for that particular diffusion model. This is 

done using a Gaussian fit about the posterior peak. 

9. Repeat this process for all single particle tracks in the data set.  

Modelling mobility changes due to switches in diffusion coefficient.

In order to demonstrate that the framework presented here can be extended to 

even more complicated cases of heterogeneous diffusion environments, we 

simulated a change in lateral diffusion coefficient as might be experienced 

by a single molecular complex undergoing transitions to multiple kinetic states. This 

may occur in signalling systems with transitions between ligand-bound and unbound 

states, or be due to a change in lateral mobility due to interactions with the 

underlying membrane such as local changes in viscosity [16] or interactions with the 

membrane cytoskeleton. 

3. RESULTS

(a) TIRF microscopy on live bacterial cells

Bespoke video-rate TIRF microscopy at 40 ms per frame (figure 3a) was performed on 

GFP-labelled Helix1021 and YFP-labelled TatA membrane protein complexes, resulting 

in the appearance of multiple distinct diffusing fluorescent “spots” in each cell that could 

be tracked automatically from frame to frame. These spots were typically ~300-400 nm 
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in width. This was larger than we measured for the point spread function width from 

single fluorescent protein molecules immobilized to the surface of the coverslip by 

~100 nm [7]. The measured point spread function width of single FP molecules of 

~200-300 nm is equivalent to the optical resolution limit of our microscope and is an 

inevitable feature due to diffraction of emitted fluorescence when the detector, in our 

case an EMCCD camera, is physically more than a few wavelengths distance away. 

The TatA system had been characterized previously using epifluorescence 

microscopy that indicated multiple spots per cell (mean of ~15) with a range of 

fluorescence intensities, diffusing over the cytoplasmic membrane surface [11]. Our aim 

in the present study was to use TIRF illumination to improve the imaging contrast 

sufficiently to generate single particle trajectories in the TIRF evanescent field in the 

specimen focal plane, corresponding to localization of either the Helix1021 or TatA in 

the cytoplasmic membrane. This would then permit analysis of the transport properties 

of these proteins at the single molecule/single molecular complex level for a relatively 

simple membrane protein probe at one extreme and for a complex heterogeneous 

membrane protein molecular complex at the other, both in functional, living cells. 

Using automated single particle tracking [11] we were able to track individual 

fluorescent spots to a super-resolution precision of ~40 nm or less. Experimental single 

particle tracks were collated and MSD values estimated (full details in Supplementary 

Materials). The longest duration tracks lasted typically ~1 s, but in most cases the tracks 

were shorter, with ~10 data points per track being more typical. 

For the TatA-YFP data, cells contained typically ~2-3 fluorescent spots in TIRF 

images (figure 3b), suggesting ~12-18 spots per cell since the TIRF evanescent field of 

our microscope we estimate encapsulates roughly 1/6 of the E. coli cell membrane. 

Most MSD traces indicated putative evidence for Brownian diffusion, with typical values 

of D ≈ 0.01 µm2 s-1.  This was consistent with the earlier investigation, but with 

qualitative evidence from some putatively asymptotic MSD traces for a smaller sub-

population of relatively immobile spots, as had been reported in the previous study but 

not robustly quantified [11]. Prior, likelihood and posterior distributions were estimated 

for each single particle track. 
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The Helix1021-GFP cells contained typically ~4-6 fluorescent spots per TIRF 

image (figure 3c), suggesting more like ~30 spots in total in the whole cell membrane. 

MSD data again indicated putative evidence for two populations in terms of diffusive 

modes, one of Brownian diffusion with typical values of diffusion coefficient higher by 

factor of ~5-10 than the TatA-YFP data, and the other mode again qualitatively 

suggesting confined diffusion.

(b) Model ranking and parameter estimation

To validate our approach we tested the inference method using realistic simulated 

two-dimensional SPT input data utilizing mobility parameters with characteristic 

values comparable to those estimated qualitatively for the experimental Helix1021-

GFP and TatA-YFP data from the MSD plots. We then analyzed both the 

parameter estimates and model rankings outputs. The correctness of the 

model ranking was assessed by classification matrices. A classification 

matrix represents different “input”  simulated diffusion models down the rows, 

i, while the different “output”  diffusion models from the ranking inference are 

represented across the columns, j, and then each location in the matrix is 

given an associated number for the percentage of tracks that are included in 

that particular (i, j) class combination. 

In figure 5 we show the results of two example classification matrices, one 

corresponding to likelihood estimation using the MSD method in figure 5a, the other 

to the PDF method in figure 5b. Previous experiments on other biological systems 

which involve examples of directed diffusion, for example with putative protein 

treadmilling studies in vivo [29], suggested different values for characteristic 

diffusion coefficients, and so directed diffusion model ranking was done separately 

(Supplementary Material). In this case, we investigated a range of different drift 

speeds from 1-20 nm s-1. This indicated that at typical drift speeds used the directed 

diffusion model can be correctly identified against a Brownian model with a relative 

probability of ~60-70%.

Using the MSD method, confined and Brownian diffusion could clearly be 

identified correctly with greater than 50% relative accuracy, though the true 
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identification of anomalous behaviour was poorer (~30%), probably because subtle 

sub-diffusive behaviour is not apparent for such typically short track lengths of only 

10-20 data points as used here. The inference output for confined diffusion in 

particular was unsurprisingly found to be a function of track length, with the 50% 

threshold of correct inference for tracks being composed of at least ~16 data points 

(figure S2, Supplementary Material), though the change in correct relative 

inference probability for confined diffusion was found to be only a few % when the 

confinement radius was varied across a relatively large range 50-200 nm in 

estimating the posterior distribution. This is not to say that the choice in prior 

function has little effect on the final outcome; if we use a naïve “flat”  prior 

function for the confined diffusion model (in effect, taking an infinitely large 

value for the confinement radius) then we estimate that the correct relative 

inference probability is over 20% lower compared against the non-flat 

priors used. In other words, utilizing physically sensible prior functions 

makes a substantial difference to correctly inferring the underlying type of 

diffusion (see Supplementary Material)

The PDF method is an approach which utilises information from the relative dis-

placements of a tracked molecule or complex from frame to frame, and so can not be 

applied to a confined diffusion model without a priori knowledge of the absolute position 

of the diffusing particle relative to the boundaries of the putative confinement zone, 

which in general is not the case. Therefore, for the PDF method we display in figure 5b 

the relevant classification matrix between just anomalous and Brownian diffusion mod-

els.  Here, anomalous diffusion was correctly discriminated with an accuracy of at 

least 62%,  performing better than the MSD method for corresponding diffusion 

models (for example, Brownian diffusion was correctly identified with a relative ac-

curacy of 95% using the PDF method compared with 52% for the MSD method).

