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Abstract
Cryo-electron microscopy permits 3-D structures of viral pathogens to be determined in re-

markable detail. In particular, the protein containers encapsulating viral genomes have

been determined to high resolution using symmetry averaging techniques that exploit the

icosahedral architecture seen in many viruses. By contrast, structure determination of

asymmetric components remains a challenge, and novel analysis methods are required

to reveal such features and characterize their functional roles during infection. Motivated

by the important, cooperative roles of viral genomes in the assembly of single-stranded

RNA viruses, we have developed a new analysis method that reveals the asymmetric struc-

tural organization of viral genomes in proximity to the capsid in such viruses. The method

uses geometric constraints on genome organization, formulated based on knowledge of

icosahedrally-averaged reconstructions and the roles of the RNA-capsid protein contacts,

to analyse cryo-electron tomographic data. We apply this method to the low-resolution to-

mographic data of a model virus and infer the unique asymmetric organization of its genome

in contact with the protein shell of the capsid. This opens unprecedented opportunities to

analyse viral genomes, revealing conserved structural features and mechanisms that can

be targeted in antiviral drug design.

Author Summary

Viruses are responsible for devastating illnesses in humans and cause significant commer-
cial losses in livestock and crops. Their genetic material is transported into their host or-
ganisms via protein containers, called viral capsids, that act as Trojan horses: they release
their cargo into the cells of their hosts, hijacking their molecular machinery for the pro-
duction of progeny viruses. Imaging techniques exploiting the symmetric structures of
viral capsids have been used to determine details of their organization to atomic resolu-
tion, opening up the possibility to design anti-viral agents against specific surface struc-
tures. In many viruses the genomes take on specific organizations as a consequence of
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their roles in capsid formation. In order to design an additional class of anti-viral drugs
that interfere with this process, it is important to understand the asymmetric organization
of the genome inside viral capsids. This is currently a challenge, as the averaging tech-
niques used to achieve high resolution structures of the protein containers cannot be used.
We present a new approach and demonstrate its predictive power here for a test virus.
This paves the way for a better understanding of the functional roles of viral RNAs in virus
assembly and their exploitation in anti-viral drug design.

Introduction
Viruses are remarkable examples of symmetry and self-assembly at the nanoscale. The protein
containers that encapsulate most viral genomes are formed from just a few different protein
building blocks that self-assemble into particles with icosahedral symmetry, and can be de-
scribed in terms of icosahedral surface lattices [1]. This geometry minimizes the amount of the
genome fragment needed to code for the viral capsid, while maximizing its volume/surface
area ratio; the principle of genetic economy [2]. Symmetry therefore plays a pivotal role in un-
derstanding virus structure. Symmetry averaging techniques have been used to determine viral
capsid structures at atomic resolution by X-ray crystallography, and by reconstruction of such
structures at medium resolution by cryo-electron microscopy (cryo-EM). However, not all
viral components are organized with icosahedral symmetry. Cryo-EM can be used to refine
such asymmetric structures provided that they are large enough in mass terms to contribute
significantly to the image [3, 4].

However, asymmetric viral components normally contribute too weakly to the images ob-
tained by cryo-EM to allow the refinement of an asymmetric model [5]. Note, in crystals of
viral particles, the asymmetric features of the individual viruses usually do not dictate crystal
packing contacts, and are therefore averaged out by the lattice. The important functional roles
of such viral components in the viral life cycle are therefore difficult to characterize. An exam-
ple is the single-copy of maturation protein (MP, also called A-protein) in bacteriophage MS2
that is hypothesized to replace a protein dimer in the capsid [6]. It attaches to the bacterial re-
ceptor during the infection to facilitate genome extraction. The asymmetric organization of the
viral genome inside a capsid is also difficult to reconstruct. Indeed, MS2 is typical in that the
high resolution crystal structure lacks density for the*3.7kb genome [7, 8], but cryo-EM re-
constructions from both our group and others show extensive density for the RNA [6, 9–12].
This difference arises because of technical aspects of the ways the EM and X-ray data
are collected.

