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Abstract

This paper presents a simple feed forward adaptive plus multi-
perindic repetitive control scheme for the ASPR(Almost Strictly Pos-
itive Real) or ASNR(Almost Strictly Negative Real, see Appendix for
definition) plant to asymptotically track or reject multi-periodic refer-
ence or disturbance signals. The Liapunov stability analysis is given.
This is an extension work of the Liapunov stability analysis for multi-
periodic repetitive control system under a positive real condition. A
simulation is included. The extension of the Liapunov stability analy-
sis to ASPR or ASNR plant under certain non-linear perturbations and
an exponential stability scheme are discussed as well. Finally an adap-
tive proportional plus MRC(multi-periodic repetitive control) scheme
is proposed.

1 Introduction

For a system to track/reject periodic reference/disturbance signal, repetitive
control was developed several years ago. This control method, which is based
on the internal model principle, has proven to be very effective in practical
applications. In most existing repetitive control approaches [1] [2] [4] [8] [12],
the asymptotic convergence of the state to the origin and internal stability
of the system are guaranteed under some strict assumption on the dynamic
system. Hara [2] derived the sufficient conditions for the stability of repetive
and modified repetitive control systems by applying the small gain theorem
and the stability theorem for time-lag systems. It is shown that the plant
P(s) should satisfy || f(s)(1 — P(s))|lc < 1 where f(s) is a low-pass filter
introduced to improve the system stability at a cost of losing tracking accu-
racy at high frequencies. Owens et al [12] [13] gave the lyapunov stability
analysis and proved that asymptotic/exponential stability is guaranteed if
the linear plant is positive real/strictly positive real or the nonlinear plant




is passive. Similar lyapunov stability analysis was done in [1] [4] [8] and
some strict assumptions, which are actually passive condition as in [13], were
made on the nominal system of the plant. In this paper, we will alleviate
snel restrictive assumptions on the plant to some extent.

I many cases. the reference and/or disturbance periodic signals may
contain different fundamental frequencies and the ratio of these frequencies
can be nrrational.  So the so-called multi-periodic repetitive control was
analysed by several authors (Weiss [18] [19]; Owens et al., 2002 [12]; Li
et al., 2002 [9]). Weiss [18] [19] gave a H™ stability condition based on
iput-output transfer function for linear SISO /MIMO single/multi-periodic
system. The Liapunov stability analysis is given by Owens et al [12] and it is
stuclied by Li et al [9] that a feed forward and feedback compensation can be
cuployed when the real plants are not necessarily positive real. However, the
method in [9] needs some plant parameter information and such information
is based on off-line frequency domain system identification of a particular
system. Also the plant is restricted to be minimum phase, strictly proper
and with relative degree one and positive high-frequency gain.

Adaptive repetitive control design and implementation, which includes
internal model principle, have been discussed by many authors [3] [8] [14]
[15] [16] [17] [20] both in the discrete-time and continuous-time domain.
Most of them [3] [14] [15] [16] [17] are indirect adaptive control algorithms.
Several estimation algorithms were used to identify the plant models and
certainty equivalence principles were applied to design the adaptive control
schemes. On the other hand, Jiang [8] gave a direct adaptive control scheme
and applied an adaptively adjusted gain in the feedback controller when
the upper bound of the plant uncertainty exists, however unknown. Ye [20]
designed a global adaptive control of a class of nonlinear systems when the
signs of certain system parameters are unknown for learning control system.

In this paper we will use the non-identifier-based direct adaptive con-
trol technique [5] [7] to design adaptive controllers for a class of ASPR or
ASNR MIMO LTT systems, which actually are minimum-phase, with relative
degree m and unknown high-frequency gain, to track/reject multi-periodic
reference/disturbance signals. The Lyapunov stability analysis is applied.

The adaptive MIMO multi-periodic repetitive control system is shown
in Figure 1. The R, D, Y, U, E are reference, disturbance, output, control
mput and error respectively. The plant )" is finite-dimensional, linear
time-invariant, and described by

(t) = Ax(t) + B(u(t) + d(t)) (1)
y(t) = Ca(t), 2(0) = xg

where () € R, u(t) € R™ y(t) € R™ and the dimensions of constant
matrices A, B, C are n xn,nxm,mxn respectively. Both reference r(t) and
disturbance d(t) are multi-periodic with components of period 73,7 = 1, ..., p.
These periods are assumed known. The multi-periodic repetitive controller is
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Figure 1: Adaptive MIMO multi-periodic repetitive control system

MEl=31q Tl“("je_—_ we select Y7_; a; = 1 without loss of generality.
Wi(s) is a low-pass filter. Cy(s),Cs(s) are both feed forward matrix gains
given in the following sections designed to guarantee the Lyapunov stability
of the whole system including the plant.