(c) Identifying switches in molecular mobility

Tracks were simulated to mimic a sudden change in effective lateral diffusion 

coefficient, which have been observed previously in biological systems where 

multiple diffusion states exist [56]. Such multiple diffusion states might, for 
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example, be due to either a dramatic change in lipid viscosity for the micro- or 

nanoscale environment in which a protein molecule or complex is diffusing, or 

conversely through a rapid oligomerization or molecular assembly process of the 

diffusing complex. In this simple generalization, we assumed that the time scale 

of the transitional step between different lateral diffusion coefficients was much less 

than the sampling period. For simplicity, we assumed that diffusing particles 

make this mobility switch at the halfway point of their full simulated trajectory. 

At this point, particles were assumed to switch to a higher diffusion coefficient 

(from 0.01 µm2 s-1 to either 0.05 µm2 s-1or 0.10 µm2 s-1), assuming true Brownian 

diffusion in each case and a video-rate sampling time interval of 40 ms for which the 

number of data points in each half of a trajectory is N = 10. 

A switching inference model was formulated by separating the 

displacement data at each time point and allowing for two separate mobility 

measurements to be inferred either side of this. Figure 6 illustrates the typical 

simulated individual and time-averaged MSD outputs with model ranking 

predictions. This relatively simple switching inference modification can correctly 

predict switching behaviour characterized by two separate microscopic diffusion 

coefficients over a simple Brownian diffusion mode characterized by just a single 

microscopic diffusion coefficient, with a relative ranking probability in the range 

65-85%, depending upon the size of the switch in diffusion coefficient. Using the 

PDF approach under the same conditions generated a slight improvement to 

correct identification, and in doing so we found that the correct switching model 

was identified in preference to simple Brownian motion (that is, a ranking 

probability in excess of 50%) down to as small a change as ~3-fold in the 

microscopic diffusion coefficient.

(d) Application of BARD to live-cell experimental data 

Preliminary inspection of the MSD traces generated from automated single 

particle tracking from both the Helix1021-GFP and the TatA-YFP E. coli cell 

strains suggested a predominantly mobile population with roughly linear MSD 

versus time interval traces, in addition to a relatively immobile population 
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characterized by putatively asymptotic MSD versus time interval traces, which 

could be indicative of two possible populations corresponding predominantly to 

Brownian diffusion and confined diffusion. In the first instance, we ran a BARD 

analysis using all four standard diffusion models of anomalous, Brownian, 

confined and directed diffusion, which clearly indicated for both cell strains that 

Brownian and confined were the two most inferred diffusion models. We then 

pooled the combined inferred results from anomalous, Brownian and directed 

diffusion as constituting “mobile”  tracks, and compared this to the inferred 

confined track data on MSD versus time interval plots.

Simulated realistic track data using our standard set of mobility parameters 

(Table S3, Supplementary Material) indicated that a mixture of such mobile and 

confined tracks could be successfully discriminated, with both the imposed values 

for microscopic diffusion coefficient and confinement radius agreeing with those 

inferred from the BARD analysis to within the measurement error (Figure 7a). 

Applying BARD analysis to the Helix1021-GFP track data indicated that 

50-60% of all tracks exhibited confined diffusion with an estimated confinement 

radius of 110 ± 50 nm (± s.d.), with the mobile population characterized by a 

microscopic diffusion coefficient typically in the range 0.01-0.05 µm2 s-1 

(Figure 7b). BARD analysis applied to the TatA-YFP track  data indicated a 

smaller but still significant proportion of 30-40% of all tracks exhibiting confined 

diffusion with a mean confinement radius of 60 ± 40 nm, and the mobile 

population characterized by a smaller typical microscopic diffusion coefficient in 

the range 0.002-0.01 µm2 s-1 (Figure 7c). 

For both the Helix1021-GFP data (AR and MCL, manuscript in preparation) 

and the TatA-YFP data (Figure 8) we were able to estimate the molecular 

stoichiometry of the diffusing fluorescent spots using a Fourier spectral technique 

that utilized the step-wise photobleaching of fluorescent proteins [7]. This 

indicated a difference between the mobile and confined track populations 

suggesting that confined tracks were associated a greater typical number of 

fluorescent protein subunits. For example, we estimated the median stoichiometry 

from the mobile TatA-YFP spot population as being in the range ~20 TatA-YFP 
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molecules per spot, whereas that of the confined population was higher by ~50% 

(figure 8a). We saw no obvious differences in microscopic diffusion coefficient 

between the confined and mobile populations (figure 8b) nor of any clear 

correlation between molecular stoichiometry in each fluorescent spot and the 

inferred size of the confinement radius (figure 8c).

4. DISCUSSION 

The ability to monitor single molecules or complexes diffusing in living cells is an 

excellent example of the “next generation”  single-molecule cellular biophysics 

approaches which have emerged over the past decade. What some researchers are 

now trying to do with such exceptionally precise molecular-level data is to use them to 

increase our understanding of the functional architecture of both the diffusing molecules 

themselves and of their local cellular environment. However, to do so requires a 

development of novel computational methods that can accurately measure the 

underlying modes of diffusion from the typically noisy and limited data from these 

tracked molecules in vivo.