We demonstrate here that a better understanding of the asymmetric organization of the
viral genome within the capsid can be achieved if specifics about the contacts between capsid
protein (CP) and the packaged genome are factored into an analysis of tomographic data. Re-
cently we have shown that a number of positive-sense single-stranded (ss)RNA viruses encode
dispersed, degenerate sequence/structure elements within their genomes that bind their cog-
nate coat proteins specifically during assembly, facilitating capsid assembly efficiency [13–17].
These packaging signals (PSs) can have dramatic effects on the kinetics and fidelity of virion
assembly [18]. There are widespread contacts between genomic RNA and capsid protein in
picornaviruses, e.g. rhinovirus [19], and preliminary in vivo experiments for human parecho-
virus 1 suggest that they function as PSs (ongoing work with collaborators). The requirement
for the PSs to contact the coat proteins of the viral capsid at specific positions in the capsid
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imposes a constraint on the conformation of the genome within each viral particle, that we are
exploiting here to analyse tomograms of the packaged genomes.

In particular, we exploit knowledge of the PS positions with reference to the icosahedrally-
averaged RNA cages that have been observed in a large number of viruses in proximity to cap-
sid, to formulate constraints on the connections between the PSs. For example, if PSs are locat-
ed at the vertices of these cages, as in the model system we are considering here, then the RNA
organization in proximity to capsid can be modelled as connected paths along the edges of the
RNA cage [15, 20]. If the majority of the potential binding sites are occupied by a PS in every
particle, as is expected, for example, if such contacts are vital in triggering a conformational
change in the protein building block with which they are in complex, then this path has the
mathematical properties of a Hamiltonian path. In this paper, we will discuss explicitly an ex-
ample for which the constraint set is given by Hamiltonian paths.

However, a similar approach can be adopted also for other viruses that violate some of the
assumptions relating to our model system. For example, if PSs are stem-loops positioned along
the edges of the polyhedral RNA cage, such as in Satellite Tobacco Mosaic Virus (STMV) [21],
then constraints have to be formulated in terms of paths that permit edges to be transversed
twice in opposite directions. The library of all possible paths with that property would then re-
place the library of Hamiltonian paths we are using for our model system here. Moreover, it is
possible that only a fraction of the potential binding sites are occupied by PSs. For example,
this might happen if PSs facilitate CP-CP interactions rather than CP quasi-conformer switch-
ing, as is the case for STNV [16, 22]. In this case, the constraint set corresponds to all paths on
the polyhedral cage that connect subsets of the potential binding sites corresponding to the
number of the PSs: these are therefore also not Hamiltonian paths. The overall strategy, howev-
er, would remain the same: deducing information from tomographic data using an appropriate
constraint set formulated in terms of paths that encode information on the specifics of the
RNA-CP contacts (PSs) and their positions relative to the ordered genome segments in the
averaged structures.

Our previous modelling and the symmetry averaged structures of a large number of viruses
from different families are consistent with the concept of such ordered genome segments in
many viruses, including Picornaviridae [23], Leviviridae [9, 11], Nodaviridae [24], Bromoviri-
dae [25, 26], Tymoviridae [27], Comoviridae [28] and satellite viruses [29–31]. Importantly,
this asymmetric distribution of viral genomes within a virion may also be an essential factor in
the extrusion/uncoating of these genomes as the first step in subsequent infection [6, 32–37].
The analysis presented here provides a novel way of deriving information on such asymmetric
genome organizations, thus contributing to the understanding of such events.

Revealing RNA-protein contacts in molecular detail is a recent and novel challenge to our
understanding of basic virus biology. In pursuit of this goal we recently used the association of
MS2 phage particles to its natural receptor, a bacterial pilus, to create highly asymmetric com-
plexes that could be subjected to asymmetric structure determination. This led to completion
of a reconstruction using reduced (five-fold vs. icosahedral) symmetry averaging [12] and sub-
sequently to a tomographic reconstruction of the whole virion using alignment and averaging
of thousands of single particle tomograms [6]. The former result confirmed the presence of ex-
tensive RNA density, and the latter revealed its asymmetric structure; a first for any ssRNA
virus. This suggests that the MP occupies a two-fold position in the otherwise icosahedral coat
protein lattice, presumably replacing the normal CP dimer at that site. Unfortunately, the reso-
lution of the asymmetric tomographic reconstruction is very low (39Å) and the molecular de-
tails are still unclear.

