
This is a repository copy of Computation of Equilibrium Distributions of Markov 
Traffic-Assignment Models.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/84665/

Version: Accepted Version

Article:

Hazelton, ML and Watling, DP orcid.org/0000-0002-6193-9121 (2004) Computation of 
Equilibrium Distributions of Markov Traffic-Assignment Models. Transportation Science, 38 
(3). pp. 331-342. ISSN 0041-1655 

https://doi.org/10.1287/trsc.1030.0052

© 2004, INFORMS. This is an author produced version of a paper published in 
Transportation Science. Uploaded in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Computation of Equilibrium Distributions of Markov Traffic

Assignment Models

Martin L. Hazelton

University of Western Australia, Crawley WA 6009, Australia

David P. Watling

University of Leeds, Leeds LS2 9JT, United Kingdom

November 28, 2002

Abstract: Markov traffic assignment models explicitly represent the day-to-day

evolving interaction between traffic congestion and drivers’ information acquisition

and choice processes. Such models can, in principle, be used to investigate traffic

flows in stochastic equilibrium, yielding estimates of the equilibrium mean and co-

variance matrix of link or route traffic flows. However, in general these equilibrium

moments cannot be written down in closed form. While Monte Carlo simulations of

the assignment process may be used to produce ‘empirical’ estimates, this approach

can be extremely computationally expensive if reliable results (relatively free of

Monte Carlo error) are to be obtained. In this paper an alternative method of com-

puting the equilibrium distribution is proposed, applicable to the class of Markov

models with linear exponential learning filters. Based on asymptotic results, this

equilibrium distribution may be approximated by a Gaussian process, meaning that

the problem reduces to determining the first two multivariate moments in equilib-

rium. The first of these moments, the mean flow vector, may be estimated by a

conventional traffic assignment model. The second, the flow covariance matrix, is

estimated through various linear approximations, yielding an explicit expression.

The proposed approximations are seen to operate well in a number of illustrative

examples. The robustness of the approximations (in terms of network input data) is

discussed, and shown to be connected with the ‘volatility’ of the traffic assignment

process.

Keywords: Markov process, robustness, route choice, Stochastic User Equilibrium,

transportation network.
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Introduction

Traffic assignment is the method by which travel demands are translated into traffic volumes

over links of a transport network, through modelling the interaction between traffic congestion

and drivers’ route choice decisions. For many decades, the dominant interpretation of this

problem has been one of determining a ‘self-consistent’ point prediction of traffic volumes, based

on an analogy with equilibria of economic markets. The two most popular such approaches

are the Wardrop user equilibrium model (Wardrop, 1952), derived from an assumption that

drivers have identical perceptions of generalised travel costs, and the stochastic user equilibrium

(SUE) model (Daganzo and Sheffi, 1977), whereby heterogeneity in perceived travel costs is

incorporated through additive random elements. While much recent research effort has been

directed at generalising these methods to incorporate within-day dynamic effects (Ran and

Boyce, 1996), two common features of the underlying techniques remain:

(a) in the space of traffic volumes they are deterministic, with a single point state presumed

to persist; and

(b) the persistent state reached in (a) is independent of the adjustment processes in behaviour

that preceded.

These two assumptions mean that the resulting models are particularly convenient to apply in

practice, yet it is not difficult to challenge their plausibility. With regard to (a), from obser-

vations of real traffic networks, there is evidence of significant day-to-day variation in travel

demands, traffic volumes and travel times (May and Montgomery, 1987; Hanson and Huff, 1988;

Mohammadi, 1997). For many intents and purposes in traffic planning and management this

variability must be taken into account. For instance, a proposed alteration to a traffic system,

which is predicted to provide congestion relief when link volumes are at their mean level, is

of little use if daily variation renders it grid-locked on one day in twenty. Such observations

have motivated the emerging research area of network reliability (Bell and Cassir, 2000). Fur-

thermore, if link cost functions are convex then (by Jensen’s inequality) evaluation of these

costs at a fixed ‘average’ flow (such as SUE) will underestimate the long-run expected cost.

This has been noted previously by a number of authors, including Cascetta (1989) and Watling

(2002). Assumption (b), on the other hand, is especially problematic in the context of driver

information systems, which impact on drivers’ learning and information acquisition processes,

namely the aspects that these models specifically neglect (see, for example, Mahmassani and
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Jayakrishnan, 1991; Emmerink and Nijkamp, 1999).

A number of works may be found in the literature to address these shortcomings. In particular,

regarding (a) a number of authors have proposed extensions to the basic SUE model so as

to allow a covariance matrix for the link traffic volumes to be estimated. Watling (2002)

investigated a generalisation of SUE in which both the mean vector and covariance matrix of

link volumes can be simultaneously calculated as the solution to a fixed point problem, both flow

means and variances impacting on mean travel costs. Hazelton (1998) took a rather different

approach, suggesting a way of defining an equilibrium probability distribution on the space of all

possible patterns of link traffic volume, based on defining each traveller’s route choice probability

distribution conditionally on the routes selected by all other travellers. Traffic volume means

and variances can then be computed by Gibbs sampling, as described in Hazelton et al. (1996).

