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Abstract: This paper concerns the construction and training of basis function networks for the
identification of nonlinear dynamical systems. A new adaptive orthogonal least squares (AOLS)
algorithm, which integrates basis function (model term) selection, model size determination and model
parameter estimation, is developed for basis function network training. The construction and training of a
new multiresolution wavelet network, together with a comparison with RBF models, is discussed in detail.
A practical three-phase modelling framework to ensure unbiased nonlinear models is obtained using the
basis function networks. Several examples are presented to demonstrate the application potential of the

new identification techniques.
Index Terms: information criteria, model term selection, model structure detection, neural network,

nonlinear system identification, orthogonal least squares, radial basis function, wavelet.

1. Introduction

Basis function networks and their variants, where the approximator (predictor) is expressed as a set of known
basis functions which are combined and organized in a prescribed way, have been extensively studied in the
literature and have been widely applied in function learning and dynamical modelling for a long period. A
variety of prototype functions, both global and local, have been adapted and employed as basis functions to
construct approximators for given nonlinear problems. Polynomials [1][2], cerebellar model articulation
controller (CMAC) [3], radial basis functions (RBFs)[4], B-splines[5], kernels [6](7] and wavelets [8][9] are
among the popular subclasses of basis function network systems. The present study will focus on the
construction and training of a new class of multiresolution wavelet models for nonlinear dynamical system
identification, coupled with a comparison with RBF models. More useful information on basis function networks
can be found in [10].

Radial basis functions were originally proposed as an interpolation method in the late 1980s [4], and were
soon connected to neural networks [11]-[13]. These kind of networks were then popularized in the community of
nonlinear dynamical modelling, identification and control based on many subsequent results including [14]-[21].
Compared with standard feedforward neural networks, most RBF networks possess in some sense a local
property and permit local tuning to track signal variation in given processes [12]. In addition, RBF networks are
easier to train due to the network structure [22]. While a wide class of nonlinear functions can be approximated
using RBF networks, a large range of severely nonlinear systems, for instance, systems with fast or sharp
variations and/or discontinuities, may not be well approximated by this kind of network, which lacks good time-

frequency properties compared with multiresolution wavelets.
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It is generally recognized that the basis functions should offer some flexibility in adapting to the complexity
of the model structure so that the model can match, as closely as possible, the underlying nonlinearity of
dynamic systems. With excellent approximation properties associated with multiresolution decompositions
[8][9], wavelets outperform many other approximation schemes and are well-suited for approximating arbitrary
nonlinear systems, even thosje with chirps and discontinuities. [t was the attractive features possessed by
wavelets, especially by multiresolution wavelet decompositions, that motivated the introduction of wavelets as
basis functions to form nonlinear models for complex dynamical systems[23]-[28]. It follows that the intrinsic
nonlinear dynamics related to real nonlinear systems can easily be captured by an appropriately fitted wavelet
model consisting of 2 small number of wavelet basis functions, and this makes wavelet representations more
adaptive compared with many other basis functions.

In a nonlinear model, the relationship between the model outputs and inputs is nonlinear by definition.
However, the relationship between the model outputs and the free adjustable model parameters may be either
linear or nonlinear. Identification schemes can therefore be classified into two categories, linear-in-the-
parameters and nonlinear-in-the-parameters. This study investigates basis function networks, which can be
expressed as a linear-in-the-parameters model. More thorough treatments on both linear and nonlinear-in-the-
parameters models can be found in [29]. An initial basis function network may involve a great number of
candidate model terms whatever basis finctions are employed to approximate an unknown nonlinear function,
especially for high dimensional multivariable problems. Experience shows that in most cases only a small
number of significant model terms are necessary in the final model to represent given observational data. Model
subset selection, or model structure detection, is a key step in any identification procedure and consists of
detecting and selecting significant model terms from a redundant candidate model term set to determine a
parsimonious final model. A new adaptive orthogonal least squares (AOLS) scheme that can be used to select
not only the significant model terms but also the optimal number of model terms to arrive at a good balance for
the bias-variance trade-off, is introduced.

Motivated by the successful applications of wavelet decompositions, this study aims to develop a new class
of basis function networks, accompanied by a new model term selection algorithm, for nonlinear dynamical
system identification. The remainder of the paper is organized as follows. In Section 2, the NARMAX
representation is briefly summarized. In Section 3, a new AOLS algorithm, which can be used to train general
basis function networks of the linear-in-the-parameters form, is developed and discussed in detail. In Section 4, a
new class of basis function networks, the multiresolution wavelet networks, are presented. In Section 5, a three-
phase modelling framework is proposed to implement the general NARMAX model using basis function
networks. Several examples are provided in Section 6. Some suggestions and comments on RBF and

multiresolution wavelet models are given in Section 7, and finally the work is concluded in Section 8.

2. Problem Representation

A wide class of input-output nonlinear dynamical systems can be represented by the general nonlinear
difference equation model, known as the NARMAX (Nonlinear AutoRegressive Moving Average with
eXogenous inputs) model[30][31]. Under some mild conditions a discrete-time multivariable nonlinear system

with m outputs and r inputs can be described by the following NARMAX model
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where u(t) =[at,(£) 1t (8), -4, (O] YO =710 y2 (05 Y ()] and e(t) =[e () e, (1), €, (1]
are the system input, output and noise vectors, #,, 1, and 71, are the maximum lags in input, output and noise,

rcépective]y, and f is some vector-valued and in general unknown nonlinear mapping. In practice it is usually
assumed that e(z) is an independent noise sequence. Model (1) relates the inputs and outputs and takes into
account the combined effects of measurement noise, modelling errors and unmeasured disturbances represented
by the noise variable e(?) .One of the reasons that the moving average terms are included in the NARMAX
model (1) is to ensure unbiased estimates.

Model (1) will be used for representing both SISO and MIMO nonlinear systems in the present study.

Decomposing Eq. (1) into component form gives the formulation of the ith output

y;(t) :f;(h(f "1),33’1(1’”5:1))::}’m(t“l),“a}’m(f’”;ﬁ)s
u (£ =1), 1y (t = n®Y, e, (1), (=1

el(r —1)""!81()"_ nf(zi))a"'rem(r_l)""?em (t#ngir)l))%‘ej(t) @)

The nonlinear functions f;(-) (i=1,2, .., m) are generally unknown. In order to simplify the notation it is
sometimes assumed that the maximum lags for the different elements of the output y(¢) are the same, that is,

n;fk) =n, for i=1,2, ..., m and k=1,2, ..., m. Similarly, nl(‘j() =n, fori=l2, ..., r and k=12, ..., m and

ng‘) =n, fori=l,2,...,m and &=1,2, ..., m.

One of the most popular representations for the NARMAX model (1) is the polynomial model which takes
the function f(-) as a polynomial with respect to the lagged input, output and noise sequences. An important
property of the polynomial NARMAX model is that these models are linear-in-the-parameters so that the model
structure and the parameters can be detected and estimated using standard structure detection schemes[32]-[34].
Moreover, as a natural extension of the ARMAX model, the polynomial NARMAX models can be physically
interpreted under certain conditions in both the time and the frequency domain.

Taking the SISO case as an example, the power-form polynomial NARMAX model of the degree £ can be

described as
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RN ACADED I MCACEAC R

&
+ Z Zf"a"z'“ﬂ (3, (0,5, (0,5 %, (1) + () 3

i=l =iy
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y(t—k) 1<k <n,
x (1) =3u(t—(k-n,)) n,+1<k<n, +n, (5)
e(t—(k-n,—-n,)) n,+n, +1sk<n, +n, +n,
The degree of a multivariate polynomial is defined as the highest order among all the terms. For example, the
degree of the polynomial A(x,,X;,%;) = ax; +a,x,x, + a,x x,x; is £ =2+1+2=5. Similarly, a polynomial

NARMAX model with nonlinear degree { means that the order of each term in the model is not higher than £ . It

can easily be proved that the number of potential model terms in the polynomial NARMAX model (3) of degree
£is M =(n+£)Y[nf], where n=n,+n, +n,. Clearly, the NARMAX model (1) can describe a large

range of nonlinear systems and includes several existing representations including the Volterra series, AR(X),
ARMA(X), NAR(X), NARMA and bilinear models as special cases [35].
In practice, the unknown nonlinear function f in model (1) often consists of two parts: the deterministic

(noise independent) and the stochastic (noise correlated) submodels shown as below

Y(t) = fyu (y[r—l'"yl ’“[‘_l,nul) & ‘fyue (y[f—l-ﬂyi,u[r—l.nu] ’e[r—l,n,] ) + e(I) (6)

where the vector Z' 7 s defined as PAL [ZT (-1, B (= n)]T . Note that each term of the
submodel f . is dependent on noise sequence (¢ —1),e(t —2),:+,e(t —n,) . For a linear-in-the-parameters basis

function network, model (6) can be expressed as
Y(I) = ®yu (t)G)yu + chue (t)®yue + e(t) (7)

where @, (f)and @, (f) are regression matrices, and®, and ©,,, are unknown parameter Vectors.