In this study, we describe a novel analytical method to discriminate different 

modes of diffusion, applicable to data obtained from single particle tracking of 

fluorescently labelled proteins in the cell membrane. Although the bio-computational 

algorithm in itself is complex it should find broad application for researchers in the cell 

biology field. We report our approach based on both modelling and stochastic 

simulation of multiple biologically-relevant diffusive modes experienced by proteins in 

different underlying micro- and nanoscale environments. Priors are formulated from 

both simulation and experimental work. We demonstrate how the use of the correct 

propagator functions can permit discrimination between Brownian, directed, confined 

and anomalous diffusion, even for relatively sparse data tracks. When comparing two 

diffusive modes in a pair-wise fashion our results indicate that model ranking predicts 

the correct diffusive mode for a single video-rate sampled track as short as ~0.4 s in 

duration. Furthermore, the model can be extended to permit discrimination for a 

diffusion model involving sudden switching of the diffusion coefficient during a particle’s 

trajectory.
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Two approaches were investigated, one using the MSD and the other using the 

PDF method. In each case, a prior formulation was used to describe the expected 

distribution of the parameters. Although neither approach could effectively discriminate 

between anomalous and confined modes of motion, which from the MSD curves have 

qualitatively similar shapes for noisy short tracks, we find that the PDF and MSD 

methods in tandem have different resolving power. The MSD method effectively 

identifies confined from simple Brownian motion, whereas the PDF method effectively 

identifies anomalous diffusion from Brownian diffusion. In addition, the PDF approach 

has a strong resolving power in that it can identify dynamics within a single track, as 

observed in the simulations of diffusion coefficient switching. 

The PDF method does not take into account the full effect of experimental 

noise, as distinct from random fluctuations due to the stochastic nature of the 

diffusion processes. Levels of experimental noise are likely to vary between different 

experimental equipment and need to be properly characterized for each individual 

case. However, this was qualitatively incorporated into the MSD approach, where 

Gaussian errors are assumed. Experimental noise, arising in tracking would be 

included in the error, and would add by quadrature to the expected fluctuations due 

to stochastic noise (the time interval zero point in our case assumes an MSD error of 

around 40 nm2).

Our in vivo video-rate particle trajectories contain approximately 10-30 times 

fewer data points than those used in previous studies utilizing tracking of gold particles 

[4, 26, 27, 53], organic dye labelling of clusters containing hundreds of molecules [39] or 

quantum-dot tracking [41], and are of comparable duration to those obtained previously 

using single molecule fluorescence microscopy either in artificial lipid layers or in vivo 

[11, 33, 40]. These have implemented a variety of different methodologies to analyze 

single particle trajectories involving either regression fitting of the MSD versus time 

interval relation, application of a relative deviation parameter or constructed probability 

distributions representative of the modes of interest.

The propagator functions in effect model the likelihood of an observed track. 

What our study includes is how the distribution of the parameters which formulate these 

models can be used to aid in discrimination of the diffusion processes. In fluorescence 
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microscopy, with typically very short tracks observed, it is generally infeasible to analyze 

such trajectories without some form of population averaging using conventional 

techniques. Exceptions are made of course to the occasional long track which is 

observed, or tracks which appear representative, but a majority of the body of data 

captured is noisy, and unrepresentative if multiple modes of behaviour are under 

investigation. 

Our study was aimed at being able to discriminate, without population averaging, 

such molecular-level tracks. Once individual particle trajectories are categorized into 

different modes of diffusive behaviour, models can be built on how they behave 

collectively, potentially allowing greater physiological interpretation of the protein 

mobility characteristics in functional, living cells, and hence to have a greater 

understanding on their underlying membrane micro- and nanoscale structure in a 

biologically-relevant context. We have performed a validation across the approximately 

biological relevant parameters for the datasets presented. However, extrapolating these 

to any real system should come with the caveat that the classifications can only really 

be used as a guide for the particular set of algorithm parameters and system 

parameters used.

Ultimately, since the inference scheme is probabilistic there will inevitably be 

some trajectories which are falsely categorized with the wrong behaviour, most often 

into simple Brownian motion, as shown in the classification matrices. We included 

details on how model ranking varies with respect to the number of data points to 

demonstrate that there will often be a crossover between mis-categorization and the 

correct identification. A caveat then, for interpreting any model selection on the 

experimental data would be that there is no evidence of heterogeneity under the given 

experimental conditions. If this crossover is unreachable in the experimental framework 

it will at least inform the experimentalist on the typical minimum duration of track that 

needs to be detected to permit reliable discrimination (perhaps thereby directing them to 

change the characteristics of the optical setup and/or the related biological and physico-

chemical conditions, such as the type of fluorophore used and whether the application 

of anti-bleaching reagents is required).
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In an earlier single particle tracking study on the Tat system using non-

TIRF illumination, the presence of an “immobile”  sub-population of TatA protein 

complexes was reported, but not investigated further [11]. In our study, BARD 

analysls reveals that a significant proportion of TatA-YFP complex tracks have a 

confinement radius of 60 ± 40 nm. The measured localization precision on our 

microscope for tracking a single YFP molecule is ~40 nm. However, TatA 

complexes were observed to have a broad range of stoichiometry, with a median 

value of equivalent to ~20-30 TatA-YFP subunits, consistent with that reported 

previously [11]. These complexes are therefore brighter than a single YFP 

molecule by a factor of ~20-30, with the localization precision following iterative 

Gaussian fitting of the intensity profile of these fluorescent spots scaling 

approximately by the square-root of this factor, or ~5 (see ref. [57]), so the 

localization tracking precision for most TatA-YFP complexes is more like 5-10 nm. 

Therefore, the estimated confinement radius here is substantially higher than the 

localization precision for diffusing complexes, which strongly suggests that the 

majority of the “immobile”  TatA complexes previously reported were in fact 

exhibiting true confined diffusion. 

Similarly, we observed a significant sub-population of tracks for the Helix1021-

GFP strain which exhibited confined diffusion, here with a mean confinement radius of 

110 ± 50 nm, within experimental error of that measured for the TatA-YFP strain. 

The fact that the transmembrane helix probe has no known specific interaction 

with molecular systems in E. coli suggests that the confinement domains in both 

cell strains may be represent an intrinsic feature of the cell membrane itself. 