It is therefore important to develop new analysis techniques that are able to reveal such ge-
nome organizations based on a range of data from different techniques, including the low
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resolution information contained in tomographic data. We introduce here a new method that
uses information from icosahedrally-averaged maps, as well as knowledge of the contact sites
between genomic RNA and CP to analyse the low resolution, tomographic density maps via a
constraint optimization technique revealing the putative asymmetric genome organization of
bacteriophage MS2. As we describe in detail here, the constraint set for the analysis of MS2 is
derived from circular Hamiltonian paths connecting the PS contact sites, and similar con-
straints are likely to apply also to other Leviviridae [9]. For other viruses, in which occupation
of the majority of the PS binding sites is likely due to their function in assembly, and for which
the PSs are positioned at the vertices of the RNA cage corresponding to the icosahedrally-aver-
aged map of the genome in proximity to capsid, the constraint set is also given by Hamiltonian
paths. However, the set of Hamiltonian paths would be distinct from the one used for our
model system if the numbers of binding sites and the connectivity between them differ. We are
providing detailed instructions on how to modify our code (freely available at http://hprna.
github.io/) to accommodate such alterations. If there is evidence that the 50 and 30 ends are in
proximity in the packaged genome as in our model system, then the set of constraints can be
reduced to only the circular Hamiltonian paths; otherwise, the full set of Hamiltonian paths
has to be taken into account. Our code includes a setting that allows switching between these
options, to compute either circular or non-circular Hamiltonian path constraint sets as re-
quired. Note that this method also applies if some of the potential binding sites remain unoccu-
pied in random positions across the ensemble of particles used to generate the tomographic
data, as such random mistakes would not be reinforced during averaging over different parti-
cles: hence it is sufficient that the majority of PS binding sites are occupied. Note that in the
case of insufficient information being available to decide a priori between multiple constraint
sets (stemming from different assumptions on the specifics of the PS-mediated assembly sce-
nario), the tomogram could also be interrogated against the different possible options. This
could give an indication, perhaps in combination with additional experimental insights, as to
which of the proposed mechanisms is most likely to occur.

The main purpose of this paper is to demonstrate that the method of using constraint sets,
inspired by insights into the roles of PSs, can indeed result in a better understanding of tomo-
graphic data, and perhaps even reveal the asymmetric organization of the packaged genome, as
in the example discussed here. In order to demonstrate this for a model system, the specifics of
that system must be built into the formulation of the constraint set. However, as we argue
above, the method of interrogating tomographic data via constraint sets inspired by PS-mediat-
ed assembly mechanisms is more generally applicable to wider classes of viruses.

Results

Geometric constraints on genome organization
We illustrate this procedure here for the model system bacteriophage MS2. MS2 has a quasi-
equivalent T = 3 capsid formed from 89 non-covalent CP dimers, comprising 29 symmetric
ones (C/C) located at the particle two-fold axes, and 60 asymmetric ones (A/B) organized in
groups of five around the capsid five-fold axes, and one MP that replaces a C/C dimer, see
Fig. 1A. RNA PSs in the genome have been shown to act as allosteric regulators of the CP-
dimer conformation, PS binding favouring formation of the A/B dimer [38, 39]. Thus, in an
ideal case, we would expect to find 60 PSs within the genome. PSs are highly degenerate in nu-
cleotide sequence. We have identified all the PSs in both MS2 and the related phage GA via a
new analysis method based on biochemical RNA-CP binding and SELEX data [15].

In the icosahedrally-averaged MS2 cryo-EMmap [11] the*3.7 kb long RNA genome
appears inside the capsid as two concentric shells with density connections at the particle
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five-fold axes. This arrangement reflects the contacts that the genomic RNA makes between
PSs and the CP layer, which appear as the outer shell, whilst the inner shell is the consequence
of RNA segments that do not bind to CPs but extend into the interior of the capsid. The start
and end points of these segments are located at the same five-fold vertex in the capsid [11].
Therefore, every PS is connected to two other PSs in the outer RNA shell, and hence the RNA
in the outer shell, i.e. disregarding fragments extended into the interior, forms a connected

Fig 1. Themodel system—bacteriophage MS2. (A) The viral capsid is formed from 60 asymmetric and 29 symmetric copies of the CP dimers, with one MP
that takes the place of a symmetric dimer (PDBID 2MS2). The genomic RNA is organized inside the particles in two shells, with the outer shell adopting the
shape of a polyhedral cage in icosahedrally-averaged reconstructions. (B) Depiction of the polyhedral cage, showing long (purple) and short (orange) PS-PS
RNA connections. (C) Asymmetrically averaged tomogram of bacteriophage MS2 bound to its receptor, the bacterial F-pilus. The portion of the electron
density corresponding to the CP shell (and bacterial pilus) is shown in blue; green depicts the density for genomic RNA (and presumably some elements of
the MP), which forms the basis for the analysis described in this study. The RNA density forms a shell that is intimately associated with the inside surface of
the capsid. (D) A planar representation of protein container and polyhedral RNA organization, showing the relative positions of the 60 polyhedral vertices (PS
positions, indicated as yellow circles) in contact with the 60 asymmetric CP dimers.