The objective of this study is to implement the NARMAX model (1) using basis function networks including
RBF and the newly introduced multiresolution wavelet models. A new orthogonal least squares learning

algorithm is developed for basis function network training,

3. Basis Function Networks and Training

3.1 Basis function networks

A single hidden-layer feedforward basis function network with d independent variables can be expressed by

g(x)=zgi(”j(annbi) | (8)

iel

where (I) indicates the number of total clements in the set [, X &€ RY. b, e R%and a, € R* (d-dimensional
positive value vector). The{/) neurons (basis functions) in the sum are linearly connected with (I) weights
9,,---,9<,> .. Each neuron maps a d-variable input X into a scalar value via a nonlinear mapping @;, which is
dependent on both the scale (or dilation, kernel width) parametersa, and the location (or position, translation,
kernel centre) parameters b, .The nonlinear functions ; are called the basis functions (or traditionally the

activation functions). In most cases, the basis functions ¢, for i=1,2, ..., {I) are chosen as the same mother




basis function @ . Radial basis functions are a popular choice to construct networks, and a typical choice for basis

functions in the network are the radial basis kemels, for example the Gaussian type kemnels @ ‘R~ R,

3

p;(x;a;,b,)=9; (a?r o(x=b,)) , where the operator ° © between  two  vectors

u =[u|,--~,ud]T and Vv =[v,, ---,vd]T indicates some specified operation, say uev = —(I/Z)VTZ:V with
Z, = diaglu;,--uy]- Another popular choice for the basis functions is wavelets including multiresolution
wavelets, which involve a mother wavelet and a corresponding scale function.

In a linear-in-the-parameters basis function network, the scale and location parameters a; and b, can often be
pre-determined to simplify the training procedure. Let I'={(a;,b;) i€ I} and @, ) (x) =p,(x;a,,b;)
for(a;b;)el". A dictionary used for the network training for a given identification problem can then be
defined as D = {@(a.p,) * (a,,b,)eT,iel}. Clearly, the dictionary D contains a total of M =(I) elements.

In practice, the number M of the total elements in the dictionary D may be very large, and most candidate
model terms are either redundant or make very little contribution to the system output and can therefore be

removed from the model. Thus, for a given identification problem, where the observed training data is of the
form {(x(£),y(1)):x € R?,yeR",t=12,---,N}, the objective is to select 2 subset of M, (M, <M ) model

terms 1o fit the given observations by training the network, to lead to a parsimonious approximator

My
y() = £(x(®) = )0, @, (x(t);a, b, ) ©)
m=1

An efficient model structure determination approach has been developed based on the forward orthogonal
least squares (OLS) algorithm and the error reduction ratio (ERR) criterion, which was originally introduced to
determine which terms should be included in a model [32]-[34]. The OLS-ERR algorithm has been extensively
studied and widely applied in nonlinear system identification [19],[36]-[39]. The OLS-ERR algorithm provides a
powerful tool to effectively select significant model terms step by step, one at a time, by orthogonalizing the
associated regressors in a forward stepwise way based on the ERR criterion, an index indicating the significance
of each model term. Most existing OLS algorithms, however, do not provide information on how many
significant model terms should be selected and included in the final model. An additional separate procedure is
there fore often needed to aid the determination of the optimal number of significant model terms. This study,
however, will provide an adaptive OLS algorithm that incorporates model term selection and model size

determination in one procedure.

3.2 Model term selection and the orthogonal transformation
For convenience of description, consider the case that involves only one output. Lety =[y(1),---,y(N)]T be
a vector of measured outputs at N time instants, and,, = [ﬁm(l),'“,ﬂ'm(N)]T be a vector associated with the

mth candidate model term, where 7, € D for m=12, ..., M, and D is a dictionary produced by lagged outputs,
inputs and noise terms. From the viewpoint of practical modelling and identification, the finite dimensional set

S={a,, - ay} is often redundant. The model term selection problem is equivalent to finding a full




dimensional subset S, = {8, 8.} =1, A B (= S,where f, =@, , i, € {1,2,,M} and m=1,2, ..., n,
so that y can be satisfactorily approximated using a linear combination of f3,,--+, 3, asbelow
y=6p++0,5,+e (10)
or in a compact matrix form
y=PB+e (n
where the matrix P :[ﬂl,---,ﬁ,_,] is of full column rank, & = [191,---,{9,:]:r is a parameter vector, ande is an
approximation error. From matrix theory, the full rank matrix P can be orthogonally decomposed as

P=0R (12)

where R is an mx7 unit upper triangular matrix and Q is an nXn matrix with orthogonal . columns

q1>G2> "5 Substituting (12) into (11), yields
y=(PR")(RO)+e=0g+e (13)

where g =[g1,"" "> &x 1" = R@ is an auxiliary parameter vector. Using the orthogonal property of O, g; can be
directly calculated from y and Qas g; = (yrqi )/(q‘.Tq,-) for i=1,2, ..., n. The unknown parameter vector
@ can then be easily calculated from g and R by substitution using the special structure ofR.
Assume that the error €in model (13) is uncorrelated with vectors f | for j=1,2, ..., n, the total sum of
squares of the output from the origin can then be expressed as
y'y =igfq}rqf +e'e (14)
i=1

Note that the total sum of squares yTy consists of two parts, the desired output Z:—z g?q?qi , which can be

explained by the selected regressors (model terms), and the part e’ e, which represents the residual sum of
squares. Thus, gi2 q,.Tq‘- is the increment to the desired total sum of squares of the output brought by g; . The ith

error reduction ratio (ERR) introduced by g, (or equally by including B,), is defined as

2 T, T 2
BRR[i] = $1919) 1 100% = O 9 100%, 12,1, (15)
Yy (v ¥)4gi 9:)

This ratio provides a simple but an effective index to indicate the significance of adding the ith term into the

model. The orthogonalization procedure for model term selection is usually implemented in a stepwise way, one

termn at a time. The sum of error reduction ratio (SERR) and the error-to-signal ratio (ESR) due to gy, 4 (or

equally due to f3,,-+, B, ) are defined as

SERR[ ] = iERR[x’] (16)

i=1
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ESR[/1=—7

j 2..I J
£i4q;i 4 : i
=1~Z‘7y—=1_§ ERR[i] = 1- SERR[/] {7
= i=l

The selection procedure will be terminated when ESR of an identified model satisfies some specified conditions.
Several orthogonal transforms including Gram-Schmidt, modified Gram-Schmidt and Householder
transformations can be applied to implement the orthogonal decomposition [34],[35] and a detailed algorithm

will be given in the next two sections.

3.3 Model size determination

The determination of the optimal number of model terms is critical in dynamical modelling. Neither an over-
fitting nor an under-fitting model is desirable in practical identification. In practice, however, the true number of
terms is generally unknown and needs to be estimated during model identification. Several approaches have been

developed for model order and variable selection in the literature including the AIC, BIC, MDL [40]-[43] and
many variants [44] (Chap. 6). In this study, a R2.like statistic, the adjustable prediction error sum of squares
(R2 -PRESS) proposed by Allen [45], [46], is modified and will be used to solve the term selection problem.

The commonly used adjustable R? -statistic is defined as

R? =1—iv—?iNMSE (18)
N-p

where N is the data length, p is the aumber of model terms included in the identified model, NMSE is the

normalised-mean-squared-error defined as

N 5. g
s - SSE - 22O IO .