Similar size putative confinement domains were observed previously in single 

particle tracking studies of an unrelated bacterial oxidative phosphorylation 

(OXPHOS) membrane protein [28]. This behaviour had been previously attributed 

to a possible “respirazone”  effect [49] in which different OXPHOS enzymes were 

pooled together into the same confinement domains to improve electron transfer 

efficiency throughout the OXPHOS system. However, our work here may point to 

a more generic confining feature of the cell membrane. 
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The diffusion models illustrated here are not exclusive as such – there is a 

risk that none of the models is actually the physically “correct”  one. BARD 

analysis will provide probabilistic rankings of these models, but these probabilities 

can strictly only be interpreted in the context of the other models considered, and 

do not represent an absolute probability. Model selection is open-ended; the 

models presented here do not take into account the full degree of potential 

heterogeneity that may exist in the cell membrane, and other models can be 

considered. For example, there are several theorised models of anomalous sub-

diffusion, each with a unique PDF. There may also be complex dynamic 

behaviour that has not been taken into account, such as hopping diffusion, 

reaction kinetics and molecular assembly effects. A natural extension of this 

BARD approach as we present it here is to incorporate more complex behaviour 

which may better capture the real, physiological behaviour of diffusion in living 

cells. 

Separating different mobility characteristics into different categories will clearly 

facilitate insight into several important biological questions. For example, how proteins 

partition dynamically in the cell membrane, whether signalling events are linked to 

membrane architecture, the precise manner in which motor proteins shuttle in or near to 

cell membranes, and the extent to which interacting proteins rely upon random 

collisions or are part of putative confined “solid-state”  reaction zones. Such new 

diffusion analysis tools that we report here might indeed also be further extended to 

larger length scale investigations beyond that of the single molecule and single cell, 

such as rheological or cell migration studies at the level of cellular populations in normal 

tissue development and tumour formation in cancer.
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Figure 1.  The complexity of molecular diffusion in living cells. (a), Schematic of diffusion 

(orange track) of a single molecule or complex (pink circle) in a live cell with (b) 

simulated data for the typical spatial localizations of tracked molecules in the specimen 

xy plane of a typical optical microscope illustrating four common modes of diffusion. (c) 

Idealized forms of mean square displacement (MSD) relations for anomalous (green), 

Brownian (blue), confined (red) and directed (cyan) diffusion. (d) Typical simulated 

Brownian diffusion MSD data for different diffusing molecules modelled with the same 

diffusion coefficient and (e) the mean average of many simulated MSD relations (blue 

line), blue shading indicating the stochastic spread at one s,d. illustrating the marked 

heterogeneity due just to molecular stochasticity. 
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Figure 2. Schematic of (a) membrane bound architecture of a Twin-Arginine 

Translocase TatA nanopore allowing translocation of a full folded protein substrate 

across the cytoplasmic membrane, and of (b) the TatA-YFP, TatB, TatC and Helix1021-

GFP proteins (coloured circles indicating individually amino acid residues in the native 

proteins). 
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Figure 3. In vivo TIRF microscopy on live bacteria. (a) Schematic of TIRF on an E. Coli 

cell immobilized to a glass microscope coverslip. False-colour TIRF images on single 

cells for the (b) TatA-YFP and (c) Heli1021-GFP cell strains, cell outline indicated 

(dashed lines). 
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Figure 4. Implementing BARD. (a) Simulated Brownian tracks (grey) all with diffusion 

coefficient D=0.01 µm2 s-1, with one of these tracks highlighted (black) for BARD 

analysis. (b) Distribution of measured microscopic diffusion coefficient Dm values from 

tracks in (a) with Gamma fit indicated (dashed line). (c) Constructing probability 

distributions used in BARD for the highlighted track of (a) tested against a Brownian 

diffusion model showing the unnormalized prior (upper panel), likelihood (middle panel) 

and posterior (lower panel). Testing against the three other diffusion model generates 

two-dimensional unnormalized posterior distributions for (d) anomalous, (e) confined 

and (f) directed diffusion models.   For the highlighted track shown in (a) the highest 

ranking probability was measured at 65% for the Brownian mode, thus correctly 

identified with a probability which was more than twice as much as the next ranked 

mode of anomalous diffusion.
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Figure 5. Characterizing the error in the BARD analysis using classification matrices for 

(a) the MSD method, and (b) the PDF method. Each “pixel” in the matrix represents a 

combination of a type of simulated track against an inferred highest ranked diffusion 

model from the BARD analysis, with greyscale indicating the individual inference 

ranking percentage. Each diffusion mode here was simulated with three different tracks, 

and therefore each matrix is composed of individual 3x3 sub-matrices, with the 

percentage in red indicating the mean average inference ranking percentage within that 

sub-matrix. Thus, the “diagonal”  of (a) and (b) constitutes the “”true-positive” 

classification values.
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Figure 6. Inferring a sudden change in diffusion coefficient. (a) MSD relation for a single 

track simulated assuming Brownian diffusion (black) and the mean average of 20 such 

tracks (blue) for which the diffusion coefficient D switches from 0.01to 0.10 µm2 s-1, with 

(b) associated ranking inference probabilities for a single D Brownian (B) and two D 

Switching (S) model. (c) MSD relation for a single track (black) and average of several 

tracks (blue) for which D switches from 0.01 to 0.05 µm2 s-1 , with (d) associated ranking 

inference predictions.
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Figure 7. Comparing mobile and immobile tracks. Upper panels are MSD versus time 

interval traces showing mean values assuming at least n=3 data points at each time 

interval value, for all “mobile”  tracks (blue, solid line) and confined tracks (red, solid 

line), s.e.m. error bounds shown (dotted lines), individual tracks shown in grey, for  (a) 

simulated tracks (n=50 mobile tracks here simulated using a Brownian diffusion 

propagator function, n=50 confined tracks), (b) Helix1021-GFP (n=20 mobile tracks, 

n=27 confined tracks) and (c) TatA-YFP (n=258 mobile tracks, n=164 confined tracks). 

Lower panels are corresponding unbiased kernel density estimations for the distribution 

of predicted confinement radius from the inferred confined tracks.