The paper is organized as follows. In section 2, we introduce a simple
high constant feed forward gain, which realizes the stability of the MRC
system for an ASPR plant. In section 3, we adopt an adaptive feed forward
gain, which alleviate the assumption made in section 2. In section 4, the
general problem is solved for the ASPR or ASNR plant and here we introduce
a Nussbaum-type feed forward gain. Simulation results are presented in
sectlon 5. Section 6 discusses the extension of the Liapunov analysis to the
ASPR or ASNR plant under certain non-linear perturbations. Section 7
gives an exponential stabilization control scheme via exponential weighting
factor. Section 8 gives an adaptive proportional plus MRC scheme. For
every control schemes, the Lyapunov stability proof is given. Finally in
section 9, conclusions are given.

2 Stabilization by high constant feed forward gain

Assume the MIMO, LTI plant Y is ASPR, that is there exists an un-
known constant matrix A*€R™*™ such that the closed-loop system (A —




BAC. B. () satisties the strict-positive-realness conditions, that is

P(A—-BNC)+ (A - B/\‘*‘C’)TP < -

Theorem 1 Consider the ASPR system Y~ described by (1). Suppose that
bath reference r(t) and disturbance d(t) are identically zero. The feedforward
guin. Cy(s) = kT and Cs(s) = T' , where k is a positive constant and is
sclected to be larger than ~ := H)\;‘T + AY|. T'€ R™*™ 45 a matriz such that
I'+T% > 0 and is selected to be I,,x,, without loss of generality. Then the
multi-periodic repetitive system in Figure 1 is globally asymptotically stable
in the sense that the state x(.) € L [0, 00). control signal v;(.) € LT[0, c0),
and output y(.) € LT[0, cc).

Proof: Assume
iw;,(t) = Aw,vw;, (t) + Bw,vi(t) )
#(t) = Cw,aw, (1)

Is a minimal realization of strictly bounded real W;(s). Then according
to Corollary 1 and the inequality (10) in [12], we have (m%;,iPWi:cWi)’ <
p2vdv; — 28 z;, where 0 < p < 11is a constant. Introduce a positive definitive
Lyvapunov function V of the form

vV TP’L-F%ZO.@/

The system (1) can be rewritten as follows:

%(0)|1° do + = ZMWPWW (4)

t—T;

(1) = (A — BN*C)a(t) + BYL, agu; + BA*y(t)

5
y(t) = Ca(t) (5)
By differentiating V along (5) and using (2) we have

(a" Pz)’

< - TQJ,—I—Z lau,erZilagU,—‘—fny

(Tl 1 Ch f r(g)H de)’

= z,_lmlzf‘zt—z (& = )ai(t — )

=+ 30 izl z - (v + kT )(u, + ky)]

= lz]’ lﬂ,lzT?r__ lz,u 1051U v — E,‘ 10"1 _Ej;;laiy']"m_ky']”y
(3 Xhoy caniy, Pwzw,)’ < ¢ X0, cupvlv; — % P 0zl z

ITf:}F < —2TQz — (k- 'y)y y— Z, L ai(l — ,ur“))?J?'ui <0
(6)

Integrating (6) and using (4) and the positivity of V yield
V(0) > V(D) + {27 Qudt + ik — ) Iyl dt + [E(1 — p2)4 T, aoTogds
(7)




from which 2(.) € L5 [0,00),vi(.) € LY0,00) and y(.) € LT[0, c0), which
proves the result. a

Here we assume v is known and it is a restrictive assumption which will
he excluded in the following section.