SST 3" [y()- 7T
where SST=ZL[)}(!')——§]2 denotes the total sum of squared deviations in from the mean y ,

SSE = N y i)—)'l(i.")]2 denotes the sum of the squared errors (residuals), {p()}LY, is the one-step-ahead
i=1 i=l

prediction sequence from the identified model with p terms.
The prediction error sum of squares (PRESS) proposed in [45], [46] provides a useful residual scaling, which
can be used as a form of cross validation by leaving one point out at a time [47]. The prediction error sum of

squares is defined as
N N
PRESS = Y [¥() - 7 (1 = 2[4 (20)
i=l i=l

where y_; (i) are one-step-ahcad predicted values from a model fitted using a data set consisting of N-1
obscrvational data point pairs, which are obtained by leaving the ith data point pair out, £_;(i) are the PRESS
predicted residuals evaluated at the ith point. Let &(i)be the normally defined residuals of a model fitted using

the total N data points, it can be shown that the relationship between &_;(i) and g(i) is




y-y@  __€0)

g,()= P : Al
D=1 Py 5 1-hGi) @1)
where [, and P are defined as in (10). Thus PRESS can be reduced to
N ; 2
£(i)
PRESS = T 22
;[1—%,:‘)] =

This shows that the PRESS statistic can be calculated by fitting only one model using the total N data points, but

N “leave-one-out” matrices are still required. It can be proved [44] that if N >> p, PRESS can be approximated

as

PRESS x(}_v_N_J SSE 23)

Statistic (23) gives some indication of the predictive capability of the regression model. This will be used to

define the adjustable R?-PRESS statistic given below

2
P
g2 = RESS=1—{ y ]«SE 24

e SST N-p) SST
Note, however, that sometimes the data length N may be long, say N 2 2000 . In this case, the effect of n in the
denominator of (24) is minimal due to the fact that (N/(N - p))? =1+2p/N =1 for p << N/2.One way to
avoid the tendency that small p’s are mitigated by a large N is to replace the number p by Ap , where A is an

adjustable coefficient. Experience shows that a typical choice for A is to set A=max{l, pN} with

0.002 < p £0.01. The adjustable R?-PRESS can then be defined as

2
B =1—[ NN = ) NMSE @5)
~7p

Note that the R*-APRESS statistic (25) is in formulation similar to the adjustable R? _statistic given by (18). In

the next section, the R?.APRESS statistic will be combined with the criterion ESR (error-to-signal ratio) and

will then be incorporated into the orthogonal least squares algorithm.

3.4 The adaptive orthogonal least squares (AOLS) learning algorithm
At first sight, the calculation of the R?_APRESS statistic defined by (25) requires an initial calculation of the

value of NMSE, which involves the calculation of the one-step-ahead prediction, y . From the definition of ESR

in (17), however, the calculation of NMSE is not necessary. In fact, from (17) and (25), the R2.APRESS for an

identified model with p model terms can be calculated as

2
2 N
R =] = NMSE
aprcss[P] (N*—"/lp] [p]




1_[SSTO N Y[ e
SST \N-2p) \ ST, ),

2
SST N
s 8, ESR
( — ){ T lp} [p] (26)

N
where S5T; = yTy = Z;=1 y2 (i) is the total sum of squared deviations iny from the origin, and SST is defined

in (14), and the index or subscript [p] indicates that the associated items are calculated from an identified model

with p terms. Note that ESR[p] (p=1,2, ...) in (26) are available as a by-product of the orthogonalization
procedure.

Assume that there exists a number p, , at which the function R:Pmss[ p] with respect to p is a maximum. At

the maximum of R:pms [p], the following relationships hold
R:prcss [pD] > Razpress [p[) - 1] (273)

R [Po] 2 Ripes [P +1] (27b)

A little rearrangement of (27a) and (27b) gives

2

ESR(py) N - Ap,
ESR(po-1) [N = A(po - 1)} (o
ESR(po +1) [N =Apo+DY -

ESR(p,) | N-4p,

Define two functions
_ESR(p+1)
nlp)= e ) (29)
2
N-A(p+1

2:(p) :[_—N—;(JZT)_] (30)

From (28a) and (28b), 2, and %, have the following property: %,(p)< x,(p) for p<pg , and
7,(p) 2 1,(p) for p= p,. The two functions defined by (29) and (30) will be used as an indicator to find the
optimal model term number pg , where the two indicating functions intersect. In fact, the optimal number p,
can be chosen as the point where y, enters into a small confidence interval of y, for the first time, say the

interval ¥, £ &8 , where & is a small positive number.

10




The new adaptive orthogonal least squares algorithm (AOLS) can now be described below, where &),-=+, ),
are the vectors associated with the M candidate model terms.
The ALOS algorithm:

Step 1: Set Il 2{1,2,"',M}; Sy :YTYE 5 :(Y_Y)T(Y"Y);

fori=1 to M
A=y
T a2 :
dirir. X DY . gerAMsT Gl ore
errV[i]= ——=——; {f (§) B =0,set err’[i]=0};
; 55 (ﬂim )T ﬁn‘(l} !
a; =1;
end for

£, = argm%x{err(l) [i1}; err[l]= errV[L,];
iel,
serr[1] = err[1]; esr(l]=1- serr[1];
T
y
a=B & S
d1 4

Step j, j=2:
For j=2 to M
I; :Ij_l\{fj_l};
foriel;

T T
a4y 1

g 3Bn
ij'r-xqj--l !

e T B .o ¢ aUINT gld) O
errt’ [t]=W; (if (B) B < 8,set err'”’[i]=0}; (32)
end for ( end loop for i)
T, =(arg(BY B <8)s ;=1\ (33)

iel;

ﬁ-(j) - ﬁ.(_f-l) _
1 i

£, =arg m?x{err(j)[i]} serr[jl= err) [4 j] i

Calculate: {SERR[/], ESR[/], pr,ess[j] L 71l),and 2o[/1%:
Y,

; a; =1
q;4,

9; =ﬂe(f)? g i
for k=1 to -1

o = a{j‘h )

v qﬁqu ,
end for (end loop for k)

end for (end loop forj )

Remark 1: The AOLS algorithm provides an effective tool for selecting significant model terms in an iterative

stepwise way. Terms arc selected step by step, one term at a time. Most numerical ill conditioning can be

avoided by eliminating the candidate regressors for which (,6‘,-(”)? ﬂ,.m are less than a predetermined

threshold & , say & =107 with 7 210 (see Egs. (27), (28)). In the case where both the dictionary and the data

length are large, other faster OLS algorithms can be adapted into the AOLS to lessen the calculation load and

11




spare computation time. For example, the MPOLS (pursuit matching orthogonal least squares) algorithm
proposed in [39] is very fast compared with most existing OLS algorithms, and can be used to handle large scale
data with a high SNR, but this is achieved at the expense of producing over-parameterised models compared to
OLS.

Remark 2: The assumption that the initial candidate regression vector set S ={a, 1,0y} is of full
dimensionality is unnecessary in the iterative forward AOLS algorithm. In fact, if the M vectors P are linearly
dependent, and assuming that the dimension of S is n (<M) , the algorithm will stop at the n-th step.

Remark 3: 1f required, the selection procedure can be terminated at step M ,(generally M ; << M ), the optimal
number of model terms, at which point the function R:pwss [m] with respect to m will be a maximum that satisfies

(M) 2z, (M o) - The system output can be expressed as a linear combination of the M, selected

significant regressrs
Y=g+t &u,Iu, & (34

which is equivalent to
My
y(t)= D B () + () (35)
i=l
where 7r,; € D (the associated dictionary), the parameters GUos) :[gfu’gfz"“’gf.u., 1" are calculated from the

triangular equation Ag=9(AOL‘S) with g :[gl,gz,---,gMo]T and

. |

1 a, o

0 1 v gy,
A=

0 e 1 pg 1,y

0o 0 1

The entries a; (1 <1< j < M,) are calculated during the orthogonalization procedure.

4. Multiresolution Wavelet Networks

4.1 Multiresolution wavelet decompositions
From wavelet theory [8],[9], any function fe L*(R) can be expressed as the following multiresolution

wavelet decomposition

OB IO ED I I IHC) (36)
k k

JZjy
where l,l/j'k(x) = ZNZ!,U(ij -k),@,,(x)= 9412 ¢(2jx — k), and the integer numbers and k are the scale and

location parameters, and jq is an arbitrary integer representing the lowest resolution or scale level.