36



Figure 8. Variation in (a) the probability that the top ranked diffusion mode will be 

confined, (b)  the microscopic diffusion coefficient Dm and (c) the confinement radius R 

versus estimated molecular stoichiometry for the TatA-YFP complexes, predicted 

confined (white squares) and mobile (grey circles) tracks indicated. 
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Generation of synthetic tracks

2D simulated tracks were generated using a stochastic random walk process, 

generated in MATLAB (The MathWorks, Natick, MA). This algorithm modelled the 

stochastic Ito differential equation:

dX =F (X ,t )dt+√2DG ( X , t )dW ( t ) . (S1)

Here, X is simulated particle displacement for a given spatial dimension as a function 

of time t, F is a function that represents drift, G is a function that represents 

diffusion and dW represents an incremental Wiener process. Following an 

incremental sampling time δt, X changes its amount by a value δX which is 

normally distributed such that <δX> ≈ F(X,t)δt and the variance 

Var(δX) ≈ 2DG(X,t)TG(X,t)δt, where D is the corresponding lateral diffusion 

coefficient. For Brownian, confined and directed diffusion, appropriate conditions on 

F and G were chosen (Table S1) using a video-rate sampling time of 40 ms 

throughout to predict random incremental displacements for a simulated particle track. 

Anomalous motion was simulated separately, by rejection sampling of the probability 

distribution but used essentially the same randomized, incremental process. For 

confined tracks, the domain was modelled as an harmonic potential well in which a 

particle at the domain edge experiences a forcing function F that drives it back into the 

domain, similar to the approach in [58] (Figure S1). We simulated anomalous diffusion 

through a rejection sampling algorithm. 

Table S1. Selection of drift and diffusion functions in the stochastic equation

Mode F(X,t) G(X,t)

Brownian 0 1
Directed >0 1
Confined -sign(X) if X≥L;

0 if X<L

1
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Figure S1. Simulated confined diffusion. Displacements in xy of a highly 

sampled confined track. Colouring added to indicate procession with time 

proceeding from red at the origin to light green. Inset shows the observed 

track with just N = 10 data points at video-rate sampling. Confinement 

radius R = 0.1 µm.

Bayesian formulation

The general principle of Bayesian inference is to quantify the present state of 

knowledge and refine this on the basis of new data, underpinned by Bayes’ theorem, 

emerging from the definition of conditional probabilities. This can be explained by 

considering the probability of two general events, A and B, happening, which is denoted 

P(A∩B), which equates to the probability of B happening, P(B), multiplied by the 

probability of A given that B has occurred, denoted P(A│B), or:

P(A∩B)=P(A│B)P(B)

Using the same notation we can say that:

P(B∩A)=P(B│A)P(A)

Since these two equations are equal this leads to Bayes’ theorem of:

P(A│B)= P(B│A)P(A)/P(B)   (S1)

There are two principle levels of inference [51]. The first is at the level of an 

individual model, M , evaluating the likelihood of the data d , P(d |w ,M) , using the 
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appropriate function that describes the probability distribution governing the mode. 

This posterior distribution also incorporates any prior understanding on the set of 

parameters w that comprise that model. Such priors embody our initial estimate of 

the system, such as the expected order of magnitude or distribution of the 

parameters. The prior probability distribution, P(w|M), is independent of the data of 

the system. The results of this inference are summarized by the most probable param-

eter values and their associated distributions, embodied in the posterior distribution of 

the parameter as:

( ) ( ) ( )
( )

| , |
| ,

|

P d w M P w M
P w d M

P d M
=

. (S2)

After this stage, model comparison takes place in which models are ranked, 

conditioned by the observed data to assign a probability-based preference between 

the distinct models:

( ) ( ) ( )
( )

|
|

P d M P M
P M d

P d
=

. (S3)

Provided that the model priors are “flat” (i.e. no particular a priori preference, which is 

our default assumption in all diffusion models with the exception of confined 

diffusion), the result of model evaluation is by simply ranking the marginal likelihood, 

P(d|M i), of each individual mode Mi. This is also known as the evidence E which is 

given by the denominator in equation S2 by integrating the data over the entire 

parameter space:

( ) ( )| |E P d M P w M dw= = ∫
. (S4)

The final probability that a given model M results in data d for any given single 

track is then given by:

P (M ∣d )=
P (d∣M )P(M )

∑
i

P (M
i
)P (d

i
∣M

i
)

.
(S5)

Put more simply in words, the product of the calculated likelihood of a specific diffusion 

model, given the (x,y,t) localization data from a single track, with any relevant parameter 

priors is proportional to the posterior distribution. The normalisation quantity in this, 
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equation S3 calculated by equation S4, is then used in equation S5. This forms the 

model likelihood, and with another application of Bayes Theorem, equation S1, using a 

model prior. We then calculate the model probability. This is the quantity used to rank 

models. 

Integration routine

The evidence/normalisation term is numerically calculated by a Monte Carlo integrator. 

The integration routine used a Monte Carlo approach derived from 

http://www.mathworks.com/matlabcentral/fileexchange/12447-mcint

(Lee Ferchoff on Mathworks.com MATLAB Central, unlicensed). This is not a regular 

uniform sampling but a Monte Carlo approach, 200 sampling points were used in this. 

Diffusion Models

In the first instance, four diffusive modes were modelled, chosen to be typical of a 

variety of different biological phenomena which can be observed at the single 

molecule level by single particle tracking, namely normal Brownian diffusion, 

anomalous or sub-diffusion, confined diffusion and directed diffusion. Brownian 

and anomalous diffusion represent different solutions of the governing diffusion 

equation and the fractional diffusion equation respectively. However, because the 

diffusion process can be subject to imposed boundary conditions, and an advective 

component introduced, they may also be solved to reflect confinement effects as well 

as the effects of directed diffusion. 