A more direct way of estimating day-to-day variation, and one that simultaneously addresses

both (a) and (b) above, is to explicitly model traffic assignment as a stochastic process in

time. An important class of such models was introduced by Cascetta (1989), who proposed

representing the evolution of a transport system as a Markov chain. In this type of model

travellers independently make route choices every ‘day’ based upon past experience of travel

costs (that is, experiences on previous days). In addition to providing a representation of the

traffic system dynamics, a Markov chain assignment model satisfying certain rather general

conditions defines a unique equilibrium probability distribution on the link traffic volumes. A

Markov chain assignment will converge (in distribution) to its equilibrium distribution under

mild conditions, so the properties of this probability distribution, such as its mean vector and

covariance matrix, are of considerable interest. Unfortunately these properties are typically only

definable in implicit form, as the moments of a fixed point probability distribution, and so have

to be estimated in some fashion. A seemingly natural approach is to simulate the evolution

of the assignment process, since the Markov structure at least renders this straightforward

in principle. However, while means and variances of link volumes can be approximated to

an arbitrary degree of accuracy by taking a sufficiently long simulation of the traffic system,

in practice such simulation is highly time-consuming even using fast modern computers. In

particular, when defining the random element of the route travel costs as normal random

variables at the link level (i.e. a probit model), a shortest path algorithm must be employed for

every traveller at every time point.

However, simulation-based methods are by no means the only way of approximating equilibrium

properties of Markov chain assignments. One alternative approach is to investigate theoreti-
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cally the behaviour in the limiting case as the size of the travelling population becomes large.

Following this direction Davis and Nihan (1993) considered the mean of a Markov chain as-

signment of the Cascetta (1989) type. They elegantly showed that this mean converges to the

SUE assignment for the traffic system under consideration, as the travel demands tends to

infinity. Furthermore they demonstrated that a Markov chain assignment can be increasingly

well approximated by a Gaussian multivariate autoregressive process as this demand becomes

large. By considering the equilibrium distribution of this autoregressive process, Davis and

Nihan were able to implicitly define the covariance matrix in equilibrium, as the fixed point of

a recursive equation.

The work of Davis and Nihan (1993) was of major importance for researchers working on Markov

traffic assignment models since it provides the theory for computation of approximate properties

(in particular the first two multivariate moments) of the associated equilibrium distributions.

Their Gaussian approximation result means that knowledge of these two moments is sufficient

to characterise the whole equilibrium distribution. Nevertheless, this research has arguably not

received the attention that it deserves. In particular, while several authors have recognized

that SUE can provide a reasonable approximation to the mean equilibrium flow pattern (see

Cantarella and Cascetta, 1995, for example), we are not aware of any published work addressing

the computation of the equilibrium covariance matrix for Markov assignment models. A possible

explanation for this is that calculation of the fixed point of Davis and Nihan’s recursive equation

is highly computationally time consuming for networks of realistic size. In this paper we devise

an approximation method for estimating the equilibrium covariance matrix for a particular class

of Markov assignment models, namely those based on linear learning filters with exponentially

decreasing weights. The approximation can be computed in a fraction of the time required

to solve Davis and Nihan’s fixed point problem. Furthermore, the relative simplicity of the

proposed approach allows a clear analysis of the quality of the approximations under various

situations (e.g. under changes to the network data).

The present paper is structured as follows. In the next section we describe the class of Markov

assignment models with exponential learning filters, and introduce necessary notation. We also

define the equilibrium distribution of this type of model. Section 2 is divided into three parts.

In the first we derive an approximate equilibrium flow covariance matrix for networks with

a single origin-destination movement. In the second part we consider the robustness of our

approximation, and draw connections with issues of traffic system stability. A small illustrative

example is given in the third part, demonstrating how our methodology can be implemented
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under a probit type of Markov assignment model. In section 3 we generalize to networks with

multiple origin-destination pairs. Some issues arising from our work and avenues for further

research are discussed in the last section.

1 Markov Traffic Assignment Models

Consider a transport network with A directed links and W inter-zonal movements (origin-

destination pairs). Let Nk be the number of acyclic routes corresponding to inter-zonal move-

ment k (k = 1, 2, . . . ,W ) and define N =
∑W

k=1 Nk. Let Γ be the N × W path-movement

incidence matrix of 0/1 elements, with Γrk = 1 only if route r relates to inter-zonal movement

k, and let ∆ be the A × N link-path incidence matrix of 0/1 elements, with ∆ar = 1 only if

link a is part of route r. Let q denote the column W -vector of inter-zonal demands (over the

time interval of interest). In what follows we shall have cause to look at limiting cases where

network demands become large, so it is convenient to decompose the demands by q = ζq0

for scalar ζ and fixed vector q0. While the elements of q are assumed constant over time in

our models, this does not imply that our work only applies to transport systems with fixed

demand from day-to-day. This is because we can introduce a single dummy route denoting the

option of not travelling for each inter-zonal movement. Let f and v be the route and link flow

vectors. In order to keep notation simple in cases of limiting demand (as ζ → ∞), we define

the corresponding travel costs in terms of proportions of travellers using a route (or selecting a

route). Specifically, if we denote by tζa(v) the cost of travelling along link a at a given link flow

vector v and demand multiplier ζ, and let tζ(v) be the corresponding A-vector of link costs,

then

tζ(v) = t(ζ−1v) (1)

where t(·) is a function independent of ζ. Define cζ(f) = ∆T tζ(∆f) to be the N -vector of

implied route cost versus route flow performance functions (where ∆T denotes the transpose of

∆), and let c(f/ζ) = ∆T t(∆f/ζ) be the corresponding ζ independent route costs functions.