Using the concept of tensor products, the multiresolution decomposition (36) can be immediately generalised

to the muti-dimensional case, where a multiresolution wavelet decomposition can be defined by taking the tensor
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product of the one-dimensional scale and wavelet functions [9]. Let f € L*(R?), then f can be represented by
the multiresolution wavelet decomposition as
2941
i & e Zaju,kq)jo,k (5o dig) ¥ ZZ Zﬁﬁq’ﬁ(xls”':xd) (37
k J2ip k1=l
where k = (k;, &y, k) € 2" and

d

q)jmk(xl’_“,xd):2Jndf2H¢(2Ju xi —kf) (38)
i=1
d

P (x,,,2q) =27 [0 Q@ % = k) 39)

i=1
with ﬂ{i) = ¢ or y (scalar scale function or the mother wavelet) but at least one n(i} =i . For some

appropriate J, the approximation representation (37) can be approximated using only the scale function @ ,

d

Flrniy) = Za.!,k(pj,k (Fpr=ra Xy ) = Z &g ook, ZJWZHMZJ %; =) (40)
k =1

kl:kla"'nk,j i

4.2 B-splines and associated mother wavelets

Although many functions can be chosen as scale and/or wavelet functions, most of these are not suitable for
system identification applications, especially in the case of multidimensional and multiresolution expansions. An
implementation, which has been tested with very good results, involves B-splines and associated mother wavelet
for multiresolution wavelet dgcompositiﬂns[ZG],[ZS]. For a comprehensive discussion on B-splines, see Chui [8].

The B-spline function of mth order is defined by the following recursive formula:

m-—Xx

N, (1) =—2=Np () +—N, (x-1), m>2 (41)
m—1 m-—1
with
1 if xe[0,1)
N, (x) = = 42
(%) Ko (x) {0 aiherise (42)
Define #(x) =N, (x),and
Im-2
w(x)= Y d;N,(2x k) (44)
k=0
with the coefficients given by
1\ oom
d, =(2,21 Zlm (k= Jj+1), k=0,,-3m=2 (45)
Jj=0 .]
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TABLE |
THE B-SPLINES OF ORDER 1 TO 4

Nx) Ny 2N, (%) 6N, (%)
0<x<l 1 X x? %
15x<¢2 0 2—x ~2x* +6x-3 —3x° +12x% -12x+4
The 2<x<3 0 0 (x-3)* 3x° —24x” +60x — 44
3<x<4 0 0 0 —x° +12x* —48x + 64
elsewhere 0 0 0 0

functions ¢ and y can then generate multiresolution wavelet decompositions [8]. Clearly, the support of the

mth order B-spline and the associated wavelet are

{ supp ¢ = suppN,, =[0,m] (46)

supp y =[0,2m —1]

The most attractive and distinctive properties of B-splines and the associated mother wavelets compared with
other wavelets are that they are compactly supported and can be analytically formulated in an explicit form.
Most importantly, they form muitiresloution wavelet decompositions. To the best of our knowledge, B-splines
and the associated mother wavelets are unique because they simultaneously possess the three remarkable
properties, namely compactly supported, analytically formulated and multiresolution analysis oriented, among
all known wavelets. These splendid properties make B-splines and associated mother wavelets remarkably
appropriate for nonlinear dynamical system modelling. The most commonly used B-splines are those of orders 1

to 4, which are shown in Table 1.

4.3 Multiresolution wavelet networks

It has been proved in [48] that for a high dimensional problem, the multiresolution decomposition (37) and
(40) may involve a large number of wavelet basis functions. A dimensional-reduced wavelet network based on a
functional expansion was then proposed [48], to overcome the difficulty of the curse-of-dimensionality. For 2
given d-dimensional function approximation problem, the functional expansion advocated by [5], [27], [49], [50]

is given below
f(x[5x2!'“=xd)
d
=fo(xi)+ Zfi,j(xwxj)"*' ij,j,k(%a%sﬂ)‘*"'*‘ Zf;‘l,jl,---_im(xil1x¢':a"':xim) 47
i=l

I1<i<j<d 1Si<j<ksd 1Siy <+ +<i,, Sd
where m<d, i, € 11,2,-+-,d} and the function flgj() (/=12 ....d ) does not contain terms that can be

written as functional components with an order smaller than j. For more detailed discussion on the functional
expansion (47), see [48]-[50].

In practice, many types of functions have been chosen to express the functional components Sr20 () in

model (47). In the present study, however, multiresolution wavelet decompositions will be used to approximate

each of these functional components in the dimension-reduced functional expansion (47). For example, the

14




decomposition (36) will be applied to express the one-dimensional component f; for =12, ..., d; the
decomposition (40) will be applied to the higher dimensional components f:,: with m<d and

i, €{,2,-,d}. B-splines and associated wavelets will be used as the basis functions in these multiresolution

decompositions. The resultant model is referred to as the truncated multiresolution wavelet network.

4.4 The determination of the scale and location parameters in the wavelet networks

Assume that a function f e L*(RY) of interest is defined in the hypercube [a,b]" . Without loss of

generality, consider the case where a=0 and b=1. For the sake of convenience, the one-dimensional (d=1) case
will be considered as an example to illustrate the determination of scale and location parameters in the B-spline
and associated wavelet based multiresolution networks.

It is known that both B-splines and associated wavelets are compactly supported and the support for the s-th

order B-spline and associated mother wavelet are [0, s] and [0, 25-1], respectively. At any given scale j in the
decomposition (36), only the scale basis functions satisfying 0 <2/ x—k < s are needed, where 0 < x <1. This
implies that the location parameter k satisfies 1 — s <k <27 —1. Similarly, only the wavelet basis functions

satisfying 2—2s <k = 27 —1 are needed at scale j. Therefore, the choice of the location parameter k at scale j
in the decomposition is determined by the associated scale parameter j. The scale parameter is thus a key factor
in multiresolution wavelet networks. In the following, the scale parameter determination problem will be

addressed from two aspects: static function learning and dynamical modelling.

4.4.] Static function learning

F‘or a static function approximation problem, where the independent variable ¢ is ‘time’, the initial scale j, in
the multiresolution wavelet decomposition (36) is often set to zero, and the finest scale j,, can be chosen as
Jmax =I0t[1085(B fax)], Where [ is the maximum natural frequency of the signal involved, [ is a positive
number, and int[-] denotes taking the integer value of the corresponding number. Results on numerous

simulation experiments show that for most signals 3 can be chosen between 2 and 16. To illustrate the

relationship between the scale parameter j and the natural frequency of a signal, consider the two examples given

below.

5,(¢) = sin(8m) + sin(1672) + sin(64m) (48)
5
5y(t) = Y, A sin(e, A7) (49)
k=1
where A =2.5, a=1.1, ¢, =5 (k=1,23), ¢, =4, and¢s = 2. The maximum frequency of the signals s, (£)
and s, (f)is 32Hz and 31.1 Hz, respectively. Both the signals were sampled with a sampling interval 0.002sec

over [0,1], and 500 data points were recoded for each of the signals. Based on the recorded data points, the two

signals were reconstructed using a multiresolution decomposition below

15




15 — T - g
(=
o
L
8 - 10
Scale j
5 T T T
b
al (O] i
S 3F 1
2l
14 E
0 = o < & o D
o] 2 4 6 8 10
Scale j

Fig. I The wavelet energy for signals fl(f) and §2 (f) described by (48) and (49). (a) The energy for the signal recovered for 51 (t) ; (b)

the energy for the recovered for 52 (t ) .

J
HOED WA MOEDIPI NG (50)

ked Jj=0 keB,
where J=10, ¢ and i are the 4-th order B-spline and the associated mother wavelet, the index sets 4 and B

can easily be determined at any given scale j using the method mentioned above. Define the wavelet energy as

Ej= Z!ao.klz + Z|d0,k‘2 (51a)
ked keB,

Ej = Z|dj-klz’ jzl, (51b)
keBJ,

The wavelet energy of the signals §,(¢) and 5,(f) are shown in Fig. 1, which shows that the wavelet energy for
§,(¢)and §,(¢) are distributed at scaling levels 0 to 6, and 0 to 5, respectively. In other words, the signal §,(¢) is
totally determined by the decomposition with scales 0 to 6, and the signal §,(t) is totally determined by the

decomposition with scales 0 to 5. Note that the wavelet energy E52 for signal §,(#) at scale 5 in Fig. 1(b) is

0.0006, which is very small,

4.4.2 Dynamical modelling
In typical discrete time-invariant dynamical modelling, for instance, the NARX modelling, the direct
independent input variables are usually the lagged inputs and outputs of the system under study, but not the time

‘" as in a static function. Consider a simple example given below.
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x(t) = —|x(t - 1| +0.202u(z - 1) =11 +7(:) ' (52a)
y(t)=1.5+x() +7(t) (52b)
where7)(¢) was a Gaussian white noise sequence with mean zero and standard deviation 0.01. The input u(f) was

assumed to be bounded in the interval [0,1]. The objective here is to find an equivalent representation, using the