For a particle initially located at spatial point x, at time t, which is found at x' 

at the later time t' = t + δt, where δt is the sampling period, the two-dimensional 

diffusion-(advection) equation is given by:

∂W
∂ t

+v∇ (W )=K
1
∇2W ( x '− x , t ) . (S6)

The fractional version, for anomalous sub-diffusion, is:

∂W
∂ t

=[−v∇+
0
D

t
1−α K

α
∇2 ]W ( x '− x , t ) . (S7)
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Here, v is the velocity flow vector in the case of directed diffusion, with 

corresponding speed v. Equation S7 introduces the fractional Riemann-Liouville 

operator 0Dt
1-α (see ref [34]). It reduces to equation S6 when α  = 1. Equations S6 and 

S7 can be solved, subject to any imposed physical boundary conditions, to generate 

the probability density distribution function W, commonly referred to as the 

propagator. The full list of propagators investigated here are given in equations S16–

S18, with the range of parameters summarized in Tables S2 and S3, prior estimates 

based on real experimental data both from this study and from earlier cited 

investigations.

Table S2. The propagators (2D form) and MSD functions used for the four 

diffusive modes

Mode Propagator

Brownian/Directed Normal diffusion propagator solution [12]
Confined Series solution to Equation S6 reflecting boundary conditions [26] 
Anomalous Numerical solution for time-space fractional diffusion [59]

Table S3. Typical mean equation parameters used in diffusion propagator 

functions, with cited sources for range of values

Diffusion 

Coefficient

Domain

radius

Transport 

coefficient

Anomalous 

exponent

Flow speed Sampling 

rate

Reference

Sources 

D=0.01 µm2s-1 

This work and 

[5,11, 27, 28]

R=0.1 µm

[4, 9, 16, 26, 27] 

Kα=0.01 µm2s-1

[33-35]

α=0.75

[33-35]

v=10 nm s-1

[28, 29]

1/δt=25 Hz

There is an important cautionary note for those investigating the actual sources of 

anomalous diffusion. Anomalous behaviour can typically arise through either 

“transient trapping”  effects or through “molecular crowding”  of the environment. 

Three types of anomalous diffusion propagator functions have been considered in 

recent literature - fractional Brownian motion, percolation propagator functions and 

continuous time random walks, with the latter creating non-ergodic behaviour. 

Heterogeneous SPT data therefore can potentially be ascribed to three different 

sources of variation; the unavoidable statistical spread due to sampling a finite time-
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series, cell membrane structural/chemical heterogeneity of the protein environment, 

and potentially non-ergodic diffusive processes - which means the very method of 

averaging (whether using “ensemble averaging”, i.e. averaging over a lot of different 

tracks, or “time averaging”, i.e. averaging over the same track but over a very long 

time) has implications.  

Inference scheme

The inference scheme is split into two forms – one using the probability distributions 

directly, and the other using the mean square distance distribution. All data d comes 

from the (x,y,t) data of each track, although may be used as either the time-averaged 

MSD or 2-dimensional spatial displacements.  

PDF method. The likelihood is found by evaluating the probability of each 

observed particle displacement. Each trajectory is composed of an N length vector 

of two coordinates, C, sampled uniformly over time t . The probability of each 

displacement over a time t , from the n th to the (n+1) th coordinates, 

Cn = (x1, y1) to Cn+1 = (x2, y2), is calculated using the propagator, W(Cn+1,Cn, t), of 

each model, M, which is parameterized by the set of parameters w. The set of 

coordinates C are used to form the displacements being the pair-wise differences of 

each coordinate. This is over each time window t, which is given as multiples of the 

incremental sampling time δt. These form the data, d. As there are a total of N 

data points, the likelihood is the product of N-1 evaluations of each displacement.  The 

actual PDF propagators used are given in the Equations S16-S18. The likelihood is 

then given by:

( ) ( )( )1

1

| , | | ,
N

n n

n

P d M w W C C w M+
=

=∏
. (S8)

MSD method. The likelihood is found by assuming normal distribution of errors about 

the MSD. The likelihood for a track consisting of N data points occurring a time 

interval values of t1, t2,…,tN, is given by:
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P (d∣θ )=∏
i=1

N
1

√2πσ 2 (t i )
exp [−12∑i=1N (d (t i )−M (θ, ( ti ))

σ ( ti ) )
2

] .
(S9)

Here, the data d referred to is given by the time-averaged MSD, with M the equivalent 

theoretical prediction for a given diffusion model, and σ is given by:

σ (t i )=
d ( ti )

√ tN / ti . (S10)

The transport coefficients (parameters characterizing mobility) in each case are 

modelled by a Gamma probability distribution, Γ(k,θ), parameterized in terms of the 

expected diffusion value Dm and the standard deviation, σD. The Gamma 

distribution is the natural representation of the diffusion coefficient [56], a positive 

Gaussian-like distribution around peak values. The Gamma probability density 

function f for a variable x parameterized by the shape parameter k and scaling 

parameter θ, is

( ) ( )
1, ,

x
k

k

e
f x k x

k

θ

θ
θ

−
−=

Γ
. (S11)

Here, x, k and θ are > 0, and Γ is the Gamma function. The values Dm and σD are 

used to choose the parameters of the Gamma distribution, k and θ, such that the 

mean resides at Dm and the standard deviation is equal to σD. The probability 

density function of the prior is then given by: 

P(d)=f(d,σD/Dm,D
2
m/σD). (S12)

For the case of anomalous sub-diffusion, we mapped the transport coefficient Kα 

to d by using d = KαΓ(1 + α ) (see ref. [35]). In general, appropriate values of the 

Dm  can be estimated from other experimental data, or by heuristic mobility 

measurements from other tracks in the same dataset, and in our study here we have 

used several such past estimates which generated estimates for diffusion coefficients 

of membrane protein complexes of similar molecular weights (see Table S3). The α 

coefficient for the anomalous diffusion model was assumed to be uniform, 

characterized by a Heaviside function assumed to be 2 is the range 0.5-1.0 and 
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zero elsewhere. The two other independent parameters in the standard diffusion 

models investigated here of domain radius R for confined diffusion and the 

particle mean drift speed v for directed diffusion were regularized by an 

appropriate smoothing function such that they had an exponential decay function.

