
REVIEW ARTICLE

Modulation of host responses by oral commensal bacteria
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Immunomodulatory commensal bacteria are proposed to be essential for maintaining healthy tissues, having

multiple roles including priming immune responses to ensure rapid and efficient defences against pathogens.

The default state of oral tissues, like the gut, is one of inflammation which may be balanced by regulatory

mechanisms and the activities of anti-inflammatory resident bacteria that modulate Toll-like receptor (TLR)

signalling or NF-kB activation, or influence the development and activities of immune cells. However, the

widespread ability of normal resident organisms to suppress inflammation could impose an unsustainable

burden on the immune system and compromise responses to pathogens. Immunosuppressive resident bacteria

have been isolated from the mouth and, for example, may constitute 30% of the resident streptococci in

plaque or on the tongue. Their roles in oral health and dysbiosis remain to be determined. A wide range

of bacterial components and/or products can mediate immunomodulatory activity, raising the possibility

of development of alternative strategies for therapy and health promotion using probiotics, prebiotics, or

commensal-derived immunomodulatory molecules.
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M
any human tissues support large, resident mi-

crobial populations (1) which confer significant

benefits. While much of the evidence for the

beneficial and homeostatic activities of the resident micro-

biota is derived from studies of the gut, this also informs

our understanding of oral ecology and oral host�microbe

homeostasis. Although beneficial under normal circum-

stances, imbalances in the resident human microbiota, or

our responses to them, (dysbiosis) make a major contribu-

tion to the incidence of some significant, multifactorial

diseases (2, 3). The role of dysbiosis in the development

of periodontal diseases and dental caries has long been

recognised, in that they are due to alterations in the bal-

ance and composition of the resident plaque communities.

In periodontal diseases, tissue damage occurs due to the

failure of the immune system to limit both the microbial

community and the local host immune response (4, 5).

In health, heavily colonised tissues do not normally enter

a state of permanent damaging inflammation, and retain

the ability to respond adequately to pathogenic challenges.

It is proposed that this balance is maintained in health by

homeostatic mechanisms that include regulation or mod-

ulation of host responses by commensal organisms.

Immunomodulation by commensal bacteria
Commensal bacteria display pro-inflammatory and anti-

inflammatory activities, and both are important in main-

taining host�microbe homeostasis at heavily colonised

sites. Some immunomodulatory commensals in the gut

(termed autobionts) are able to regulate the activities, de-

velopment, and/or deployment of host immune cells, pro-

viding subtle effects on immune responses and immune

status (6).

Effects on cells of the immune system

Multiple commensal species induce tolerance within the

gut, limiting inflammatory responses by ensuring an ap-

propriate balance of intestinal T cell populations (7, 8). In

the case of Bacteroides fragilis, extracellular polysacchar-

ide (PSA) stimulation of CD4� T cells via TLR-2 is the

mechanism, whereby tolerance is induced through initial

TREG expansion. Commensal lactic acid bacteria regulate

communication between NK cells and dendritic cells,

thereby helping to direct the adaptive immune response

in the gut (9). In the mouth, neutrophils are key in the

defence of the gingival tissues, and chemokines such as

CXCL1, 2, and CXCL8 (IL-8) establish a gradient of

neutrophils in gingival tissues and gingival crevicular fluid.
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The balance of expression of neutrophil chemokine re-

ceptors such as CXCR1, 2, and 4 can also be modulated

by chemokines and cytokines to favour neutrophil re-

cruitment to mucosal tissue or homing to bone marrow.

Resident bacteria in subgingival plaque may influence

neutrophil deployment by regulating low levels of ex-

pression of intracellular adhesion molecule 1 (ICAM-1),

E-selectin, and CXCL8; oral commensals also promote

expression of IL-1b mRNA in the oral mucosa (10, 11). An

absolute requirement for CXCR2 in periodontal neutro-

phil recruitment was recently reported, and commensal

colonisation increased the recruitment of neutrophils to

gingival tissues via the up-regulation of the CXCR2 ligand,

CXCL2 (11).