3 Stabilization by adaptive feed forward gain

Theorem 2 Consider the ASPR system > described by (1). Suppose that
both reference r(t) and disturbance d(t) are identically zero. The feedforward
gain C1(s) = k(s )1" (mci Ca(s ) I', where k(t) is an adaptive scale gain with
adaptive law A( ) = t)e k(0) » 0, T = Liwm- Then the adaptive multi-
periodic non-linear 'r’epetztwe system in Figure 1 is globally asymptotically
stable in the sense that z(.) € LT[0, 00), vi(.) € LT[0, 00), y(.) € LT[0, ),
k(.) € Lag[0, 00) and limg—.oe k(1) = koo < 00.

Proof: The proof is an extension of that in section 2. By differentiating (4)
we have

& < —""'TQ'LL,‘ (k— 7,)11,1;}4 Hi_i‘ She o f,_ﬂ I1z:(8) 11> d6 )

-(1- ,LL“)% Yo o v — = S ZP 1‘3‘:5'-"W Py, xw,
Integrating (8) and using the adapting law k(t) = e(t)Te(t) = y(t)Ty(t)
yields

’

V(t) - V(0)
" k()
x—if 1 " Qudt — O —dr — i BT b %(0)] ot
] (l - u?) er ool vdt — [ HLESP a;xy, P, zw,dt
e i x? Qudt — [MEX — k() - 22" +4k(0)]
- jD, ;,-‘E ivl; Zp 1% .I,_ l|zi(6 )H d@dt
- Fa- p2) 2 T el vdt - [0 L ‘é’; Lo B :CW Py, zw,dt
(9)
We will establish k(t) € Loo[0,¢) by contradiction. Suppose k(t) & Leo[0,t),
the term A[L(;—) — yk(t) - %}—: + «vk(0)] will be negative infinity because
f(x) := 2* becomes infinite of a higher order than g(z) := = as x increases
to infinity. The other items of the right part of (9) are definitely negative
due to ,(f” >0 and 0 < ¢ < 1, hence contradicting the non-negativity of
the left hand side of (9). Therefme we have k(t) € Loo[0,t) .
When t = co , we have k(t) € Ly|0, 00). Due to the monotonic increase
of E(t), we have lim;_,o k(t) = ko < o0. Also we have z(.) € L [0, 00),
v;(.) € LT[0, 00) and y(.) € LT[0, 00) as before, which proves the result. O

wy




4 Stabilization via Nussbaum-type switching

Assume the MIMO, LTI plant >, is ASPR or ASNR, that is there exists
an unknown positive definite matrix A* such that the closed-loop system
(A — 6 BA*C.oB, () satisfies the strict-positive-realness conditions, that is

P(A—cBXC)+ (A-aBNC)TP < —Q

oPB = C-’T (10)
where o := sign(CB) is assumed unknown.
Now we infroduce a Nusshaum-type adaptive controller as follows:
w(t) = N(A(E))Tz(t) (11)

I' = Iyxan. N(.) : R — Ris any continuous function of Nussbaum type(Nussbaum,
1983 [11]), that is, N(.) has the properties

SUPgs f ﬁ f,’o N(7)dt = +o00 and infjp, K%E f;o N(7)dr = —c0.

For example, N(.) : T — 72 cos T suffices.

Theorem 3 Consider the ASPR or ASNR system ) described by (1).
The feedforward gain Ci(s) = k(s)I' and Ca(s) = N(s)I' , where k(t) and
A(t) are both adaptive scalar gains with adaptive law k(t) = e(t)Te(t), k(0) >
0 and At) = e(t)T2(t),\(0) > 0. Then the adaptive multi-periodic non-
linear repetitive system in Figure 1 is globally asymptotically stable in the
sense that z(.) € L2[0,00), y(.) € LF[0,00), A(.) € L[0,00), k(.) €
L[0,00) and limp_,o k(t) = koo < 0.

Proof: We set the low-pass filter Wi(s) to be 1 for sake of simplicity. The
svstem can be rewritten as follows:

(1) = (A = eBXC)x(t) + B(N(N)z(t) + d(£)) + e BA*y(t)
y(t) = Ca(t), z(t) = Tl cizt)

Also due to the minimum phase property of >, there exists an invariant
set, made up of periodic trajectoris vanishing with r(t) and d(t), which is
contained in the ker of the output. That is, if the control input u., is
carefully selected under some state z,, the output of the system output 7.
will be r. So we have

(12)