[52] of the form:

〈w〉=∫w(2exp (−λ2w2 )

√π / λ2 )dw . (S13)

Here, λ  is a parameter with a value chosen to ensure the bulk of the probability 

mass was within an appropriate range such that 1/λ  is equal to <w>, 

approximated by using physically realistic assumptions to generate mean values 

characteristic of those found in previous experimental studies (Table S3). The 

parameter λ  is a so-called hyperparameter. It can be marginalized (integrated 

out), but given that the scales of the system do not change from track to track, this 

can be approximated by using physically realistic assumptions. The effect of λ is 

investigated via a sensitivity analysis.

To explore the dependence of the correct inference probability for 

confined diffusion on the shape of the prior distribution we simulated 

confined diffusion using the expected parameters values of Table S3, and 

then performed BARD analysis assuming the standard four candidate 

diffusion models of anomalous, Brownian, confined and directed, and then 

measured the proportion of tracks that were correctly inferred as confined 

as a function of the confinement radius R which was used in the prior 

function, in the range 50-200 nm. 

The correct probability of inference was found to have a mean of 

~61% but to only vary by a few % across the range of different R values. In 

other words, the inference probability is relatively insensitive to R across a 

large range of physically realistic R values that differ by a factor of ~4. This 

is not to say that the prior function has little effect on the final outcome; 

rather, what the value of 1/λ  does here is to set an inference penalty for 

values of R that are too high to be physically realistic –  for example, that 
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are larger than the length scale of a single cell.  We can sees this when we 

run BARD analysis on the same track dataset but assuming a “flat”  prior 

function for confined diffusion (in effect, taking a value of R→∞), in which 

case the probability of inference of confined diffusion is only 50%. This 

means that the effect of using a sensible prior function here increases the 

proportion of correctly inferred confined tracks by over 20%. 

Conversely,  to correctly infer confined diffusion from a given single 

track requires that a typical confined particle has actually diffused for a 

large enough time to allow it to experience the confining boundaries, 

otherwise it will  just appear to exhibit Brownian diffusion, which means 

there is an expected dependence on the number of data points for the 

correct ranking inference for confined diffusion. To explore this effect we 

simulated confined tracks again with characteristic typical parameters of 

earlier studies (Table S3), but varied the number of data points in each 

track from 2-40, and ran a BARD analysis using just two candidate diffusion 

models of Brownian and confined diffusion. This indicated that tracks have 

a probability of more than 50% of being correctly inferred as being confined 

if they contained greater than ~16 data points (figure S2).
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Figure S2. Variation of ranking probability with number of track data points. A 

single track was simulated using a confinement radius 0.1 µm and microscopic 

diffusion 0.01 µm2 s-1. Model ranking inference was then applied against two 

possible diffusion models of confined (blue) and Brownian (green) diffusion, with 

the vertical axis here indicating the inference ranking probability for confined 

diffusion.

When performing a BARD analysis on simulated directed diffusion tracks 

using transport parameters appropriate to an earlier treadmill ing study [29], 

and then using two candidate inference models of Brownian and directed 

diffusion, the proportional of tracks that were correctly inferred as directed 

diffusion was 60-70% (figure S3).
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Figure S3. Directed diffusion validation. A two-dimensional single track was 

simulated assuming confined diffusion using confinement radius 0.1 µm and 

microscopic diffusion 0.01 µm2 s-1, and model ranking inference was then applied 

against two possible diffusion models of confined (blue) and Brownian (green) 

diffusion, with the vertical axis here indicating the inference ranking probability for 

confined diffusion. Y-intercept and control simulations (where there is no directed 

motion) gives an estimate of the systematic error at around 20%. ξv is a measure 

of degree of directed to random drift and is given by ξv=(vt)2/((vt)2+4Dt). The 

diffusion coefficients simulated were 1x10-5,1x10-4 and 1x10-3 μm2 s-1 with 

velocities of 1,10 and 20 nm s-1
. In addition, three controls were done at the listed 

diffusion coefficients at zero velocity. 

Inferred values for Dm , Kα , R and v parameters were all estimated from summary 

statistics of the relevant posterior distribution for a given single track. To 

summarize the distributions into representative values, a Gaussian was fitted about 

the posterior maximum. 
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Choosing the Priors

Parameter priors 

Single particle tracking data and simulations show that the diffusion coefficient 

tends to be distributed by a Gamma distribution. This is unsurprising, as it 

represents the statistical spread in the diffusion coefficient for observations of a 

Gaussian distributed random walk. The mean and standard deviation width of the 

microscopic diffusion coefficient, Dm and σD respectively, were calculated by best-

fit of the distribution of measured diffusion values. The characteristic domain 

radius, R, represents the typical domain size expected. More strictly, it is the 

parameter governing the prior on the distribution of domain size. Note that the 

uniform distribution is recovered as R→∞.  Similar arguments apply to the 

characteristic velocity. 

Model priors

The natural choice for model priors are unbiased weights. However, with confined 

diffusion, there is a clear difference between long and short tracks. With longer 

tracks, diffusing molecules and complexes may explore the entire domain 

exhibiting a corralled motion, but this will be limited with short tracks.  We quantify 

this by using a corrective prior on the confinement, P(C) given by:

 ( )( )2( ) ( ) 1 exp m NP C P C D t λ′= − − . (S14)

where λ is the characteristic domain size and P′(C) is the probability of tracks we 

expect to be confined, independent of any parameters. Irrespective of the number 

of confinement zones, short tracks cannot probe domains like long tracks – we do 

not expect to see confinement. This does not extend to directed drift or sub-

diffusive behaviours. As there is no prior expectation on any of the diffusion 

models, P′(M)  is assumed to be the same for each.

Diffusion propagator functions

The Riemann-Liouville Operator, 0Dt
1-α is defined as:

( ) ( )
( )

( )
1

0 1

0

,1
,

t

t

W x t
D W x t dt

t t t

α
αα

−
−

′∂ ′=
Γ ∂ ′−∫ . (S15)
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Here, Γ is the Gamma function, W the diffusion propagator function. Anomalous 

motion is given by a complicated propagator, of which we use numerical 

approximations, but the full solutions can be found in ref. [34]. The theoretical 

distributions governing the transport behaviour for the different diffusive modes 

applied here, used to evaluate the likelihoods, are given in the two-dimensional 

probability density functions below for anomalous sub-diffusion, Brownian motion and 

directed diffusion. A confinement probability distribution was not used here, because 

this requires using the absolute spatial positions over the relative difference. This 

would involve marginalizing over the start point and resulted in weak performance or 

infeasible computational load. 