NARX representation y(t) = f(y(¢ —1),u(t 1)) +e(t), for the original model (52). Consider the first order

functional expansion

f-D,u@-1) = f,E-D)+f,@¢-1) (53)
The unknown nonlinear functions f; and f, can then be approximated using a multiresolution decomposition
below
J
FuG) = D o x o KON+, D d 44 (x(0)) (54)
keA J=0 keB;

where J =8, x(1) = y(t —1) or x(t) =u(t—1), and the index sets A and B are defined as in (50). Setting the

input #(¢) in the model (52) as an random sequence uniformly distributed in [0,1], 400 input and output data
points were collected and were then used to select the wavelet basis and to estimate the unknown parameters.
Although a total of 614 wavelet basis functions were involved in the initial network, only 7 basis functions were

selected using the AOLS algorithm. It has been shown that the model formed by the 7 selected basis
functions, ¢u,-1(y(f -1),¥o (»(-1), ¢’ﬂ,0 (u(z-1) ., ¢ (u(t-1)), Wo, (-1, v, 4 (u(t- 1)), and

W, _¢(u(t=1)), provided an excellent approximation for the original model (52) and produced excellent model
predicted outputs. Clearly, the scales for these basis functions are concentrated on 0 and 1. Numerous simulation
experiments show that when B-spline-wavelet networks are applied to identify nonlinear dynamical systems, the
initial scale j, in the multiresolution wavelet decomposition (36) can be set to zero, and the finest scale j,, can

often be chosen as an integer that is not larger than 3.

5. A Three-Phase Modelling Procedure to Implement the NARMAX Model

As mentioned in Section 2, a typical NARMAX model often consists of two parts: the deterministic (noise
independent) and the stochastic (noise correlated) submodels as shown by (6). In the present study, a three-phase
modelling approach is proposed to construct basis function networks to implement the NARMAX model. The
main idea of the three-phase modelling scheme is as follows:

e Initially, construct a NARX model using basis function networks.

o The effects of correlated noise and unmeasured disturbances must be accommodated using the model

residuals (errors) from the identified NARX model. Viewing the modelling error £(f) as the output and
treating the lagged system outputs y(f—i) and inputs u(t—j) , coupled with the lagged error

variables £(¢ — k), as the inputs, fit a polynomial model for the error (1) .
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e Combine the identified error model with the network NARX model, and re-estimate all the model parameters

recursively. An unbiased model should then be obtained.

5.1 Implementation of the NARX model using basis function networks
For convenience of description, take the case of SISO dynamical nonlinear system modelling as an example.

For a given identification problem, the objective is to build a basis function network to identify the unknown

nonlinear mapping f,, in (6). Assuming that N input-output data points, {u(t)} ), and {y()}}, have been

observed, let d =n, +n, and x(8) =[x,(8), %y (t)]T with

-k 1<k<
xk(t)={y(t . =%

(35
u(t—(k-n,)) n, +1<k<n,+n,

The nonlinear function f, (X(£)) can be approximated using any basis function networks including RBF and
multiresolution wavelet models. A typical choice for the radial basis functions in RBF networks is a set of

standard Gaussian kernels, @; : R? - R in the sense that
0, (x(;a,,b,) = 9, (aT o (x(£) = b,)) = exp[-(x()) ~b,)" AT (x(1)=b;)/2] (56)

where a, = [aj,l,-‘-,a‘-lﬂ,};r . b, =[b‘.‘1,---,b,-,d]T and A; =diagla;;, -, a;4]= diag{aﬁl,---,af’d] . The basis

function network (8) can then be written as

L xn-b) A7 (x(0)-b;)

M
g(x(6) = Ze,e 2 _ (57)

Assume that a total of m, significant basis functions (model terms formed by polynomials, RBFs or

wavelets) are selected for the nonlinear function Lo x@®) =S (y[H'"” ],u[H'"“]) ini(8), Ly (x(2)) can thus

be approximated as
Ju )= 36, 0, (x(0)8,b)) (59
m=1

5.2 Noise modelling

Again, for convenience of description, the SISO case will be taken as an example. In many cases the noise
terms in the NARMAX model (1) will form a correlated or coloured noise sequence. This is likely to be the case
for most real data sets. In this case the approximation (58) is likely to fail to give a sufficient description due to
the bias in the parameter estimates. The effects of correlated noise and unmeasured disturbances must then be
characterized by modelling the residuals with respect to the identified NARX model. The NARX modelling error

is defined as

£(t) = (1) = £, (x(1)) (59)
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The residual signal £(¢) can then be related to the input #(t) and the out y(f) by a nonlinear model. In the

present study, the following polynomial model of degree £ is applied to model the residual sequence g(t)

[t=Ln,] =1, =Ln,
£(t)= foue(y A gl -l

d d d
= Z?’rlxj, (1) +Zzyil£,x1‘| (O)x,, (£)) e

=1 iy=1 iy=iy

d d
+Z Z?'f,iz-»-i,xf, (B)x;, (1)~ x,, () +&() 7 (60)

p=l =i
This form of model is used because of the system is nonlinear it is also highly likely that the noise will involve

nonlinear cross product terms with both system input and the output. Assume that a total of m,, significant

basis functions are sclected for the moise model, the nonlinear function fyue(i(t))

= F o (y['_l'"y] ,u['_l‘""] ,E[H‘"‘]) in (6) can then be approximated by

ORI RO (61)

where the extended regression vector X(f) is defined similar to (5) withe(z — k) being replaced by g(t-k),
p,,(-) are selected model terms of the form z;" (r)---zi.‘ (t) , where zj" () e {y(t—1),, ¥t ~ T, 0
u(t =1),++, u(t—m,), g(t=1),+, e(t—n,)} for =1, o d, with 0<i;, £¢ and 054 4+ +i, 4. Note

that at least one sz (1) is related tog(¢ — k) for k = 1,2,-+-,m,.

5.3 Parameter re-estimation

In order to obtain an unbiased network model, the identified model _]Ar yu and f ue Should be combined as a
whole and the model parameters should then be re-calculated. Let E!(t)’”-’ﬂmw () be them,, selected model
terms in (58) with 7, (¢) = 7, (X(£)) , and let ®©, ()= (), ()] and @ . (1) = [o(2), ‘P 0]

An unbiased model can often be obtained by re-estimating the model parameters in a recursive way below.

(a) Calculate the model parameter estimate [é; ; é;“_, ]T of the model

y()=®,(08,, +P e ()0 (62)
and let
£,(0) = Y1) - HER®) = YO -[D,, (06, + ®,,.(00,,] (63)

(b) [f Hﬁln/ uau =1, stop the parameter re-estimation procedure; otherwise, go to (©).

(c) Set {e(}X, ={&,(1) },’il , repeat (a).
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Note that the residual signal defined by (59) and (63) is in fact the one-step-ahead prediction error, which is

different from the often used model prediction error defined as
E() = y(O) = Jmpo (1) (64)

where j/m‘w(t) is recursively calculated from an identified estimator £, from some given initial values in the

sense that

j}(t) =f‘yu(j}mpo(r_]')"”>j;mpo(t_ny)ﬁu(t —1):""“(1-”:4)) (65)

A key step following the above thrce-phase modelling is model validation. A commonly used approach to
check the validity of the identified model is to use higher order statistical correlation analysis [51], [52]. An

alternative for model Vahdlty tests is to check both the short and the long term predictive ability of the model.

6. Numerical Examples and Results

In this section three examples are described to illustrate the applicability and effectiveness of the new AOLS
learning algorithm for basis function network training when these are applied to identify nonlinear dynamical
systems. In all the three examples, significant model terms were selected and the model size was determined

using the new AOLS algorithm. A comparison between RBF and wavelet models is presented.