Too(t) = AZoo(t) + Buco(t)
r(t) = Cron(t) (13)
Then we define e(t) := r(t) — y(t), ex(t) := z(t) — z(t), we have
éx(t) = (A — e BA*C)ex(t) + o BA*e(t) — BN(A)z(t) — Bd(t) + Buoo(t)
e(t) = CG,,;(tj
(14)

6




Similar to d(t) = 37_; a;d; (1), we have u.(t) = 3P ajteei(t). Introducing
a positive definite Ll&punox function V:

, 1 ! .
V=elPe+ 33 0 [ 12:(8) — cucei(6) + odi(8)[2d8  (15)
Vsl PEAE

By differentiating V. we have

(el Pe,)

feTQe +vele — 20 N(\)zTe — 20dTe + 20ule
( Z{‘} 1 Ir 7 |2i(0) — ouni(8) + ad; ('9)” d&)
=zTe+ eT« - cruTc —celu +odTe + ceTd — keTe

Lok 2i(0) — ounei(0) + ad;(0)] db

16
f-n‘f i t]w- 1e)

% < —elQe, — (20N()\) — 2)2Te — (k — v)ele

— S [l [|2i(8) = ouci(8) + adi(6)]* dO

Integrating (16) and using law k(t) = e(t)Te(t), A(t) = e(t)T2(t) yield
V(t)-V(0)
it de(t!
& f(g c—:ZQci,,_.uft — _f‘,‘:((g)}('r — y)dT — I\(O (20N(7) = 2)dT
= Jo —% F Timy @i fir, 124(8) — ouoi(8) + 0di(9) |* dBds
= — [ eTQe,dt - {M — k(') — HOZ 4 yk(0)] - j<g)J(9aN(T) — 2)dr
— 5 —EETL i [{ o N12(8) — ousi(6) + odi(9)]| dodt
(17)
We will establish \(t) € La[0,), k(t) € Loo[0, ') by contradiction. Suppose
A(t) € Lool0. ), k(t) & Loo[0,£), the term —[KE1 —yk(t') — KO 4 k(o))
will be negative infinity as in section 3. The term — [ ;\)‘(g))(2aN (1) — 2)dr
will take arbitrary large negative or positive value when )\(t’) = o0 according
to Theorem A.1 in Appendix. For example, if we select N()\) = A2 cos A and
A(0) = 0 without loss of generality, then we have — fo’\(t )(2G"N (t) — 2)dt
= —20 (Mt )2sin A(t) + 2A(t ) cos A(t) —2sin A(t)] + 2X\(t') and it will take
arbitrary large negative or positive value when A(t') = oo . So when it takes
arbitrary large negative, the right hand side of (17) will be negative, hence
contradicting the non- negativiw of the left hand side of (17). Therefore, we
have A(t) € Leo[0,t), k(£) € Loo[0,1).

When t = oo , we have A(t) € Lo[0,00), k(t) € Leo[0,00). As in
section 3, we have limy_.oo k(t) = ke < o0, z(t) € L%[0,00) and y(t) €
L0, 0o), which proves the result. O

It should be pointed out that we can’t prove that lim;_, . A(t) = Ao < 00

although the simulation seems to show A converges. Also W;(s) can only be
set as 1 for above analysis because otherwise z;(t) = 2(t) — cucei(t) + odi(t)




doesn’t satisty the same evolution equation as z;(t). It’s easy to understand
because zero-tracking /full-rejection will be lost when W;(s) isn’t equal to 1.

5 Simulation

For sake of simplicity, a SISO system is examined to illustrate the control
system performance. The ASPR or ASNR plant under control is described
as (1) where

w3 )2 (3) - (1 0n)m0- 1)

or G(s) = ﬁ% The reference is r = r; + r2, where 71 = sinwt +
1.55in 5w, 7o = sinwet and w; = 0.2 x 27rad/sec, wy = 0.3 x 27rad/sec.
The disturbance is a square wave at a period of THz and with peak value
£2. A square wave is chosen to indicate the scheme can cope with signals
with infinite frequency content. The weightings are chosen to be 0.4, 0.4,
0.2(for the disturbance rejection repetitive sub-controller). We select k(0) =
1, A(0) =0, Wi(s) =1 and N(A\) = A% cos()). The simulation result is given

in Figure 2 and 3. Figure 2 is for G(s) = (T—%F(i—zm) and Figure 3 is for

G(s) = F:—SE‘%}T) The simulation result shows that the control scheme
is capable for the ASPR or ASNR plant to asymptotically track/reject a
multi-periodic reference/disturbance signal.