Anomalous:

,1( , ) ( )mn mn mn

m n

W t E K tα
α αλ δ β

∞ ∞

= −∑∑r . (S16)

Here, δmn is the Kronecker delta function, βmn are the Fourier coefficients of the initial 

condition defined where W(r,0) is a delta function, and E is the Mittag-Leffler function, 

which has a general definition of:

E
a ,b

( z )=∑
k=0

∞ z
k

Γ ( a+kb ) . (S17)

Brownian and directed:

2
11

( , ) exp
4 4

t
W t

Dt Dtπ
 +

=  ÷ ÷ 

r v
r

. (S18)

Here, r and v are the positional and velocity vectors respectively, with D the diffusion 

coefficient.

Other examples of priors which could be applied in modification of our 

scheme include the Einstein-Stokes model of D = kBT/γ, where γ is the frictional 

drag coefficient, kB is the Boltzmann constant and T is the absolute temperature. 

This could be done by using the heuristic 1/r dependence on γ where r is the 

effective membrane protein radius. This was the model used when applied to our in 
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vivo experimental data for the Tat bacterial system. As a general rule, our scheme can 

be extended to use any general prior on D that can be constructed from the available 

structural information of the protein and membrane, thermodynamic quantities, and the 

geometry of the protein in the membrane. 

MSD analysis

The MSD function for a track of N consecutive image frames at a time interval τ =n∆t 

was defined according to ref. [25] for a track in 2-dimensional space assuming a 

standard orthogonal xy coordinate system, given in the following:

( ) ( ) ( ) ( )[ ] ( ) ( )[ ]{ }∑
−−

=

∆−∆+∆+∆−∆+∆
−−

=∆=
nN

i

tiytntiytixtntix
nN

tnMSDMSD
1

1

22
''''

1

1τ
.

(S19)

A small modification was used when compiling MSD data from experimental sources in 

that the MSD at the τ = 0 point was defined as 2σ2 where σ is the localization precision 

for a given detected spot of intensity [55] set at 40nm.

Anomalous diffusion (see ref. [31]):

MSD=K(K’α t
α/Γ(1+α)) (S20)

Here, the anomalous transport parameter K is equivalent to the diffusion coefficient D of 

Brownian diffusion. In order to separate the dependency of K on α, we decouple by 

setting K with units of m2/s and defining K’α = 1 second1-α. 

Brownian and directed diffusion (see ref. [25]):

MSD=4Dt+(vt)2 (S21)

Here, v is the mean drift speed and is set to zero for Brownian diffusion.
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Confined diffusion (see refs. [26] and [55]):

2 2

2 2 2
1

1
1 8 exp

( ) ( 1)
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t
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R D
β

β β

∞

=

  
= − ÷  ÷−  

∑ (S22)

Here we modelled confined diffusion in a circular domain of radius R. βm is equal to the 

mth root of the first order Bessel function J(βm).

Switching

To identify ”switching” a routine similar to that presented in the main text was used. This 

introduced a new model with Brownian diffusion before and after a switching event but 

in which the diffusion coefficient changed. This was with two Gaussians (Brownian 

propagators) with two independent diffusion coefficients. The diffusion prior was 

estimated from an ensemble of such tracks. As this was proof of principle, the point of 

switching was known. To break the dependency on this assumption, a more accurate 

approach would have a third parameter in which this transition point was inferred. 

Sensitivity Analysis

In table S4 the results of the sensitivity analysis for confinement model inference are 

shown. Two test datasets were used, one of free diffusion and the other of diffusion in 

confinement. The increase in model sensitivity is shown by using an appropriate prior 

over the confinement size. Although a ‘flat’  prior has the greatest sensitivity to identify 

confinement, this decreases sensitivity when identifying free diffusion. When calculating 

sensitivity by account for both test data sets a finite λ (see equation S13) has the most 

even sensitivity between for both models. Consequently, a non-flat prior is preferred, 

and the regularised Gaussian decay is used. Overall, when viewing both model 

selection sensitivity and inferred parameter accuracy (not shown); a finite value of λ has 

unskewed model selection and appropriate parameter inference, giving a small 

advantage over a uniform prior. The integration routine here used different boundary 

conditions due to the wider variance in parameters; however the boundaries were 

chosen such that the sampling density was the same across the probability peak. 
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Confined: R=100 µm, D =0.01 µm2 s-1, number of tracks n=50
Mode Characteristic Prior Parameter (1/λ, see equation S13)

Flat 0.2 0.1 0.05
A 20 22 26 32
B 14 26 24 14
C 62 40 44 40
D 4 12 6 14

Brownian: D=0.01 µm2 s-1, n=50
Flat 0.2 0.1 0.05

A 10 26 12 16
B 32 42 46 54
C 42 22 28 12
D 16 10 14 18
True-positive 47 (31+16) 41 (20+21) 45 (22+23) 47 (20+27)

Table S4. Sensitivity Analysis for confinement inference (values in %) Upper table 

are tests on a set of confined tracks with varying parameter prior parameters. Numbers 

indicate percentage identification of the respective mode (A=Anomalous, B = Brownian, 

C=Confined, D= Directed) For example, for a parameter (1/λ) of 0.05, 32% of the tracks 

were identified as anomalous. Where numbers are highlighted green indicate the most 

ideal results (upper table, high C percentages, lower table, high B percentages). Red 

highlights indicate poor results: (upper table: high B per percentages, lower table, high 

C percentages). The last row indicate the sensitivity accounting for both datasets. The 

numbers in brackets indicate the summation over the number of true positive 

classifications. I.e. 45% is 22 correct C identifications out of 50 plus 23 correct B 

identifications out of 50.
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