6.1 Example 1—a chaotic time series

The following piecewise autoregressive maodel

2o[¥(-D+1] -05<y(-1)
(1) =3-2ap(t-1) -05<y@-1)<0.5 (66)
2a[y(t-1)-1] 05<y(-1)
where & = 0.95, was simulated and 5000 data points were generated with an initial condition 7(0)=05. A
Gaussian white noise e(f) with mean zero and standard derivation 0.02 was then added to the data set to form a
noisy data set y(f) =J(t)+e(t). The first 200 noisy data points were used for network training, and the

remaining 4800 data points were used for model testing. The first return map produced by the 4800 noisy data

points is shown in Fig. 2(2). The input variable was chosen as x(t) = y(t—1) to construct basis function

networks as below.

e Start from a full Gaussian RBF model, with mixed basis functions @; () = exp{— “x(r) —E:"‘.”2 / (20'; )} and
@, (1) =exp{- "x(t)-—Z‘;nz /(20‘; )}, where all the data points in the estimation data set were chosen as
candidate centres, E, , the kernel widths o, and o ,; were heuristically chosen as follows: many values for
o, and O, were initially tested and it was found that the values O} = ry2 /8~=0.0625 and
o*f". = rf /4~ 0.25 for i=1, ..., 199 were a good choice, since the RBF network model with these two selected

kernel widths produced smaller mean-squared-errors. The initial noise model was given by (60),

wheren, =1,n, = 0, n, =5 and £=2. The finally identified noise independent RBF model was
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11 11
WO =Y 6,0,((t-1s6;,0,) = Y6, expl=-Ty(t -1 ~c, 1"/ (207)} (67)
i=l

i=1
where the estimated model parameters &, , the centres ¢; and the kernel width &, in the associated Gaussian
basis functions are as follows: {6, }11,={-0.98899943,-1.63597326,-0.36124466,-0.97257050, -1.11997304,

3.45468596, -3.20488120, -0.34953056, 1.76833004, -0.43156670, 1.30007889}, {ci}}il ={0.8211, 0.5113,
0.4585, 0.1487, -0.3294, -0.4983, -0.5337, -0.9827, 0.5113, 0.3418, -0.4670}, and 0, = 0.1768 for i=1, ...,
8 and o, = 0.3536 for =9, 10, 11.

e Start from a full multiresolution wavelet model of the form (54), where J=5, @ and i are the second order B-

spline and the associated mother wavelet. The initial noise model was given by (60), wheren, =1, n, = 0,

n, =5 and £=2. The finally identified noise independent wavelet model was

y(t) =-0.47653994 ¢, , (¥(t —1)) +0.47473611 Po o (Yt~ 1)

1015802597 o, (y(t ~1))+0.15851635 1, ,(¥(t~1)) (68)

The time series generated from model (66) is chaotic and is strongly sensitive to the initial conditions. A
comparison between the model predicted outputs or many step ahead forecasts, produced from the identified
models, and the original data points produced directly from the original model (66) is therefore difficult. As an
alternative, the first return maps, produced by the identified models, were therefore used to test the validity of the
identified models. Starting from the same initial condition y(0) = 0.5, the two identified models (67) and (68)
were simulated and 5000 data points were collected for each model. The first return maps constructed using the
simulated data points (from #=201 to 5000) are shown in Fig. 2(b) and (c). It is clear from Fig. 2 that the
identified wavelet model is superior to the RBF mode! for this unsmooth and discontinuous chaotic time series.
In fact, the first return map produced from the wavelet identified model is identical to that produced by the

original model (66).

A ‘ i e
i 1
o.sl . i El

yit)

-o.5 . 5 b = y H H ~o.s|

="

Fig. 2 The first return maps for the time series produced by the original model (66) and by the identified models (67) and (68). (a) from
original model (66) with added noise; (b) from the wavelet model (68); (c) from the RBF model (67). All the four maps were formed using
4800 data points.
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6.2 Example 2—a rational model

Consider a rational system [35] described by the model

_ y(t-1)y(z-2) u(t-1)
0= a+y @ -1D)+y*(t-2) +b2 +ctut(t-1)

+17)(2) (69)

where a=b=1, ¢=0.1, the input u(f) was assumed to be bounded in [-10, 101, and 77(¢) was a noise determined by

77(t) = w(t) +0.95w(t —1) = 0.25w(r - 2) - 0.6w(z - 3) (70)

with w(¢) a Gaussian white noise of zero mean and a standard variation 0‘5, =0.25 . The model was simulated

by setting the input signal u(f) as a random sequence uniformly distributed in [-10, 10] and 1000 input-output
data points were collected. The first 500 data points were used for model estimation and the remainder were used
for model testing, Note that when identifying the polynomial and RBF models, the original observational data

points were used. In the wavelet modelling, however, the original input-output observations were normalized to
[0,1]. From the information that ¥ Su(f)<# and y < y(t) <y, where # =-u =10, y =—y =8, both the

observed input and the output sequences were normalized to [0,1] via a simple transformation. The normalized
input and output variables will still be denoted as u(f) and y(f) , respectively. The final output was recovered to

the original range by using the inverse transform.

The input vector was set tox(¢) =[y(z—1), y(r=2),u(t #1)]"r for the NARX modelling, and the extended

input vector was set to X(¢) = [y(r —1), y(t - D,u(t-1),e(t-1),8(t —2),&(t - 3)]" for the noise modelling.
Following the three-phase modelling approach described in Section 5, a multiresolution wavelet model was

identified. For a comparison, polynomial and RBF models were also identified.

(4) The multiresolution wavelet model.

Start from a full multiresolution wavelet model of the form
[ () = £ (D) + fo (6 (D) + £2.(x:(8))
+ F2( (0,2, () + fi3 (0 (0, %5 (8) + S5 (22 (), 35(1)
+ fi23 (3 (6, %, (1), %3 (1)) an

where f,(x p(t)) for p=1,2,3 were decomposed as (54), the finest scale was set to J=4, and the second and the

third function components f, . (x,(1),x, () (1< p<g<3)and f,5(x (1) x;(0), %, (t)) were decomposed

as

Lo (X)X, (1) = Zao;k,,kz (’50,&,(%(1))(‘50.&: (x, () + Zal:kl,kzgél.ici(xp([))‘;#l,k: (x,(1)) (72)

ky ko ky . ka
fi23(x) (1), %, (£), x5(2)) = Z Lok, ko ks ¢0.k, (x, (I))ﬁﬁo‘k: (x, (f)){ﬁo,k, (x5(1)
ky ik ks
D A B (O, (52 (O, (55 (1) 73)
ky ky Ky
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In (71)-(73), ¢ and y are the 4"_order B-spline and the associated mother wavelet. The initial noise model was

given by (60), wheren, =2, n, = 1,7, =3 and £=2. The final identified wavelet model was

()= ~9.97658, 5 ({1 — 1)) o ((¢ =2)) —0.10274;, (¥(¢t -~ D)y (¥t = 2)
+1.1827¢, _ (u(t - 1)) —5.2522yp, _s(u(z—1)) +0.3473w, (u(t—1)) —0.5692&(r - 2)
+0.67228(t =) p(t—2) +0.4127e(t -Du(r 1) + 0.2300u(z —1)e(t—3) (74)
Note that all the variables in model (74) were pre-normalized. The output variable y(f) can easily be recovered to
its original operating region via a simple inverse transform. The NMSE (defined by (19)) of the model predicted
outputs produced by the wavelet model (74) over the test data set, points from 501 to 1000, was 0.0505. Note

that no cross product model terms with respect to the input and output variables were selected in (74), this is

consistent with the structure of the original model (69).

(B) The polynomial model.

The polynomial modelling starts from a full model of degree 3 with 84 candidate model terms. The initial

noise model was chosen as (60) with a nonlinear degree £ =2. The finally identified polynomial model was
y(t) = —0.0385y(¢ —1) +0.9151u(¢ 1) +0.025 Lyt -Dy(t-2)
+0.0015p(t —Du(t-1) + 0.0015)}3(: -1 - 0.0008y3 (t-2)

+0.0004y(t —Du’(t—1) —0.0044u°(t —1) +0.5825¢(¢ 1)
_0.6141&(t—2) +0.1616&(t —3) +0.0304y(t ~2)&(t 1) (75)

The NMSE of the model predicted outputs produced by the identified polynomial model over the test data set,
points from 501 to 1000, was 0.0531.

(C) The RBF model.

The RBF modelling starts from a full Gaussian RBF model, with basis functions

[x, (t)_cj,1]2 [x,(0) _Cf-2]2 - [xa(t)_c‘i'3]2 } (76)

@; (x(1) = GKP{— -

2 2 2
20'1,1 20‘}..2 2ch.'3

where j=3, ...500, [x,(£), %, (£), %3 ()] =[y(t = 1), y(t - 2),u(t-1)], ¢, are kernel centres (all the data points
in the estimation data set.were chosen as candidate centres), the kernel width o, were heuristically set to as

0, =0;,= 6!\/5 VO, = lO/ﬁ. The full noise model was chosen as (60) with a nonlinear degree £=2.