Markov traffic assignment models attempt to represent the state of the transport system during

a given observation period (e.g. 9.00am-11.00am) on a sequence of days. Let F (n) be the vector

of route traffic flows in the period on day n, and let V (n) be the corresponding vector of link

flows. Now, the traffic flows observed on day n are determined by the route choices made by

all travellers on that day. In Markov assignment modelling each traveller’s choice on any given

day is a random variable whose distribution is defined conditionally on the link costs (and
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possibly the link traffic flows) during the past m days, where m is a finite constant. The class

of Markovian models is very rich, allowing traveller behaviour and learning to be represented

in a wide variety of ways. Nevertheless, this breadth allied to the natural complexity of these

types of model makes mathematical analysis extremely problematic. We therefore concentrate

on a sub-class of models in which traveller learning is based upon linear filters of past costs with

exponentially decreasing weights (see Ben Akiva at al., 1991; Iida et al., 1992; and Emmerink

et al., 1995). To be more specific, we define our route choice model as follows. A traveller i

making inter-zonal movement k on day n is assumed to assign a disutility Ŭ
(n)
ir to each feasible

route r. This disutility can be decomposed as

Ŭ
(n)
ir = U (n−1)

r + η
(n)
ir r ∼ k (2)

where U
(n−1)
r is a (route specific) measured disutility, η

(n)
ir is a person specific random variable

(independent of η
(n)
i′r for all i′ 6= i) and r ∼ k if and only if Γrk = 1 (i.e. only if route r is feasible

for inter-zonal movement k). We assume that the distribution of η
(n)
ir is not a function of n

and i. Nevertheless, we recognize that there are circumstances in which it is useful to divide

the travelling population into a number of classes (e.g. travellers with and without in-vehicle

guidance systems), and in such cases the distribution η
(n)
ir may be assumed to be dependent on

the class membership of individual i. The N -vector of measured disutilities for day n (based

upon the states of the transport system up to and including day n − 1) is given by

U (n−1) = s(λ)−1
m∑

j=1

λj−1cζ(F
(n−j)) (3)

where s(λ) =
∑m

j=1 λj−1 = (1 − λm)/(1 − λ) and it is assumed that 0 < λ < 1. Note that this

implies that the ‘learning weights’ λj−1s(λ)−1 are positive, decreasing and sum to unity.

On any given day each traveller selects the route with smallest personal disutility. This route

choice mechanism implies a probability distribution on the space of feasible routes. For inter-

zonal movement k let pr(U
(n−1)) be the probability of a traveller selecting route r ∼ k con-

ditional on the N -vector of measured disutilities. It is well known that if the η
(n)
ir follow

independent Gumbel distributions then the elements of the N -vector of probabilities p(U (n−1))

are given according to the logit route choice model (see Sheffi, 1985, for example). A common

alternative is to define the error terms at a link level, when η
(n)
ir can be decomposed into a sum

of link based random variables (implying a natural correlation between the random terms for

routes sharing common links). If these link based random variables are normally distributed

(i.e. a probit model) then p(U (n−1)) has no closed form, but can be evaluated by Monte Carlo

methods, for example. Whatever the distribution of η
(n)
ir , the number of travellers taking each
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possible route for inter-zonal movement k on day n is distributed conditionally as

F
(n)
[k] |U

(n−1) ∼ Multinomial
(
qk,p(U

(n−1))
)

k = 1, . . . ,W (4)

where F [k] is the vector containing flows on routes servicing inter-zonal movement k. The

process {F (n) : n = 1, 2, . . .} is an m-dependent Markov chain (Cascetta, 1989). Equivalently,

the concatenated process {F̄
(n)

= (F (n), . . . ,F (n−m+1)) : n = 1, 2, . . .} is a Markov chain, so

we may apply standard Markov theory to the assignment model. An important consequence

is that under the condition that all routes have non-zero probability of being selected on any

day (a condition which holds if η
(n)
ir has infinite support) then the probability distribution of

F̄
(n)

will converge to a unique equilibrium (a fact noted by Cascetta). This equilibrium is also

often termed the ‘stationary’ distribution (since F̄
(n+1)

has this distribution if F̄
(n)

does). This

paper will concentrate on the marginal equilibrium distribution of F (n), and we will write F

for a random vector with this equilibrium distribution.

An important step forward in understanding the properties of the distribution of F was pro-

vided by Davis and Nihan (1993). These authors considered the limiting case of this equilibrium

distribution as the network demand and capacity become large. Within our notational frame-

work this corresponds to the limit as ζ → ∞, since the dependence of tζ and cζ on ζ means

that the network capacity can be interpreted as increasing in tandem with the demand.

Theorem 1: Let f ∗ be Daganzo and Sheffi’s (1977) Stochastic User Equilibrium (SUE) link

flow vector defined by

f∗ = ζdiag(Γq0) p(cζ(f
∗)). (5)

If the solution to Eqn. 5 is unique then

ζ−1/2(F − f ∗)
d
→ N(0,Σ∞) (6)

as ζ → ∞, where
d
→ indicates convergence in distribution and N(µ,Σ) denotes a multivariate

normal distribution with mean µ and covariance matrix Σ.

Proof: This result is a straightforward corollary of the work of Davis and Nihan (1993).

Proposition 3 from their paper demonstrates that the limiting equilibrium distribution of U

is multivariate normal. Furthermore, the conditional distribution of F (n+1) given U (n) is also

multivariate normal when the process is stationary. Hence the equilibrium distribution of F (n)

must also be multivariate normal by standard properties of the multivariate normal distribution,

completing the proof.
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In order to invoke Theorem 1 we shall assume henceforth that a unique SUE exists. This is

guaranteed if the vector mapping t(v) between link flows and link travel costs is continuous

and strictly monotone, and the choice probabilities p(.) follow a regular random utility model