doi:10.1371/journal.pcbi.1004146.g001

Graph-Theoretical Analysis of Tomographic Data

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004146 March 20, 2015 5 / 16



path. If the path were disconnected, PSs at different five-fold vertices would have to be con-
nected directly via RNA in the capsid interior, which is not consistent with the cryo-EM analy-
sis in Toropova et al. [11]. The averaged outer shell density (Fig. 1A) is in the form of a
polyhedral cage (Fig. 1B), positioned such that its vertices are in contact with the 60 asymmet-
ric dimers (see yellow circles in the contact map in Fig. 1D). The RNA outer shell is intimately
associated with the inside surface of the CP shell, as is also seen in the asymmetric reconstruc-
tion (Fig. 1C). The positions of the PSs in the genome determined earlier [15] suggest that the
connections between PSs are single-stranded. The connected path described by the RNA in the
outer shell is therefore a Hamiltonian path on that polyhedral RNA shell, i.e. a path that meets
all vertices (aka PS positions). In particular, we determined all possible ways in which the RNA
can be positioned in the icosahedrally-averaged density of the outer shell by computing all
possible Hamiltonian paths on the polyhedron in Fig. 1B. Note that for viruses with different
polyhedral RNA organizations the same method can be applied by computation of the Hamil-
tonian paths on the corresponding polyhedral density. Moreover, since Hamiltonian path com-
putations only depend on the topology of the polyhedron, i.e. the network of connections
between vertices irrespective of the lengths and orientations of the edges, the same library of
Hamiltonian paths can be used for wider classes of viruses, such as those studied by van den
Worm et al. [9] or bacteriophage GA [15].

In the case of bacteriophage MS2, additional biochemical information showed that regions
close to the 50 and 30 ends of the genomic RNA were bound to the MP [40], which was posi-
tioned adjacent to one of the particle five-fold axes, replacing one of the CP dimers on a two-
fold axis in the protein shell. This circularization reduces the number of possible Hamiltonian
paths for the RNA. In particular, filtering out all those Hamiltonian paths with end points at
the same five-fold axis, reduced the number to only 66 [20]. Since abstract paths have no direc-
tionality to them, each could potentially be realized by the RNA in two different ways by inter-
changing the positions of 50 and 30 ends, resulting in 132 path solutions. Since the resolution of
the averaged tomogram, obtained via alignment and averaging of individual tomograms, was
not sufficient to unambiguously identify the location of the MP, and the binding sites of the
RNA were difficult to identify, we bookmarked all paths which started and finished within the
eight five-fold axes closest to MP. This was a very conservative overestimate, which ensured
that no possible path was missed in our analysis. Each of these (Hamiltonian) paths could
potentially start at any of the five-fold vertices. In total, we therefore obtained a library of
8�5�132 = 5280 possible paths for the genomic RNA in the outer RNA shell. As mentioned
above, this library can be applied to a wide range of RNA viruses, covering all those with a poly-
hedral RNA organization topologically equivalent to that of MS2.

The polyhedron describing the averaged density was given in terms of two types of edges
(cf. Fig. 1B&D), 60 short and 30 long ones, and it had 60 vertices (cf. yellow circles in Fig. 1D).
Each path in the library was therefore given as a sequence of 60 edges on the polyhedral shell,
which were a mixture of short and long edges depending on the path. Each path provided in-
formation on which edges are simultaneously occupied or unoccupied, and hence correlated
occupancy information on different edges.

Analysis of the tomogram via graph theory
The library of putative path organizations was used as a set of constraints in the analysis of the
asymmetric electron density for the outer RNA shell, which we isolated from the tomogram as
described in Methods. Note that any path in the library provided information on which edges
were likely to be occupied, given that occupation of some of the edges—or the lack thereof—
could be confirmed based on the tomogram. The first step was therefore to determine a subset
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of the 90 edges of the averaged map (with reference to the polyhedron in Fig. 1B) that were
likely occupied or unoccupied given the density distribution of the tomogram. We excluded all
short edges as they were too short to distinguish unambiguously whether density represented
the RNA-CP contact (i.e. PS) positioned at the vertex, or a connection between two PSs along a
short edge. We moreover disregarded the five long edges (see S1 Fig) around the MP, as it was
not possible to ascertain whether density in these regions arose from the MP, genomic RNA, or
a combination of both.