Figure 2: Error e(t) and Nussbaum-type gain N () for ASPR plant




Figure 3: Error e(t) and Nussbaum-type gain N (M) for ASNR. plant

6 Effect of non-linear perturbation

The above Liapunov stability can be extended to the system under certain
non-linear perturbations. The plant is described by

i(t) = Az(t) + B(u(t) + d(t)) + g1(t, 2(£)) + g2, ¥(2)) + d'(2) (18)
y(t) = Cx(t)

The nominal system is ASPR or ASNR as in section 4 and the non-linear
perturbations satisfy

91(-,-) : RX R* = R"™ |lg1(t,z)|| < &1 ||z]|
92(,,-) : B x R™ — R™, ||ga(t, y)|| < 2 ||yl (19)
d (.) € L3[0, 00)

Here g1(.,.),g2(.,.), d (.) are assumed to be Carathedory function, which, for
some unknown gy, gs > 0, are linearly bounded for almost all t € R and for
all . € R™, u,y € R™,

Theorem 4 Consider the system. Y, described by (18) and (19). Suppose
that both reference r(t) and disturbance d(t) are identically zero. Then the
adaptive multi-periodic non-linear repetitive system in Figure 1 where the
_}‘ffdforward gain Cq(; ) = k(s)I" and Ca(s) = N(s)T with k(t) = e(t)Te(t), k(0) >
0, \Mt) = e(t)T,,(f) 0) > 0 is globally asymptotically stable in the sense
that z(.) € Lg [0,00), y(.) € LE[0,00), A(.) € Loo[0,00), k(.) € Leo[0, 00)
and limy .., k(t) = ke < co.




Proof: The proof is similar to that in section 4 and here we only outline
below. Introducing a positive definite Liapunov function V:

Lo 't
V=2l Pr+ T ; v -/f-’—; ﬂ'za(ﬁ)[ig do (20)

Differentiating V along (18) and using (10) yield

(2 TPI )

< 2t Qu + 20NNty + vy + ¢F Pe + 2T Pgy + gf Pa + 2% Pgy +
dTPy+yTPd
< =2 Qu420 N(N)2Ty+vyTy+261 | Pl l|zl|” + 232 | Pl 1z ||

< —aTQu+2eN (N ytyy y+241 | Pl 212 + 32 | Pl a2 ol + g2 | Pl a3 1y +
1P az? 2} + [Pl a3 d’H“

< —27(Q ~ 24 HPH
g2 1Pl ad)yTy+ 1Pl a3 |

a1. a2 / 0

Ty s [ 1(0) 1> o)

= =zTy -yl = kyTy - F % Ty i fi_,, 1(0))” db

When the linear bounds g;,gs > 0 are sufficiently small in terms of the
system entries (A, B, C) and a;,as > 0 are chosen to be sufficiently large so
that Q .= Q — 24 | P|| I — 42| P|| a]_QI — ||P| a5*1 is also positive definite.
Therefore, we have

< —4"Qu — (20N = 22(=y) - (k= y = g2 | Pll D)y

3 Ther i fir, 12:(0)|* d6 + || Pl a3

A

2 z|l

@ | Pl ar®l = |P|laz?Dz +20N(N)2Ty + (v +

(21)

Integrating (21) yields

V() - V(0)
< - [[: 2T Qudt — !J(O T— =Gy

1 dk
Ju “ Zf} 1 & fr—

A
,\((U))(%N(,—) —2)dr

#(0)]° dedfﬂo 1) a3 | s

(22)
The item [; || P| a%’ d’.lzdt is bounded as d (.) € L3[0, 00). Therefore, it can
be shown that A(.) € Leo[0,00) k() € Ly[0,00) as before. Also we have
y(.) € L[0.00) ,2(.) € L%[0,00) and limy_.o0 k(t) = koo < oo as before,
which proves the result. O

7 Exponential stabilization via exponential weight-
ing factor

It has been proved that asymptotical stability of MRC system can be guar-
anteed if the plant 3"~ is ASPR or ASNR. While when it strictly satisfies