(see Cantarella and Cascetta, 1995). Given a unique f ∗ , Theorem 1 indicates that a natural

approximation to the distribution of F is provided by

F
·

∼ N(f ∗, Σ̂) (7)

where
·

∼ denotes ‘approximately distributed’ and Σ̂ is an estimate of var(F ). Use of the ap-

proximation in Eqn. 7 requires calculation of estimates of the first two moments of F . The

mean vector is approximated by f ∗, and a number of algorithms for computing this quantity

exist (such as the method of successive averages; see Sheffi, 1985, for example). Development of

an estimate of the equilibrium covariance matrix is more problematic. Davis and Nihan (1993)

define the link flow covariance matrix corresponding to Σ∞ implicitly as the fixed point in a

recursive equation. However, computation of this link covariance matrix requires route enumer-

ation, and (more importantly) the solution of a system of linear equations with m2n(n + 1)/2

unknowns. For even a modestly sized network with n = 100 links and a memory length of

m = 10, finding this link covariance matrix will be computationally taxing. For significantly

larger networks and/or memory lengths this computation will infeasible. In the next two sec-

tions we derive an estimates Σ̂ which are far less computationally taxing. In order to quantify

the approximation we will continue to consider the limiting case as ζ → ∞. Assuming that c

is continuously differentiable,

cζ(F ) = cζ(f
∗) +B(F − f ∗)ζ−1 + Op(ζ

−1/2) (8)

whereB denotes the Jacobian matrix of c evaluated at f ∗ζ−1; and the order notation is defined

such that a random variable Gζ = Op(ζ
α) if these exists ω for which limζ→∞ P (|Gζ/ζ

α| > ω) =

0. Likewise, assuming that p is continuously differentiable

p(U) = p(u∗) +D(U − u∗) + Op(ζ
−1/2) (9)

where D denotes the Jacobian matrix of p(u) evaluated at u = u∗ = cζ(f
∗). Both results (8)

and (9) are simple corollaries of Theorem 1 (using the kind of techniques presented by van der

Vaart, 1998, for example).
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2 Networks with a Single Inter-Zonal Movement

2.1 Derivation of an Approximate Covariance Matrix

In this section we look at the special case of a network with a single inter-zonal movement,

with demand denoted by a scalar, ζ (so that q0 = 1). We consider the m-dependent Markov

assignment process {F (n);n = 1, 2, . . .} defined by Eqns. (3) and (4) (for some given positive

integer m). We assume that the distribution of the ηir’s (from Eqn. (2)) has infinite (or at least

semi-infinite) support, so that the process is ergodic and hence has a unique equilibrium distri-

bution (see Cascetta, 1989, and the references therein). We write µ for the equilibrium mean

vector and Σ for the equilibrium covariance matrix of the route flows F . A simple corollary of

Theorem 1 (and of Davis and Nihan, 1993) shows that f ∗ is the natural approximation for µ,

and quantifies the relative approximation error.

Corollary 1: Under the assumptions of Theorem 1,

ζ−1µ = ζ−1f∗ + O(ζ−1/2) (10)

where gζ = O(ζα) if limζ→∞ gζ/ζ
α = ω for some finite constant ω.

We now go on to derive a novel estimate of Σ. The overall plan in this derivation is first to

approximate Σ in terms of var(U) (the covariance of the disutility), which we do in lemma 1.

We then derive an implicit approximation for var(U ) in lemma 2. Combining these lemmas

allows us to find an approximation for Σ as an infinite sum, as we present in Theorem 2. Finally,

we consider a simpler approximation based on a truncated form of this sum.

Lemma 1: For a network with a single inter-zonal movement, and under the assumptions of

Theorem 1,

ζ−1Σ = ζ−1Θ∗ + ζvar(DU)
(
1 + O(ζ−1/2)

)
+ O(ζ−1/2) (11)

where

Θ∗ = diag(f ∗) − ζ−1f∗(f∗)T

Proof: Following on from Eqn. 4, standard results for the Multinomial distribution give

E[F (n)|U (n−1)] = ζp(n−1) (12)

and

var(F (n)|U (n−1)) ≡ Θ(p(n−1))) = ζ
(
diag(p(n−1)) − p(n−1)(p(n−1))T

)
(13)
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where p(n−1) = p(U (n−1)). Note that the conditional covariance matrix is not equal to Σ

because the Multinomial distribution is defined in terms of an invariant set of probabilities,

whilst the probability vector p(U (n−1)) determining route flows on day n varies according to

the state of the transport system over the previous m days. Now, we may decompose the

covariance matrix of F (n) by

var
(
F (n)

)
= E

[
var

(
F (n)|U (n−1)

)]
+ var

(
E
[
F (n)|U (n−1)

])

= E
[
Θ(p(n−1)))

]
+ var

(
E
[
F (n)|U (n−1)

])
(14)

Consider the first term on the right hand side. Employing Eqn. 9 we obtain

E
[
Θ(p(n−1)))

]
= E

[
diag

{
ζ

(
p(u∗) +DŬ

(n−1)
)}]

− E

[

ζ

(
p(u∗) +DŬ

(n−1)
)(
p(u∗) +DŬ

(n−1)
)T
]

+ O(ζ1/2)

= E

[
diag

(
f∗ + ζDŬ

(n−1)
)]

− ζE

[(
f∗ζ−1 +DŬ

(n−1)
)(
f∗ζ−1 +DŬ

(n−1)
)T
]

+ O(ζ1/2)

where Ŭ
(n)

= U (n) − u∗. In equilibrium this simplifies to give

E [Θ(p))] = diag(f ∗) − ζ−1f∗(f∗)T + O(ζ1/2) = Θ∗ + O(ζ1/2). (15)

Note that Θ∗ = Θ(ζ−1f∗) is the conditional covariance matrix evaluated at the SUE probability

vector p(u∗) = ζ−1f∗. The second term on the right hand side in Eqn. (14) can be approximated

using the result

var
(
E
[
F (n)|U (n−1)

])
= var

(
q

(
p(u∗) +DŬ

(n−1)
))(

1 + O(ζ−1/2)
)

= ζ2Dvar
(
U (n−1)

)
DT

(
1 + O(ζ−1/2)

)
(16)

since var(U ) = var(Ŭ ). Combining Eqns. (15) and (16) when the process is equilibrium and

dividing through by ζ completes the proof of lemma 1.