Effects on inflammatory responses

Many gut commensal bacteria initiate pro-inflammatory

responses and contribute to health by stimulating and

‘priming’ the immune system (12). Conversely, other com-

mensal organisms inhibit or suppress epithelial cell inflam-

matory responses by a functional modulation of immunity

through Toll-like receptor (TLR) or NOD-like receptor

(NLR) expression and signalling, while others suppress

inflammatory responses by inhibiting activation of NF-kB

or by increasing the secretion of anti-inflammatory cyto-

kines, such as IL10 (2, 13, 14).

The default position in the gut is thought to be one

of inflammation, balanced by regulatory mechanisms and

the activities of anti-inflammatory, or immunosuppressive

members of the microbiota (3, 15). However, the wide-

spread possession of anti-inflammatory ability by resident

mucosal bacteria could be detrimental, by imposing an

unsustainable burden on the host immune system and

compromising the ability to respond effectively to patho-

gens (16). Indeed, suppression of host inflammatory re-

sponses is also a strategy employed by the red complex

periodontopathogens Porphyromonas gingivalis and Trepo-

nema denticola (4, 17). However, P. gingivalis utilises multiple

mechanisms to cause extensive inhibition of local immune

responses, while the limiting, immunomodulatory effects of

oral commensals are more subtle (11, 18).

Gingival tissues, in a similar manner to the gut, are

probably normally mildly inflamed (19). Certain strains

and species of commensal oral streptococci suppress

epithelial cell cytokine expression (13, 20�23). The pro-

biotic Streptococcus salivarius K12 down-regulated CXCL8

secretion from bronchial, skin, and oral keratinocytes

(cell lines and primary cells), via inhibition of activation

of NFkB (13). Oral strains of S. salivarius were later iso-

lated that suppressed inflammatory responses in pha-

ryngeal cells (24). A wide range of S. salivarius and

S. vestibularis strains suppressed responses of intestinal

epithelial cells and monocyte-like cells via NFkB inhibi-

tion, and S. salivarius inhibited inflammation in vivo

(21, 22). S. cristatus also inhibited CXCL8 secretion by

keratinocytes by modulating the activity of IkB-a, an

inhibitor of NFkB (25).

Effector molecules causing immunosuppression
Dissecting the mechanisms underlying the immunomodu-

latory, particularly anti-inflammatory, ability of commensal

bacteria will increase understanding of host�microbe home-

ostasis and health, and may also provide opportunities

for developing therapeutic or health-promoting immuno-

modulatory molecules based on microbial components.

Metabolites

Metabolites from commensal bacteria may mediate im-

munomodulation and contribute to the balance of pro-

and anti-inflammatory responses. Commensal lactobacilli

with tryptophanase activity generate indole derivatives

that can function as aryl hydrocarbon (AhR) ligands;

AhR activation promotes anti-inflammatory TREG de-

velopment (26). Short chain fatty acids (SCFAs; e.g.

butyrate, propionate, acetate) are produced by members

of the resident microbiota, and a range of immune cells are

targets for SCFA-mediated immunomodulation by act-

ivation of GRP43 (which is highly expressed by neutro-

phils, macrophages, and monocytes), epigenetic control

via inhibition of histone deacetylases and regulation of

autophagy (7, 27, 28).

Proteins and peptides

Cell-associated and secreted proteins or peptides from

various bacterial genera have been linked with immuno-

suppressive abilities. The most studied genus in this re-

spect is Lactobacillus, and their abilities to inhibit NFkB

activation or promote IL-10 secretion have been attrib-

uted to cell-associated and secreted peptides (14, 29).

The cellular product mediating immunosuppression by

two S. salivarius strains was a secreted peptide of B3

KDa (21).