The final identified RBF model contained 21 process model terms and 5 noise related model terms. The NMSE
of the model predicted outputs produced by the identified RBF model over the test data set, points from 501 to
1000, was 0.0517. The selected centres, the estimated parameters for the noise independent model terms are

listed in Table 2.
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TABLE 2
THE SELECTED CENTERS AND ESTIMATED PARAMETERS FOR THE NOISE
INDEPENDENT MODEL TERMS OF THE RBF MODEL FOR EXAMPLE 2

Cii Cin C1e 6,

1 -0.5198 -0.0052 9.7587 6.10298572e-01
3 00733 01830  -6.8522  -5.14616041e+00
3 6.3857 2.7879 9.6704 4.57447061e+00
4 23420 23592 41460  4.74336317c+00
5 -5.0780 5.3060 -9.1272 -5.53278461e+00
6 70828 -17361  9.7295  -2.57470429¢+00
7 3.7754 49176 -4.6782 27.29073581e+00
§ 48757 63564 87013 -3.84545119e+00
9 35588 61964  8.5410  3.74115367e+00
10 -1.6217 42519 9.2070 4.58380816e+00
11 -0.0140 -4.3961 -7.8379 -2.94773805e+00
12 5.4803 -5.4308 8.3219 3.39948056e+00
13 -0.5899 -1.6691 8.1653 -4.89696779¢+00
14 61964  -5.4268  -7.5638  -1.63678934e+00
s 48875 33054 66301  7.07969308e-01
16 -0.4658 1.5105 _-8.9139 4.77193075e+00
17 -6.5893 45160 -9.8072 -7.96276493e+00
18 05565 75010 49753  -2.64513534e+00
19 41618 48630  -7.4391  1.04446119e+01
20 -6.0931 -4.4730 6.3917 1.88267519e+00
21 1.7748 5.0005 4.1891 1.94600598e+00

To check the model performance further, both the original model (69) and the identified polynomial, RBF
and wavelet models were simulated with a same initial condition by setting the noise as zero (noise free models

were considered to facilitate the comparison between different model predicted outputs), and by setting the input

signal as
5sin(12m /200) 0<t<60
— 5+ 5sin(20m/200) 60 <t<120
u(t)=4 8 120 <t <150 (77)
-8 150 <t <175

5sin(6m/200) +5sin(20m/ 200) 175<t

The model predicted outputs generated from the identified polynomial, RBF and wavelet models were compared
with the noise free output produced by the original model (69). These outputs are shown in Fig. 3, from which it
can be seen that all the identified models produce satisfactory model predicted outputs. At the lower frequency
and lower amplitude range, the difference between the model predicted outputs are Very slight. At large positive
amplitudes of the input, the polynomial model produces an over response. At sharply varying points, the

response of the RBF model oscillates slightly. The wavelet model performs consistently well across all

excitation regimes.
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Fig. 3 Model predicted outputs for the system described by (69) under the input given by (77). The thin solid line *~* indicates the noise free
output from the original model (69); the bold dashed line ‘-’ indicates the model predicted output from the identified RBF model; the thin

dotted line *.’ indicates the model predicted output from the polynomial model; the thin dot-dashed line *.-' indicates the model predicted

output from the wavelet model.

6.3 Example 3—a terrestrial magnetosphere dynamical system

One of the main problems of solar terrestrial physics is to understand the global dynamics of the terrestrial
magnetosphere under the influence of the solar wind. The sun is a source of a continuous flow of charged
particles, ions and electrons called the solar wind. The terrestrial magnetic field shields the Earth from the solar
wind, and forms a cavity in the solar wind flow that is called the terrestrial magnetosphere. The magnetopause is
a boundary of the cavity, and its position on the day side (sunward side) of the magnetosphere can be determined
as the surface where there is a balance between the dynamic pressure of the solar wind outside the
magnetosphere and the pressure of the terrestrial magnetic field inside. A complex current system exists in the
magnetosphere to support the complex structure of the magnetosphere and the magnetopause. Changes in the
solar wind velocity, density or magnetic field lead to changes in the shape of the magnetopause and variations in
the magnetospheric current system. In addition if the solar wind magnetic field has a component directed
towards the south a reconnection between the terrestrial magnetic field and the solar wind magnetic field is
initiated. Such a reconnection results in a very drastic modification to the magnetospheric current system and this
phenomenon is referred to as magnetic storms. During a magnetic storm, which can last for hours, the magnetic
field on the Earth’s surface will change as a result of the variations of the magnetospheric current system.
Changes in the magnetic field induce considerable currents in long conductors on the terrestrial surface such as
power lines and pipe-lines. Unpredicted currents in power lines can lead to blackouts of huge areas, the Ontario
Blackout is just one recent example. Other undesirable effects include increased radiation to crew and passengers
on long flights, -and effects on communications and radio-wave propagation. Forecasting geomagnetic storms is

therefore highly desirable and can aid the prevention of such effects.
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The Dst index is used to measure the disturbance of the geomagnetic field during magnetic storms.
Therefore, the Dst index provides useful information for studying geomagnetic storms. The forecasting of the

Dst index is very important in helping to prevent the negative effects of geomagnetic storms. Fig. 4 shows 1000
data points of measurements of the solar wind parameter VBj (input, measured unit: mV/m) and the Dst index
(output, measured unit: nT) with a sampling interval T=1hour. Inspection of the Fig. 3 shows that several strong
magnetospheric storms(Dst < -100 nT) and substrong stroms (Dst < -50 nT) took place during the time period
under investigation. This data set was separated into the estimation set consisting of 500 input-output data points
and the validation set consisting of the remaining data points. The objective was to identify input-output
nonlinear basis function network models based on the estimation data set. This model was then used to predict
the Dst index. Previous studies have shown that the data set shown in Fig. 4 can be adequately fitted by choosing
the input vector as X(f)=[p(z-1), -,y(t—4),u(tf1),u(t——2)]T , where y() and u() indicate the
measurements of the system output (Dst )and input (VBS ), respectively.

Starting from a full wavelet model described by (71)-(73), where ¢ and | are the second-order B-spline and

the associated mother wavelet, a multiresolutioin wavelet network was trained. The final identified wavelet

model with the noise related model terms omitted was given as

(1) =0.7146 8, o (¥(¢ — 1)) +0.0575 @y, (¥(2 = 1)) +0.0096 4 o (¥ (2 — 1)
20,0053 5 (9 = 1)) +0.0738 7, _, (¥(¢ —2)) +0.0802 5 (¥(¢ = 2))
1034621/, _; ((t = 2)) +0.1403 gh o (¥(t = 3)) +0.0308 o, (¥(t = 4))
+0.0018 7, , (¥(¢ —4)) -0.0402v7, _, (u(t —1)) +0.0031 w7, _, (u(t —1))
0.6165 W, 5 (u(t —1)) +0.0076 ¥ _» (u(t-2)) (78)
Note again that all the variables in model (78) were pre-normalized into [0, 1]. If necessary, the output variable
(¢) could be recovered to its original operating region via a simple inverse transform. The NMSE of the model

predicted outputs produced by the wavelet model (78) over the test data set, points from 501 to 1000, was

0.1094.
The 2 hour ahead prediction given by model (78) over the range from 750 to 100 hrs is shown in Fig. 5(a).
The RBF modelling starts from a full Gaussian RBF model with basis functions

¢Jj(x(t))=cxp{ Z[xk(t) C_;k] } (79

6
k=l 29’, k

where j=5, ...500, x,(¢) = y(t - k) for k=1,2,3,4 and x, () =u(t —k+ 4) for k=5,6, c; are kernel centres (all

the data points in the estimation data set were chosen as candidate centres). For this data set, numerical

experimental results show that it was difficult to train a standard Gaussian kernel based RBF network with only a

single common kernel width. In the present study, the kernel widths o, were therefore set to two values:

Cik= 100/«/—2' for the system output (k=1,2,3,4) and 0, = 6.5/\/—2_ for the system input (k=5,6). The final

identified RBF model contains 24 process model terms. The NMSE of the model predicted outputs produced by
the identified polynomial model over the test data set, points from 501 to 1000, was 0.1139. The selected
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centres, the estimated parameters for the noise independent model terms are listed in Table 3. The 2-hour ahead
prediction given by the identified RBF model over the range from 750 to 100 hrs is shown in Fig. 5(b). It is
believed that the discrepancy between the model predictions and the measured values of the Dst index results

from the effects of other inputs which affect the system output but were not included in the current model [53].
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Fig. 4 The measurements for the input (VBs) and output (Dst) of the terrestrial magnetosphere dynamical system described in Example 3.
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TABLE 3
THE SELECTED CENTERS AND ESTIMATED PARAMETERS FOR THE IDENTIFIED RBF MODEL TERMS FOR THE DST INDEX OF
THE TERRESTRIAL MAGNETOSPHERE DYNAMICAL SYSTEM DESCRIBED IN EXAMPLE 3

i Cja €j3 Cia Cjs Ci6 8,

1 -87.3540 -96.2400 -81.9860 -66.7370 3.4843 3.1662 122.2151
2 -147.6290 -143.5500 -127.6130 -117.8910 5.3171 7.6633 25.3108