Lemma 2: For a network with a single inter-zonal movement, and under the assumptions of

Theorem 1,

var(U) = (ζs(λ))−2BΘ∗BT +Mvar(U )MT + O(ζ−3/2 + ζ−1λm−1) (17)

where M = s(λ)−1BD + λI and I is the N × N identity matrix.

Proof: It is convenient to amend our notation temporarily from U (n−1) and s(λ) to (respec-

tively) U (n−1)
m and s(m,λ), to reflect the dependence of both on the fixed input parameter m.
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We now derive two expressions for U (n−1)
m which will be needed later. First, b based on the

exponential learning filter for Eqn. (3), we have

U (n−1)
m =

1

s(m,λ)

m∑

i=1

λi−1cζ(F
(n−i))

=
1

s(m,λ)

(
m−1∑

i=1

λi−1cζ(F
(n−i)) + λm−1cζ(F

(n−m))

)

=
1

s(m,λ)

(
s(m − 1, λ)U

(n−1)
m−1 + λm−1cζ(F

(n−m))
)

which can be approximated via the result

U (n−1)
m =

1 − λm−1

1 − λm
U

(n−1)
m−1 +

λm−1(1 − λm−1)

1 − λm
cζ(F

(n−m))

= U
(n−1)
m−1 + O(λm−1). (18)

Intuitively speaking, expression (18) expresses the fact that, provided the learning parameter

λ is not too large and the number of remembered experiences m is not too small, then little

information is lost if, in forming drivers’ mean predicted route costs, the oldest experience is

neglected, since in any case it will be given a relatively low weight in comparison with other

remembered costs. Our second expression for U (n−1)
m is provided by the disaggregation:

U (n−1)
m =

1

s(m,λ)

m∑

i=1

λi−1cζ(F
(n−i))

=
1

s(m,λ)

(

cζ(F
(n−1)) +

m∑

i=2

λi−1cζ(F
(n−i))

)

=
1

s(m,λ)



cζ(F
(n−1)) +

m−1∑

j=1

λjcζ(F
(n−j−1))





=
1

s(m,λ)



cζ(F
(n−1)) + λ

m−1∑

j=1

λj−1cζ(F
((n−1)−j))





=
1

s(m,λ)

(
cζ(F

(n−1)) + λs(m − 1, λ)U
(n−2)
m−1

)
. (19)

Now, a fundamental decomposition of the variance of U
(n−1)
m is

var
(
U (n−1)

m

)
= E

[
var

(
U (n−1)

m

∣∣∣U (n−2)
m−1

)]

+ var
(
E
[
U (n−1)

m

∣∣∣U (n−2)
m−1

])
. (20)

Consider the first term of Eqn. (20). Based on Eqn. (19), conditionally on U
(n−2)
m−1 (the weighted

mean cost over the m − 1 days n − 2, n − 3, ..., n − m), the only random variation in U (n−1)
m

(the weighted mean cost over the m days n − 1, n − 2, ..., n − m) is due to c(F (n−1)). Hence,

var
(
U (n−1)

m

∣∣∣U (n−2)
m−1

)
=

1

(s(m,λ))2
var

(
cζ

(
F (n−1)

) ∣∣∣U (n−2)
m−1

)

11



and using Eqn. (8), this becomes:

var
(
U (n−1)

m

∣∣∣U (n−2)
m−1

)
= (s(m,λ)ζ)−2B var

(
F (n−1)

∣∣∣U (n−2)
m−1

)
BT

(
1 + O(ζ−1/2)

)

= (s(m,λ)ζ)−2B var
(
F (n−1)

∣∣∣U (n−2)
m

)
BT

(
1 + O(ζ−1/2) + O(λm−1)

)

= (s(m,λ)ζ)−2BΘ
(
p(U (n−2)

m )
)
BT

(
1 + O(ζ−1/2) + O(λm−1)

)
. (21)

The first term on the right hand side in Eqn. (20) is obtained by taking the expectation of Eqn.

(21). In the equilibrium case we obtain, using the result of Eqn. (15),

E
[
var

(
U (n−1)

m

∣∣∣U (n−2)
m

)]
= (s(m,λ)ζ)−2BΘ∗BT

(
1 + O(ζ−1/2 + λm−1)

)
. (22)

Moving on to the second term of Eqn. (20), note that

E
[
U (n−1)

m

∣∣∣U (n−2)
m−1

]
=

1

s(m,λ)

{
E
[
cζ

(
F (n−1)

) ∣∣∣U (n−2)
m−1

]
+ λs(m − 1, λ)U

(n−2)
m−1

}

from Eqn. (19). Using Eqn. (8) this becomes:

E
[
U (n−1)

m

∣∣∣U (n−2)
m−1

]
=

1

s(m,λ)

{
cζ(f

∗) + ζ−1BE

[
F̆

(n−1)
∣∣∣U (n−2)

m−1

]
+ λs(m − 1, λ)U

(n−2)
m−1

}(
1 + O(ζ−1/2)

)

=
1

s(m,λ)

{
u∗ +Bp(U

(n−2)
m−1 ) + λs(m − 1, λ)U

(n−2)
m−1

}(
1 + O(ζ−1/2)

)

=
1

s(m,λ)

{
u∗ +B

(
p(u∗) +DŬ

(n−2)
m−1 )

)
+ λs(m − 1, λ)U

(n−2)
m−1

}(
1 + O(ζ−1/2)

)
.