Nucleic acids
Bacterial and viral DNA motifs (detected by TLR3,

TLR7, and TLR9) differ in their ability to produce pro-

or anti-inflammatory responses. The genomes of com-

mensal and probiotic lactobacilli can be enriched in

sequences that are immunosuppressive (15). Unmethy-

lated CpG motifs from the resident microbiota, recog-

nised by TLR9, may have a role in maintaining an

appropriate balance of Th1/Th2 cells, and in supporting

mucosal functions in health (30). Double-stranded RNA

from intestinal lactic acid bacteria induces interferon-b
production by dendritic cells via TLR3 activation, thereby

promoting anti-inflammatory effects (31). Clustered reg-

ularly interspaced short palindromic repeats (CRISPR)

sequences are often adjacent to cas genes (CRISPR-

associated), which encode enzymes that can degrade

and inactivate nucleic acids. CRISPR/Cas systems can

also affect gene expression in the host bacterium, thereby
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indirectly affecting immunomodulation, for example,

by down-regulating pro-inflammatory lipoproteins (32).

Although CRISPR/Cas systems have been detected in

genomes of the commensal S. mitis, they are not present in

the closely related pathogen S. pneumoniae (33). Uracil is

pro-inflammatory; it is proposed that commensal bacteria

do not secrete uracil while pathogens do and that uracil

secretion is significant in determining host�microbe homeo-

stasis at tissues colonised by bacterial communities (34).

Concluding comments
Understanding of the gut microbiome in gastrointes-

tinal health or disease has shaped our views of host�
microbiome interactions at other body sites, but it is

important to consider that microbiomes at various sites are

distinct from each other and are determined by the unique

properties of, and host responses at, each site (35, 36).

Thus, control of the immune response by commensal pop-

ulations is compartmentalised. Darveau (4) has high-

lighted the differences between the anatomy and biology

of gut epithelial tissues compared with periodontal tissues,

and the distinct host defence strategies used at each.

The contribution of oral commensals to the structure

and function of periodontal tissues is more subtle than

those seen in the gut, and the gingival epithelium is more

porous and more exposed to microbes and their products

than gut epithelia (11, 18). Thus, while we should learn

from data emanating from studies of host responses to the

resident gut microbiota and probiotics, it is essential

that further studies are carried out with relevant oral

organisms and tissues in order to better understand oral

host�microbe homeostasis.

The resident communities at each site contribute to

tissue complexity and have coevolved with their host

to tune host requirements at each site and establish a

threshold of activation required for immune fitness (37).

Immunomodulatory commensals are held to be benefi-

cial via both immunostimulatory and immunosuppres-

sive mechanisms; most likely, the relative balance of

pro-inflammatory and immunosuppressive resident or-

ganisms is critical for appropriate immune responses in

the mouth, and maintenance of host�microbe homeostasis

in a manner analogous to that proposed for the gut.

Up to 30�40% of resident streptococci isolated from the

tongue or plaque were able to inhibit CXCL8 secretion

(largely via inhibition of NFkB) from cells stimulated by

flagellin, LL-37 or by oral pathogens such as P. gingivalis

and Aggregatibacter actinomycetemcomitans (Devine et al.,

unpublished observations). The impact of such immuno-

suppressive populations on host�microbe homeostasis in

the mouth is unknown, although transient reductions in

CXCL8 secretion in the GCF of individuals with mild

gingival inflammation were demonstrated following use of

chewing gum containing immunosuppressive probiotic

lactobacilli (38). The beneficial effects of commensal or

probiotic organisms extend beyond the ability to modulate

immune responses, to also include enhancement of mucin

production and barrier function, induction of antimicro-

bial host defence peptides, promotion of angiogenesis and

wound healing. The oral probiotic S. salivarius K12, which

secretes bacteriocin-like inhibitory substances, not only

down-regulated epithelial cell inflammatory responses, but

also up-regulated hepcidin (an antimicrobial and iron

regulating peptide), actively stimulated beneficial path-

ways including type I and II interferon responses, and

exerted significant effects on the cytoskeleton and adhesive

properties of the host cells (13). An appropriate balance of

immunomodulatory commensals capable of exhibiting a

combination of such beneficial and homeostatic properties

may be essential for health.
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