As discussed in Methods, we attributed tomographic density to each of the 25 long edges of
the polyhedral cage representing the icosahedrally-averaged density considered in this analysis
and fitted it to a normal distribution. A ranking of the level of density associated with these
edges was achieved using the mean of the fitted normal distribution. This method was used be-
cause outliers in the noisy, sparse dataset had less influence on the mean of the fitted distribu-
tion than they did with a simple arithmetic mean. Using the fitted mean, four connections
stood apart from the others, with mean densities of 2.6–2.9, see Fig. 2, suggesting that these
four edge connections were likely occupied by RNA in the virion. These were denoted as “occu-
pied” connections, and were used as constraints in the analysis of the asymmetric structure.

To determine which connections could be classed “unoccupied”, we used the skew parame-
ter of the sampled distributions to examine smearing of density. Skewness characterizes the
balance of a distribution to either side of the peak density. As expected, the group of

Fig 2. Classification of polyhedral edges as occupied and non-occupied. A comparison of the density profiles of the sampled long edge connections.
The mean of a fitted normal distribution (y-axis) is scattered with a skewness parameter (x-axis). Connections with negative skew are disregarded as no
statement about occupancy can be deduced in this case. From the remainder, two groups of four and five connections are identified as occupied (in the
green circle) and non-occupied (red circle), respectively. These are used as constraints in the analysis.

doi:10.1371/journal.pcbi.1004146.g002
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connections classed “occupied” above had a skew between 0.1–0.3. Negatively skewed connec-
tions were disregarded from the analysis, because a negative skew meant that there were only a
very limited number of high-density points, which made up the cumulative density. Because of
their low copy numbers, small fluctuations in sampling made a big difference to the overall
density, and we therefore did not want to make a judgement of occupancy based upon these
data. Using the skew parameter, the remaining data were therefore separated into distinct
groups. The five data points shown in the red circle in Fig. 2, with mean values between 1.5–
1.8, were adjudged “non-occupied”, i.e. characterized by an absence of density corresponding
to RNA.

There were thus nine constraints on RNA organization that were used to compare the asym-
metric structure with the library of all possible Hamiltonian path organizations: four long
edges were deemed occupied, and five non-occupied.

Constraint optimization yields RNA organization in proximity to capsid
Only five members of the library of all possible Hamiltonian paths were consistent with these
nine constraints. In Fig. 3 we display the occupation of long edges with reference to the two
five-fold vertices they connect, following the numbering scheme of vertices given in Fig. 1D.
Note that the paths match for 13 of the 30 long edges, suggesting that the structure common to
all paths is likely to be a prevalent feature in different viral particles.

Each path was a roadmap of connectivity between RNA-CP contacts. In order to decide if
any of these putative RNA organizations was more likely to occur than another, we used the
following criterion: We associated with each option a density distribution by ascribing density
to occupied edges in proportion to their lengths and computed the density obtained by averag-
ing around the five-fold axis adjacent to MP. We used this as a characteristic to benchmark
against the five-fold averaged density determined experimentally [12] (Fig. 4H, adapted from
[20]). Path 4 (Fig. 5A) closely matched (Fig. 4F) this distribution, whereas the other paths did
not. This strongly suggested that Path 4 was indeed the correct model for the organization of
the RNA in MS2. Remarkably, Path 4 is also consistent with results of two independent studies:
the assembly pathways determined via kinetic modelling of capsid self-assembly [20], and the
PS positions identified via a bioinformatics analysis of RNA SELEX data [15]. Our analysis
here represents a completely independent reconfirmation that the organization of the viral ge-
nome in proximity to capsid is highly constrained and likely identical in every viral particle.