Using the result

s(m − 1, λ)U
(n−2)
m−1 = s(m,λ)U (n−2)

m + O(λm−1)

it follows that, under stationarity,

E
[
U (n−1)

m

∣∣∣U (n−2)
m−1

]
=

1

s(m,λ)

[
u∗ +B

(
f∗ζ−1 −Du∗

)]
+MU

(n−2)
m−1

(
1 + O(ζ−1/2 + λm−1)

)
.

We can now approximate the second term in Eqn. (20) via

var
(
E
[
U (n−1)

m

∣∣∣U (n−2)
m−1

])
= Mvar(U (n−1)

m )MT
(
1 + O(ζ−1/2 + λm−1)

)
.

From Theorem 1 it can be deduced that var(U) = O(ζ−1) and so

var
(
E
[
U (n−1)

m

∣∣∣U (n−2)
m−1

])
= Mvar(U (n−1)

m )MT + O(ζ−3/2 + ζ−1λm−1).

Combining this equation with Eqn. (22) completes the proof of lemma 2.

Repeated substitution of Eqn. (17) in (11) proves the following theorem.

Theorem 2: For a network with a single inter-zonal movement, and under the assumptions of

Theorem 1,

ζ−1Σ = ζ−1Θ∗ + s(λ)−2ζ−1D

{
∞∑

i=0

M i(BΘ∗BT )(M i)T
}

DT + O(ζ−1/2 + λm−1). (23)
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Note that Lemma 1 and Theorem 2 indicate that we can get accurate approximations to the

equilibrium mean and covariance matrix relative to the demand. It is clearly unreasonable

to expect to be able to obtain approximations with small absolute error since µ and Σ both

increase in proportion to ζ.

2.2 Practical Approximation

The result of Theorem 2 does not provide a practical method for estimating Σ since it involves

an infinite sum. Nonetheless, we can develop a practicable approximation by truncating the

sum in Eqn. (17). More specifically, we propose the estimate

Σ̂ = Θ∗ + s(λ)−2
{
DBΘ∗(DB)T +DMBΘ∗(DMB)T

}
(24)

which makes use of only the first two terms in Eqn. (17). In order to assess the quality of our

approximation Σ̂, note that the terms omitted in moving from Eqn. (17) to (24) are of the form

(
s(λ)−1DB

)j
Θ∗

{(
s(λ)−1DB

)k
}T

λi−j−k

for i, j, k non-negative integers satisfying i ≥ j + k and i ≥ 2. It follows that we should expect

the quality of our approximation of Σ to depend upon the magnitude of λ and powers of the

matrix qs(λ)−1DB. Now 0 < λ < 1 by assumption, so the high power terms in λ will become

increasingly small. Turning to s(λ)−1DB, high powers of the matrix will contribute little to

the infinite sum in (17) if all its eigenvalues have modulus less than one. In particular, we have

reason to hope that the approximation in (24) will operate well if the magnitudes of all the

eigenvalues of s(λ)−1DB are substantially smaller than one. Conversely, we cannot expect our

approximation to be useful if any of the eigenvalues of s(λ)−1DB have modulus one or greater.

The matrix s(λ)−1DB has an interesting connection with the volatility of the traffic assignment

process. To see this, define

ψ(f (n−1)) = E[F (n)|F (n−1) = f (n−1),Un−2
m = u∗].

This function quantifies the marginal effect on the day n expected traffic flow of the realized

flow pattern f (n−1) on day n − 1, given that the disutility based on the previous m days has

been at its equilibrium expected value. Hazelton (2002) suggests that the assignment process

will be non-volatile in an intuitive sense if

||ψ(f (n−1)) − f∗|| < ||f (n−1) − f∗||

13



(where || · || is the Euclidean norm) since this implies that we expect any deviation from SUE

(the equilibrium mean) on day n−1 to be damped down on day n. A reversal of this inequality

suggests a highly volatile assignment process in which deviations from SUE at day n − 1 are

expected to be magnified on the following day. Now, it is simple to show that the Jacobian

matrix of ψ(f (n−1)) evaluated at f ∗ is s(λ)−1DB. Hence

ψ(f (n−1)) − f∗ = s(λ)−1DB(f (n−1) − f∗)
(
1 + O(ζ−1/2)

)
.

It follows that the volatility of the assignment process depends on the matrix s(λ)−1DB in quite

a direct fashion. This in turn implies that we should expect the quality of our approximation

for Σ to be dependent on the assignment process volatility. We note that there is a strong

analogy here with the classical techniques for examining asymptotic stability of deterministic

dynamical assignment processes (cf. Watling, 1999).

Example We illustrate the preceding discussion on the robustness of our truncated series

approximation with a simple example involving a simple two zone network with only one inter-

zonal movement, in which the zones are connected by two parallel non-overlapping routes.

Suppose that the cost functions at demand ζ for each route are quadratic, parameterized as

cζr(fr) = αi +

(
fr

βζ

)2

r = 1, 2

so that β is proportional to route capacity (assumed the same for both routes). Suppose further

that a logit model is used to define the route choice probabilities; that is,

pr(u) =
e−θur

e−θu1 + e−θu2

.

Then it is simple to show that

s(λ)−1DB = 2θp1(u
∗) (1 − p1(u

∗)) β−2s(λ)−1ζ−1

(
−f∗

1 f∗

2

f∗

1 −f∗

2

)

.