10




a ASPR or ASNR condition, now we show that the system is exponentially
stable when modifving the adaptive scheme. According to definition A.1
and A.3 in Appendix, each almost strictly positive real system is almost ¢
-strictly positive real for some sufficiently small but unknown €* > 0, that is,
(A+¢“I. 0B, C) is Almost Strictly Positive Real. Our aim is to find ¢* > 0
adaptively by using an exponential w elohtmn factor tuned by k(t). We in-
troduce a function e(k(t))(for example-%i— ‘, ) with following properties: 1)
e(F(1)) = 0 for all k(¢) > 0. i) It is 11011~111crea51ng for all k(t) > 0. iii)
Ly €(k(t)) = €ae > 0.

Theorem 5 Consider the system 3 described by (1). Suppose that both
reference v(t) and disturbance d(t) are identically zero. Then the adaptive
maulti- pewodzc non-linear repetitive system in Figure 1 where the feedforward
gain C1(s) = k(s)T and Ca(s) = N(s)T with k(t) = ec(t)Te(t),k(0) > 0,
A#) = Ec(f)FUE( 1), A(0) > 0 by denoting xc(t) := e<FEx(t) is globally expo-
nentially stable in the sense that z(.) € L [0,00), y(.) € L3'[0,00), A(.) €
Lool0,00) k() € Lao[0, 00), limy—oq k(t) = kog < 00, lim—yo0 €(k(2)) = €co >
0 and also ||z(t)]| < Myie= for all t > 0 and some M1 > 0,e > 0.

Proof: With the notation z(t) := ¢“(*(")x(¢), the plant can be written as

Te(t) = [A+ €T — oBN*Clz(t) + e(k(t))ze(t) — €*ze(t)
+ i) (1) -f-JB/\ ‘Colt) + N\ Buc(t) (23)
ye(f) = Czelt), welt)=3; ouw (t)

Also we have
2 (t = 73)zie(t — 7)
_ e‘?s(f (t—7i))(t— ‘r) ?ft _ T,;)Z-,j(t _ Ti)
2626{ ()(t-7) 5 T( — ii)Zi(f. — Ti)
= 2O (1) + By (00) + BOUE) (20
= f"‘qﬁ(’“ T (vie(t) + k(t)ye(t)T (vie(t) + k(t)ye(t))
zr’e N7 (w3 (£) + K (£)ye ()T (vie(t) + k() ye(t))
:= maz(7;)
Introducing a positive definite Liapunov function V:
V= ITP-'LE =T Z =104 jt T Ii'-'ie( )“2 déd + %Zf:l aixafiEPW,-fL'Wie (25)
Differentiating V along (23) and using (24) yields

de(k)

(#F Px) < —afQu.—2e*2T Pa.+2e(k)al Pz +2——LtzT Pz, —20 N(A)(—ye) T ve+7yL ve

1 % 1y @ I 1 dk
(=Y ozt Pvawe) €= aipvivie—=S ozl zi— a,xwepw TWie
o % k — k e k2 dt
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(1 S{‘ 1 @i i [l 2ie(8 >|Fd9)’
; ZF ](lr[J ‘wf T(f - T‘:)'”( - 't) 1 f zl 1 G f:—'ﬁ HL’;E(B)HEdB
T Eir; 1(]?[ ZicFie 6_76“‘(0) }T( ]".Uc) ((‘16 =+ Mjs)]
f.%%g,_l i i, Nzie(8)]* do
13 izlzie — e 2 MO 5 | Ty, — ve_ﬁﬂ(’*”}%y %

E.f’\ H

Dl — S T i fl ., ze(8)] df
(26)
Therefore. we have
!f,"r’ < —x1Qu. - 2¢*z? Pz, + 2 (k) Pr + Qdeéi Ltg L Py,
+ (@O 20N Q) (- ue) e+ (= ke Om) Ty (27)
(P_')" LUy )Z’, ; O (,(tN
T ((iii 1 jf—-r. zie()|1” df — 11' cjijz Fat a'ia:{V,;ePLVi:EW'iG
Integrating (27) and using the adaptive law vields
V(t)-V(0)
< - 3 27 Qu.dt — QfC;‘ (¢* — e(k))zT Pz dt + 2 g de(k)t Tpz.dt
4. .[.;\(ﬁ )(2 —2e(k(0))T _ 20N (s))ds + I-I*i((i))(,} _ ge—2e(k(0) )T)ds
- Jo, B T o [, |2e(B)|” dbdt + [ § iy ea(p? ~ e MO 2z dt
- Jy Z” 1 0 g, ¥y Pz, cdfdt
(28)