3 -61.3570 -67.6950 -2.8700 30.1600 7.2953 8.8522 3.7119

4 433260  -110.6350  -131.3010  -70.7650 12.4846 9.8357 1127570
5 -66.0320 -61.0420 -76.3280 -78.7280 0.6540 0.1271 -67.1099
6 30.4300 19.0140 10.2830 14.9830 0.8600 0.0001 219.4544
7 -134.3520 -43.3260 -110.6350 -131.3010 1.3171 12.4846 -87.9296
8 -117.8910 -113.9410 -134.3520 -43.3260 9.0861 1.4930 -133.8170
9 -2.8700 30.1600 -11.9240 -25.6100 10.6937 5.6606 =51.1194
10 -113.9410 -134.3520 -43.3260 -110.6350 1.4930 1.3171 -123.6927
11 -78.5270 -49.6550 -42.7680 -39.4570 5.4342 4.1025 102.4736
12 -110.6350 -131.3010 -70.7650 -61.3570 9.8357 5.4094 110.7024
13 -53.1730 -61.9080 -67.7840 -68.4770 2.4990 2.6919 -35.4674
14 3.5210 6.5580 8.2720 6.9450 0.1978 0.0821 -874.5269
15 5.6320 2.3750 4.4950 27110 0.0660 0.2835 834.4480
16 -70.7650 -61.3570 -67.6950 -2.8700 6.1930 7.2953 -135.9411
17 -127.6130 -117.8910 -113.9410 -134.3520 8.7964 9.0861 -87.9641
18 -136.9530 -136.7980 -147.6290 -143.5500 4.3761 4.8883 -164.8797
19 -67.6950 -2.8700 30.1600 -11.9240 8.8522 10.6937 -32.4883
20 -69.8500 -53.4640 -46.4460 -47.8340 5.6776 0.1949 -115.5480
21 -131.3010 -70.7650 -61.3570 -67.6950 5.4094 6.1930 -82.4364
22 -3.7400 0.4570 -1.7990 0.6270 0.0747 0.8420 -146.2663
23 -50.1790 -62.0870 -62.6530 -69.1730 3.2360 0.0000 70.2239
24 -131.7670 -140.0310 -136.9530 -136.7980 3.3190 3.4475 71.4186

7. Discussions

Once the prototype basis functions have been chosen, basis function networks can often be constructed via either
radial, tensor product, or ridge approaches to represent multivariate nonlinear mappings. RBF and wavelet
models are among the most popular representations. The main advantage of RBF models is that the radial
construction often leads to a smaller number of candidate regressors (model terms) compared with
multiresolution wavelet models where compactly supported wavelets and tensor products are used. This
advantage of RBF models becomes more significance for higher dimensional problems. For example, it was
noted in [48] that for identification problems involving a large dimensionality the implementation of high-
dimensional multiresolution wavelet networks via a tensor product approach can involve many potential model
terms. But many of the problems associated with wavelet models can be mitigated when variable and term
selection algorithm are used to determine best model subset. Compared with RBF network models,
multiresolution wavelet models are more flexible and can be used to effectively describe not only smoothly
varying ordinary nonlinear systems but also sharply varying severely nonlinear systems. Comparing

multiresolution wavelet models with RBF models in detail, the following points are worth noting:
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i) The compactly supported wavelet basis functions, for example, the B-splines and associated wavelets,
define a hierarchical multiresolution structure with fixed and regular dilation-translation parameters. Thus the
location and scale of each basis function is known beforehand. Although most radial basis functions are nearly
compactly supported, they only vanish rapidly as the independent variables of these functions are far from the
centre. Therefore, the scale and location parameters in RBF models have to be defined by means of a separate
approach before hand or during the network training. While some efficient clustering algorithms are available for
pre-selecting kernel centres to assistant RBF network training [12],[15],[29],[54], effective algorithms for
selecting and optimizing the scale parameters are still needed to enhance the flexibility and generalization
properties of RBF models. |

if) In a RBF model, every basis function depends on all the process variables. This is not always reasonable
since in general it is not necessary that every variable of a process interacts directly with all the other variables.
In the compactly supported wavelet multiresolutoin model, it is not required that every basis function (model
term) include all the process variables. This allows more flexibility in selecting the correct model structure to
capture the underlying nonlinear dynamics.

i) In compactly supported multiresolution wavelet networks, the basis functions for instance the B-spline
and associated wavelet are compactly supported. Thus, at a given resolution scale, the number of basis functions
involved is deterministic and thus the total number of candidate model terms is determined by both the coarsest
and the finest scale parameters. In RBF models, the number of total candidate model terms is dependent of either
the length of the training data set ( all the data pionts in the estimation data set are viewed as candidate centres),
or the number of pre-selected centres and scales.

On the basis of the above discussions, some suggestions are given below:

1) Observe the data as an initial step. 1f some chirps, discontinuous points, or sharply varying trends are
apparent in the signals, try a multiresolution wavelet model first. With remarkable inherent local properties,
multiresolutioin wavelet models with compactly supported basis functions can usually provide more desirable
results for severely nonlinear signals compared with other basis functions.

ii) Dimensionality consideration. For low dimensional problems, say the dimension is not higher than 5,
multiresolution wavelet models are a good choice. For higher dimensional problems, say the dimension is larger
than 10, a truncated multiresolution wavelet network given in Section 4.3 should be considered. Otherwise, a
RBF network, or a radial wavelet network, where a radial basis function is chosen as the activation function,
should provide an alternative.

iii) Starting from a polynomial model. The fact that RBF and wavelet models provide excellent
representations for nonlinear systems does not mean that they should always be used. A general principle in
system identification is that the model should be no more complex than is required to capture the underlying
nonlinear dynamics. The well known parsimonious principle is particularly relevant in nonlinear system
\dentification since the size of a nonlinear model constructed using local basis functions may easily become
explosively large. It has been noted that a large class of nonlinear dynamics can be well described by polynomial
models. Thus try a polynomial model first. If a polynomial model fails to capture the underlying nonlinear

dynamics, then try other more complex models.
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iv) Select the significant model terms. Whatever model form is selected experience shows that only a small
subset of the total candidate term set are usually required to produce an excellent fit. Variable and term selection
techniques should therefore always be employed.

v) Hybrid basis function networks. A hybrid basis function network, where different types of local and global
basis functions are combined and integrated in some specified way, may produce an improved result. For
example, a hybrid polynomial and wavelet model [55] can exploit the local property of wavelet basis functions
and the global property of polynomials simultaneously, and can therefore gives a more parsimonious and flexible
representation. Inspired by the hierarchical multiresolution structure of wavelet models with fixed and regular
dilation-translation parameters, the capability of RBF networks may be greatly improved by introducing some

multi-scale basis functions into the networks [56].

8. Conclusions
The construction and training of basis function networks for nonlinear dynamical modelling have been
discussed in detail. A new adaptive orthogonal least squares (AOLS) algorithm has been developed for selecting

significant model terms and determining the appropriate model size. Based on the new introduced criterion, the

error-to-signal ratio (ESR), the new R?-like statistic, and the adjustable prediction error sum of squares (R2 -

APRESS), the new AOLS algorithm can correctly select the significant model terms and will automatically

terminate by maximizing the values of R*-APRESS.

The construction of multiresolution wavelet networks, where the compactly supported B-slines and
associated mother wavelets are chosen as the basis functions, have been discussed in detail. With excellent time-
frequency properties, the new wavelet networks can represent ordinary, as well as severely nonlinear dynamics
with desirable approximation accuracy. This class of wavelet networks, however, can suffer from the curse-of-
dimensionality, as observed for many other basis function networks. A truncated multiresolution wavelet
network, where only lower dimensional functional components are employed to approximate an unknown
function, is therefore often considered. For large dimensional problems, radial wavelet or RBF networks may be
an excellent alternative.

The three-phase modelling approach, where the identification of a process model is followed by noise
modelling, should produce an unbiased model by eliminating the effects of the noise on the model parameter
estimates. The effectiveness of the new AOLS algorithm has been demonstrated by modelling both simulated

and real data sets using RBF and multiresolution wavelet networks.
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