The eigenvalues φ1, φ2 of this matrix are given by

φ1 = 0 φ2 = −2θp1(u
∗) (1 − p1(u

∗)) β−2s(λ)−1 .

Since p1(u
∗)[1 − p1(u

∗)] ≤ 4−1 it follows that

|φ2| ≤
1

2
θβ−2s(λ)−1.

We can expect our approximation for Σ to operate satisfactorily if |φ2| << 1, and hence if

θ << 2β2s(λ). (25)

14



The approximation is likely to fail badly if this inequality is reversed.

To illustrate this point we carried out three simulation experiments for this network with

q = 40, α1 = 1, α2 = 2, β = 0.25, λ = 0.8 and m = 9. With this network data the right hand

side of the inequality in (25) is 0.5411. In the first experiment we set θ = 0.01, well below this

critical value. In the second we set θ = 0.1, and in the third we set θ = 1 (exceeding the critical

value). Three methods of estimating µ and Σ are considered:

Simulation: The assignment process was simulated over a sequence of 40000 days. The first

4000 simulations were discarded as a so called ‘burn-in period’ (see Gilks et al., 1996) in

order to allow the process to reach equilibrium.

Naive: In this method we estimated µ by f ∗ and Σ by the conditional covariance matrix

evaluated at SUE, Θ∗.

Approximation: Here µ and Σ were estimated by f ∗ and Σ̂ from (24) respectively.

For each method the estimated equilibrium mean and variance of the flow on route 1 are

displayed in Table 1. (Route 2 results are omitted since they can be computed directly using

the fact that f2 = q − f1.)

TABLE 1 HERE

These results are readily explained. In the case where θ = 0.01, travellers are quite insensitive

to changes in measured disutility and hence they take relatively little account of fluctuations

in recent flow patterns when making route choices. The SUE flows on both links are almost

equal, and the sequence of assigned route flows on route 1 evolves very much like a sequence

of independent Binomial(40,0.5) random variables. It is therefore no surprise that the naive

approximations to µ1 and Σ11 are very close to the observed values (computed directly from the

simulation). Notice that our approximation provides an estimate of variance indistinguishable

(to two decimal places) from the naive one. When θ = 0.1 travellers are considerably more

sensitive to shifts in disutility. Travellers are more likely to react to recent fluctuations in

flows, and hence the naive estimate of variance (which essentially ignores this variability) is

significantly smaller than the observed value. Our approximation, on the other hand, is once

more very close to the observed value. Finally, in the case where θ = 1, travellers are very

sensitive to even small changes in measured disutility. Travellers tend to react en masse to

variations in recent traffic flows, producing a highly volatile assignment process in which the

route 1 flow will sometimes go from 0 to 40 and back again to 0 over a sequence of 3 days.

15



(Such ‘flip-flopping’ behaviour in traffic assignment models is well known; see, for example,

Horowitz, 1984, and Watling, 1999). In this situation the naive estimate of variance is an order

of magnitude too small. Our approximation is also quite poor (as predicted by the preceding

theory), markedly overestimating the observed value.

As a postscript to this example it is worth considering the usefulness of an estimate of variance

in the θ = 1 case. When the (marginal) equilibrium distribution of flows on route 1 is unimodal

and non-skewed (as occurred when θ = 0.01 and θ = 0.1), the mean and variance are excellent

summary statistics. For example, statistical calculations requiring only mean and variance (and

based on the normal distribution courtesy of Theorem 1) show that the flow on route 1 will fall

outside the prediction interval (µ̂11±2Σ̂
1/2
11 ) only (approximately) 5% of the time. However, for

θ = 1 the equilibrium distribution was markedly bimodal. When the equilibrium distribution is

multi-modal a multivariate normal approximation is clearly inappropriate. and the mean and

variance do not constitute a satisfactory summary of this distribution. For instance, prediction

intervals analogous to the one above cannot be computed without further information. To

obtain a full description of the equilibrium distribution when θ = 1 would require a lengthy

simulation run, but this may well be necessary when attempting to learn about the properties

of such a volatile assignment process.

2.3 A Probit Example

The shortcomings of logit route choice models are widely recognized, but these models continue

to be used because of their mathematical tractability. In contrast, probit models in which the

ηir from Eqn. (2) are composed of sums of link based random variables (see Sheffi, 1985, for

example) are more intuitively attractive but are generally far less easy to work with. Nonethe-

less, we are able to implement our approximation methodology for probit models by using a

technique described by Daganzo (1979), and recently applied to traffic assignment by Clark

and Watling (2000), for approximating the requisite Jacobian matrix D. We illustrate the use

of this technique using a five link network studied by Clark and Watling.

The network topology is displayed in Figure 1. We assume that there is a single inter-zonal

movement from zone 1 to 4, with a demand of ζ = 100 trips. The link cost functions are given

by

tζa(va) =

{
1 + (va/ζ)2 a = 1, 3
2 + va/ζ a = 2, 4, 5.

There are three available routes: route 1 comprising links 1 and 4, route 2 comprising links 2

16



and 5 and route 3 comprising links 1, 3 and 5. Traveller i has random disutility component ηir

for route r given by

ηir =
5∑

a=1

∆arǫia

where ǫia is a link based normally distributed random variable with variance τ 2
a (where τ 2

1 =

τ2
3 = τ2

4 = 1 and τ 2
2 = τ2

5 = 2−1).

FIGURE 1 ABOUT HERE

SUE was computed using the method of successive averages with 1 inner iteration and 10 million

outer iterations (see Sheffi, 1985). This gave

f∗ = (54.3, 29.1, 16.6)T .

The Jacobian matrix D for this problem is given approximately by (Clark and Watling, 2000):

D =




−0.276 0.150 0.126

0.150 −0.208 0.058
0.126 0.058 −0.184



 .