We will establish A(.) € Lyo[0,00) k(.) € L[0,00) by contradiction. Sup-

pose A(L) ¢ Loo[0,00) k() & Loo[0,00). Assume e(k(0)) > e* (=2 [ (¢* —

e(k))a! Px.dt is definitely negative when €(k(0)) < €*), —2 f[f (e*—e(k))z! Pxedt =

~2 [t (e* — e(k))zT Pzedt — 2]:1 (€ — e(k))zT Px.dt, e(k(t1)) = €*. Accord-

ing to Theorem A.2 in Appendix and without loss of generality, we can

(eCB)™! 0
0 Fy

L. [0.%1) and Ay is asymptotically stable, we have ne(.) € Loo[0,%1), then

—2 41 (e* — e(k))2T Pxedt is a positive finite. So —2 f§ (¢* — e(k))zT Px.dt

is negative infinity. + jf(g))(*/ — 5e~2¢(k(0)7)ds is negative infinity as before.

assume 7, = (y2,n7)7, so then P = ) Due to y.(.) €

+ [\\(((;)J (2= 2¢(k(0)7 — 25N (s))ds is arbitrarily negative or positive infinity

as before. When we select k(0) so that |e”**ONT| < p, + ft P ou(p?—

e~ 2 KON 2T 5, dt is negative. The other items are deﬁmtely negative due
o d,’; > 0 and ﬁj < 0. So when + ]/\ (¢ )(2 —2(k(O)7 — 25N (s))ds takes arbi-
trarily negative, the right hand Slde of (28) will be negative, hence contra-
dicting the non-negativity of the left hand side. Then from f0+ ® 2T Qxdt <

[ el Qredt < +oo, we have z(.) € L7[0,00). Similar as before, we have
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y(.) € LT[0, 00). A(.) € Lag[0,00). k(.) € L [0, 00) and limy—o0 k(t) = ks <
~c. Then we have limy_.~ e(k(#)) = €. > 0. As z.(t) is uniformly bounded
such that ||z(t)]| £ M;, we have ||z(#)] < Mie™ for some M; > 0,e > 0,
which indicates exponential stability of the state. a
However, perfect zero-tracking /full-rejecting for periodic reference/disturbance
signals will be lost if the low-pass filter is not selected to be 1. So the state
can only exponentially decrease to a bound as ||z(t)|| < Mye ¢ + M, for all
t > 0 and some Ay > 0, Ms > 0,e > 0. Now we need to revise the adaptive

scheme of k(t) as

oo ) lle@lle@l = 8) if [le(t)]| = 6
Bl = { 0 if [le(8)]] < &

to prevent the divergence of adaptive gain k(t).

8 Adaptive Proportional plus MRC system

Figure 4: Adaptive MIMO Proportional plus MRC system

Theorem 6 Consider the ASPR or ASNR system Y.~ described by (1).
Suppose that both reference r(t) and disturbance d(t) are identically zero.
Then the adaptive multi-periodic non-linear repetitive system in Figure 4
with ki being a positive constant, ko(t) = e(t)Te(t), k2(0) > 0 and A(t) =
e(t)T2(t) + kika(t)e(t)Te(t), A(0) > 0 is globally asymptotically stable in the
sense that () € L2[0,00), y(.) € LT[0, 00), M.) € Ll0,00) , ka(.) €
Loo[0,00) and limy_o0 k2(t) = koo, < 00.

Proof: We set the low-pass filter W;(s) to be 1 for sake of simplicity. The
system can be rewritten as follows:
i(t) = (A = aBA*C)z(t) + BN(A)z(t) — BN(A)kika(t)y(t) + oBX*y(t)

y(t) = Cz(t), =(t) =37, euzi(t)
(29)
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Introducing a positive definite Liapunov function V:

1 &2 't ;
V=iTPrs =30 / 12:(6)]> 48 (30)
= 4= .