Fig 3. Constraints on the RNA organization consistent with the tomogram. Each possible RNA organization is characterized by which long edges
(Fig. 1B, purple edges) are occupied in the polyhedral shell of the icosahedrally-averaged density. Long connections are labelled by the numbers of the five-
fold vertices (Fig. 1D) they connect (x•y connecting five-fold vertices x and y). Constraints imposed in the analysis are indicated in the first row, with green
indicating an occupied edge, and red an unoccupied edge. The five paths meeting these constraints are characterized according to occupied and non-
occupied edges. The last row shows edges shared by all five paths.

doi:10.1371/journal.pcbi.1004146.g003
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Discussion
The analysis method introduced here has for the first time identified the conformational path
taken by a viral genome in proximity to its capsid from the low-resolution density map of an
asymmetric, averaged tomogram. Previously, a model of the asymmetric genome organization
in the plant satellite virus STMV has been built [41]. That work relied on the icosahedrally-av-
eraged crystal structure which revealed*70% of the viral genome to be in contact with the
protein shell via a series of dsRNA segments*9 bp long [30, 42, 43]. The X-ray structure pro-
vided the first definition of RNA PSs [21]. In addition to the X-ray density the modelling used
predictions of the most likely secondary structure elements within the genome to identify the
sequences forming the double-stranded segments [44]. Ours is the first direct analysis of an
asymmetric map containing RNA density. The method introduced here can be used to analyse
any asymmetric dataset of a viral genome organization, provided that a distinct shell of density
is seen in proximity to capsid in the averaged cryo-EM density, the contact sites between geno-
mic RNA and capsid protein are known, and information regarding their positions and

Fig 4. Symmetry averaging identifies Path 4 as the correct solution. C5-averaged densities in 1-D projection for tomographic data and the path solutions
listed in Fig. 3 are compared. The vertical axis shows the radial distance from the centre of the capsid in angstrom, and the horizontal axis corresponds to the
C5-averaged density at that radial distance in arbitrary units; density profiles for tomogram and path solutions are normalized by equalizing the maximum
densities. Density profiles are shown for: (A) the average of all possible 40,678 Hamiltonian paths; (B) the average of all paths consistent with RNA
interaction with the MP; (C-G) the density profiles for the five paths in Fig. 3 individually; (H) the C5 cryo-EM reconstruction from the tomogram, adapted from
[20]. Path 4 (cf. Fig. 5A), identical to Path 3 (Fig. 5B) from a geometric point of view but positioned differently within the density with respect to MP, provides
the closest fit with the cryo-EM data.

doi:10.1371/journal.pcbi.1004146.g004
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function can be used to formulate a constraint set on the connectivity between the PSs. Insights
into PSs are becoming available for a number of ssRNA viruses via the use of CLIP-SEQ tech-
niques [45]. In addition, there is a growing body of work directed at obtaining asymmetric
structures for this class of viruses in order to understand how their genomes are released during
infection. Our approach is therefore likely to provide important insights into genome organiza-
tion in wider groups of RNA viruses. In particular, many RNA viruses show order in the orga-
nizations of their genomes in icosahedrally-averaged cryo-EM and X-ray structures [46], for
example Bean Pod Mottle Virus [47], STMV [30] and Pariacoto virus [48]. In such cases,

Fig 5. Hamiltonian path solution identified by the method. (A) The best match with the C5 averaged data (Path 4) starts and finishes at vertex 5 adjacent
to the MP (cyan). Following the colouring convention in Fig. 3, red dashed lines show unoccupied and green lines occupied constraints; other occupied
connections implied by our analysis are shown in black. The position of TR, the strongest PS, is denoted in yellow [15]; heterodimers are coloured in green-
blue and homodimers in pink. (B) An alternative embedding of the same (geometric) path with a different orientation relative to MP. The path (Path 3) starts
and finishes at vertex 9; hence the occupation of the connections differs from Path 4 in (A), even though the overall geometry of the path is the same.

doi:10.1371/journal.pcbi.1004146.g005
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constraint sets in terms of paths with appropriate combinatorial properties can be used to map
the putative asymmetric organization of their genomes into the corresponding symmetrically
averaged densities and hence provide information on connectivity between the RNA-CP
contact sites.

A better understanding of the asymmetric organization of viral genomes is vital if we are to
properly understand the functional roles of genomes in RNA viruses. Recent research has re-
vealed that far from being a passenger in the assembly of the viral particle, genomes critically
enhance the efficiency of virus assembly via multiple dispersed, sequence-specific contacts with
capsid protein [14]. These PSs act collectively in a cooperative manner [18, 49], and their rela-
tive placement in the tertiary structure of the genome is important for their function. In partic-
ular, it is the relative affinities of the PSs for CP at defined positions in the packaged genome
that impact on the geometries of the assembly intermediates, i.e. on the structures of the par-
tially assembled protein shells on pathway to capsid. For the virus discussed here, it had previ-
ously been shown that this interplay of PS affinities and capsid geometry results in a highly
ordered genome organization in proximity to capsid. It has moreover been established that the
same overall organization of the packaged genome occurs in an evolutionarily related virus,
GA [9, 15], suggesting that there is a selective advantage for a specific genome organization in
this family of viruses. This advantage can be explained in terms of assembly pathways: since
PSs are instrumental in recruiting CP to the growing nucleus during PS-mediated self-assem-
bly, the positions of the PS-CP contacts impact on the geometry of the assembly intermediates
and hence on the assembly pathways. For the conserved genome organization identified in
MS2 and GA earlier [15], this corresponds to an assembly pathway through the most stable in-
termediates, i.e. those forming a maximal number of CP-CP bonds [20].

This example illustrates that structural information on genome organization obtained via
the method introduced here has important implications for our understanding of the function-
al roles of viral genomes in virus assembly. More broadly, the method applies to any virus for
which RNA-protein contacts are important for virus assembly, i.e. all viruses that follow a PS-
mediated assembly process [14]. PSs are known to exist in a number of viral families including
those infecting humans, e.g. alphaviruses [50], and plants [51], so this method is applicable to
wider groups of RNA viruses. We note that the exact mechanism by which PSs act to enhance
virus assembly can vary. For example, for MS2 the PS-CP contacts trigger an allosteric switch
between the two types of protein building blocks required for productive capsid formation,
while for STNV PSs promote formation of the coat protein capsomere [22], a trimer, by over-
coming electrostatic repulsions between protein building blocks allowing increased ordering of
the N-terminal RNA-binding domain. In both those cases the PSs form stem-loops in contrast
to the dsRNA regions of STMV. In each case, however, PS-RNA interactions bias assembly to-
wards a subset of the possible assembly pathways due to differential PS-CP affinities [18]. Spe-
cific PS binding moreover enhances assembly efficiency by triggering a collapse in the
hydrodynamic radius of the genome below the inner radius of the virus protein shell [52], en-
abling the assembly of the protein shell around the compacted genome.

Knowledge of the precise locations of the PSs and connectivity between them, which is pro-
vided by the analysis presented here, is therefore an important component in understanding
the mechanisms by which viruses achieve the observed assembly fidelity and efficiency in vivo.
This, in turn, is a prerequisite for the development of novel antiviral strategies that target virus
assembly. As demonstrated in [18], drugs interrupting PS-CP interactions can slow down the
assembly process and decrease viral yield via misencapsidation of cellular RNAs. Moreover, a
better understanding of conserved features in the genome organization within a viral family
provides novel insights into the selective pressures on viral evolution. The method described
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here enables the identification of such features, and therefore also has profound implications
for our understanding of viral evolution.

Methods

Asymmetrically averaged structure
The analysis was based on an asymmetric averaged tomogram of MS2 (Fig. 1C) [6], obtained
by imaging mature MS2 bound to its natural receptor, the F-pilus of E. coli. A total of 22 tomo-
grams were taken with 2374 bound viral particles. The 1500 best correlating virion subtomo-
grams (63% of the total) were normalized, low-pass Fourier filtered to 30Å, and then averaged
to produce a structure at 39Å resolution. The data was presented as a density map of 643 pixels,
sampled to 9.12Å per pixel (EMD-2365).

Difference map between tomogram and X-ray protein structure
A difference map between the asymmetric EM reconstruction [6] and the X-ray structure of
the protein capsid (PDBID 2MS2) was determined as follows: the protein structure was filtered
to 39Å resolution to match the EM data; then the pixel size and orientation of the two maps
were made equivalent by trilinear interpolation of the reduced-resolution X-ray structure with
Chimera [53]. Radial plots compared the distribution of density in the protein map and the to-
mogram, with the pilus/MP complex masked away for the calculation. The radial distributions
were, as expected, similar in the radial ranges corresponding to CP, but different elsewhere at
radial levels corresponding to viral RNA (which is organized as a two-shell architecture, see
[11]) and the 44kDa single-copy MP. Note that the radial distributions were not identical in
the area overlapping with CP—this was due to the low resolution of the map, as CP density
could not easily be accounted for in the asymmetric map. Therefore, a contour mask of the to-
mogram with the protein map was used to sample the low-resolution map, and used to elimi-
nate the protein density via the UCSF Chimera mask routine [53], rather than a direct
subtraction of the normalized maps. A mask of 0.5σ best isolated the RNA whilst excluding
protein. Finally, two icosahedral masks were applied: the inner core of RNA was masked away
under radius 80Å, and an outside mask of radius 120Å removed noise resulting from masking
artifacts and the pilus/MP complex. The resultant pruned density contained information about
(i) the outer RNA shell in contact with CP, (ii) MP, and (iii) potential traces of CP lying within
the shell that were not captured by the masking process.