By differentiating V we have

%\T < =T Qx — (ko + 2k1ks — Y)y"y — (20 N(A) — 2)(k1kayTy — 2Ty)
— 5 Shaa [l (01 df
) (31)
Integrating (31) yields

L4 ( ') — V(0)
= [O IFQLdt— J;((O )( + 2hiT— y)dr=— .’\ (9‘”\%7) — 2)d7 (32)

)
— Jo & @ iy o i, 1z(0)| dodt

Similar to that in section 4, we can conclude z(.) € L7 [0,00), () €

L0, 00), A(.) € Lo[0,00), ka(.) € La[0. 00) and lims o0 k2(t) = kaeo

which proves the result. D
Also the simulation results show that a higher proportional gain k; is

helpful for the performance.

9 Conclusion

A kind of adaptive MIMO multi-periodic repetitive control system is stud-
ied. An adaptive feed forward adaptive gain plus multi-periodic repetitive
controler is applied to make the ASPR or ASNR plant output to asymptoti-
cally track/reject multi-periodic reference/disturbance signals. The stability
is analysed in the sense of Liapunov stability. The adapting gains are proved
to be bounded and the error decays asymptotically to zero. The similar Li-
apunov stability analysis is also extended to ASPR or ASNR plant under
certain non-linear perturbations. It is also shown that exponential stability
can be guaranteed by modifying the adaptive schemes. Finally, an propor-
tional plus adaptive MRC system is proposed and its stability is proven in
the sense of Liapunov stability as well.

10 Appendix

Theorem A. 1 [20]. Let V(i) and k(t) be smooth functions defined on
0, +00) with V(t) > 0,Vt € [0, +c0) , N(t) a Nussbaum-type function, and
b a nonzero constant. If the following inequality holds: V (t)< [, k() [bN (w) +
1]dw + ¢, YVt € [0, +00) where ¢ is an arbitrary constant, then V (t), k(t) and
j'ér(t)[b]\r(u)) + 1]dw must be bounded on [0, +00) .
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Theorem A. 2 [7]. Consider the system (1) with det(CB) # 0 and
let Ve R™ =" denote a basis matriz of kerC. It follows that S :=
(B(CB)™'. V] has the inverse S™' = [CT, NT|T, where N := (VIV)~WWT[L,—
B(CB)~'C]. Hence the state space transformation (yT,?]T)T = 8 lr =
(Cr)T (N2)TYT converts (1) into

g(t) = Ary(t)

+ Aogn(t) + CB(u(t) + d(t))
i(t) = Asy(t) + A

27]
an(t)

(33)

Here A; € Rmxw.!A? = R’“X(”*“‘)_A:i € j:l:!(nf:"ﬂ'))~<1"r.',,A‘4 c R(nfm)x(nkm)’ 50

that
Ap A\ o1
(4 #)mss

If (A, B, C) is minimum phase, then Ay in (38)is asymptotically stable.

Lemma A. 3 (Barbalet) Ifthe function f(f) is uniformly continuous, such
that imy_ ~ [(; |f(s)|ds exists and is finite, then we have limy_ . f(t) = 0.

Definition A. 1 Almost Strictly Positive Real: A system

#(t) = Az(t) + Bu(t) (34)
y(t) = Cxz(t) + Du(t), z(0) = zg

where (A, B, C, D)ER™ " x R x RM*" x RM*™ 45 called Strictly Positive
Real, if it satisfies equation (35) for p > 0 and we say it is Almost Strictly
Positive Real, if there exists a KER™*™, so that the feedback u(t) = — Ky(t)+
r(t) yields a Strictly Positive Real system.

PA4 ATP = —QQT — 24P
PB =C% =W (35)
WTW =D + DT

Definition A. 2 Almost Strictly Negative Real: The system G(s) defined
by (34) is called Almost Strictly Negative Real, if —G(s) is a Almost Strictly
Positive Real system.

Definition A. 3 Almost e-Strictly Positive/Negative Real: Let € > 0, the
system (34) is called e-Strictly Positive Real, if it satisfies equation (35)
for p > € and we say it 1s Almost e-Strictly Positive Real, if there exists
a WeR™*™  so that the feedback u(t) = —Ky(t) + r(t) yields a e-Strictly
Positive Real system. It is called Almost e-Strictly Negative Real, if —G(s)
15 o Almost e-Strictly Positive Real system.
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