Difference map between icosahedrally-averaged EM density and the
asymmetric structure
A difference map was created between the icosahedrally-averaged map [11] and the asymmet-
ric structure [6]. We based our analysis on density map EMD-1431 of mature MS2, which was
calculated using single particle analysis of 9,335 separate images, equating to*560,000 sample
points with icosahedral averaging [11]. We used a procedure analogous to the one described
above for the tomogram to isolate the RNA. The protein structure was filtered to 9.5Å resolu-
tion, with a grid spacing of 1.26Å, to match the symmetric map, and normalization of the resul-
tant protein map to the CP area of the symmetric map was performed. The resampled filtered
protein was then subtracted from the symmetric map, yielding a symmetric cage of RNA with
a polyhedral shape as in Fig. 1B. The outer shell of RNA was isolated by icosahedral masking
with vertex radii of 80Å and 120Å. The resulting map for the outer RNA shell in the icosahed-
rally-averaged map was aligned with that for the asymmetric RNA organization in the tomo-
gram by reference to the X-ray protein structure used to create each difference map, via UCSF
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Chimera [53]. After normalization, the aligned maps had similar average, standard deviation
and maximum density values.

Mapping data onto the geometric model
The UCSF Chimera Segment Map tool [54] was used to perform a (watershed) segmentation
on the symmetric RNA cage density, which partitioned the polyhedral density into segments
attributed to its edges. Each long edge of the cage in Fig. 1B was represented by three segments
as shown in S2 Fig. The same watershed segmentation was applied to the asymmetric RNA
outer shell map. Hence pixels from the asymmetric RNA map were associated with defined
segments on the polyhedral shell, and each connection thus had a density profile associated
with it.

We decided to make a very conservative decision on how much data to include, and thus
only used the density encoded by the middle segment to represent a long edge. This was be-
cause the short segments close to the polyhedral vertices, as well as the short edges themselves,
might have contained density corresponding to the RNA-CP contact (i.e. PS) located at a poly-
hedral vertex bordering the edge, which could have distorted the analysis. Moreover, connec-
tions between PS positions adjacent to the MP/pilus (see S1 Fig) were discarded as they may
have contained unmasked MP density.

The density profiles of the long edges
To determine which long edges were occupied, we analysed the density distributions as follows.
We computed fitted normal distributions using the norm.fit function from the scipy.stats py-
thon library, since for a sparse dataset the mean of a fitted normal distribution is less affected
by outliers than the raw data. The normal fitting function automatically calculated the best
positioning of a unimodal normal distribution for the dataset. Connections occupied in the
RNA density were expected to have a substantially higher mean density than unoccupied
connections.

Moreover, skews of the distributions were computed via scipy.stats.skew. If a distribution
representing density for a connection was negatively skewed, it could not be unambiguously
classified as occupied or non-occupied, as this suggested smearing of density. We therefore did
not place any constraints on edges with negatively skewed distributions.

Supporting Information
S1 Fig. Positions of long edges omitted from the analysis. Five long edge connections, shown
as solid lines between five-fold vertices, are omitted as their proximity to MP makes association
of a corresponding RNA density distribution ambiguous.
(TIFF)

S2 Fig. Illustration of the segmentation procedure. Each long edge of the polyhedral density
(corresponding to the icosahedrally-averaged map) is partitioned into three segments via the
UCSF Chimera SegmentMap tool [53, 54]. Only tomographic density overlapping the middle
segment (pink) is retained for analysis, as density overlapping with the outer segments (red)
may potentially also sample density associated with short edges and RNA-CP connections (i.e.
PSs). The segments shown in this figure are from a representative single connection (coloured
cyan), not an average of all the connections, and are shown viewed from inside the virion along
a particle two-fold axis. CP in the background is shown in beige.
(TIFF)
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