The simulation method was implemented with 40, 000 iterations in order to obtain reliable

estimates

µ =




54.6
28.0
17.4





(which is closely approximated by f ∗) and

Σ =




26.4 −16.8 −9.6

−16.8 21.3 −4.5
−9.6 −4.5 14.2



 .

This was a computationally onerous task because of the need to compute shortest paths for

every traveller on each day. In practice it will often be impossible to carry out such a substantial

simulation run (particularly if the network is large), and so it is of interest to investigate the

variability in estimates that will be obtained from using shorter simulation runs. We did this by

obtaining results from 20 parallel implementations of the simulation approach, each based on

only 2000 (and each having its own random number generation seed). The root mean squared

errors over these 20 replications for the variances of the three routes were 4.9, 3.7 and 2.5; i.e.

18.6%, 17.2% and 17.7% respectively.

Our approximation methodology gives

Σ̂ =




25.7 −16.5 −9.2

−16.5 21.3 −4.7
−9.2 −4.7 13.9



 .
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Note that the absolute errors in estimating the variance on the routes are 0.7, 0.0 and 0.3; i.e.

2.7%, 0.0% and 2.1% respectively. This is a clear improvement on the result obtained using a

short simulation run, and provides a clear indication of the potential benefits of our approach.

3 Networks with Multiple O-D Movements

In this section we consider approximations of the equilibrium distribution mean and covariance

matrix when the traffic network has multiple inter-zonal movements. Since Theorem 1 is valid

in this case (as well as in the case of a single inter-zonal movement), so Corollary 1 applies and

f∗ remains the natural approximation to µ. Turning to Σ, note that the conditional covariance

matrix is given by

var(F (n)|U (n−1)) ≡ Θ(p(n−1))) =





Θ1(p
(n−1)
1 ) 0 . . . 0

0 Θ2(p
(n−1)
2 ) . . . 0

...
...

. . .
...

0 0 . . . ΘW (p
(n−1)
W )




. (26)

where Θi(p
(n−1)
i ) is the multinomial covariance matrix from Eqn. (13) for the i’th inter-zonal

movement only, and 0 represents appropriately sized matrices with all elements zero. We define

Θ∗ = Θ
(
{diag(Γq0)}

−1ζ−1f∗

)

to be this conditional covariance matrix computed at the SUE probability vector (as before).

It is worth noting, in passing, that the flows on two routes servicing different inter-zonal move-

ments are conditionally uncorrelated. This in turn means that if Θ∗ is used as a naive estimate

of Σ then it would appear as if route flows corresponding to separate inter-zonal movements

are unconditionally uncorrelated. However, there are certainly circumstances in which intuition

suggests that significantly non-zero correlations between such flows will exist. For instance, if

two routes servicing different inter-zonal movements share road links (with these common links

perhaps constituting the majority of both routes) then heavy congestion on these links on day

n − 1 will tend to produce relatively low flows on both routes on day n (and hence a posi-

tive correlation). Our approximation Σ̂ can successfully estimate the unconditional covariances

between routes servicing different inter-zonal movements.

Employing the extended notation introduced in Eqn. (26), it is straightforward to show that

Theorem 2 generalizes to the multiple inter-zonal movement as follows.
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Theorem 3: Under the assumptions of Theorem 1,

ζ−1Σ = ζ−1Θ∗ + s(λ)−2ζ−1Q0D

{
∞∑

i=0

M i(BΘ∗BT )(M i)T
}

DTQT
0 + O(ζ−1/2 + λm−1). (27)

where Q0 = diag(Γq0).

Hence a natural approximation to Σ is provided by

Σ̂ = Θ∗ + s(λ)−2
{
Q0DBΘ∗(Q0DB)T +Q0DMBΘ∗(Q0DMB)T

}
, (28)

following the same type of reasoning as in section 2.2.

We illustrate the use of our methodology for multiple inter-zonal movements using the traffic

network with topology as displayed in Figure 2. In this example there are two inter-zonal

movements, the first from zone 1 to zone 5 and the second from zone 3 to zone 5. In both cases

the travel demand is 50. We decompose this demand so that ζ = 50 and q0 is a vector with

appropriately places zeros and ones. The path-link incidence matrix is

∆ =





0 1 0 0
1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1
1 0 0 0
0 0 0 1





where the first two routes service the inter-zonal movement 1, and the last two routes service

inter-zonal movement 2. Each link has cost function

tζa(va) = 5 + 2.5(va/ζ)2 .

The disutility was computed with m = 5 and λ = 0.5 and a logit route choice model with logit

parameter 0.35 was employed.

FIGURE 2 ABOUT HERE

The mean and covariance matrix computed from a 40000 day simulation run were

µ =





21.7
28.3
28.3
21.7





and

Σ =





16.5 −16.5 −3.0 3.0
−16.5 16.5 3.0 −3.0
−3.0 3.0 16.5 −16.5

3.0 −3.0 −16.5 16.5



 .
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The SUE approximation of the mean is

f∗ =





28.3
21.7
21.7
28.3





while our estimate of the covariance matrix is

Σ̂ =





17.1 −17.1 −3.3 3.3
−17.1 17.1 3.3 −3.3
−3.3 3.3 17.1 −17.1

3.3 −3.3 −17.1 17.1



 .

The conditional covariance matrix was

Θ∗ =





12.3 −12.3 0 0
−12.3 12.3 0 0

0 0 12.3 −12.3
0 0 −12.3 12.3



 .

Our methodology has performed well in this example; the largest error in estimating a single

route flow variance is only 3.6%. This compares very favourably with the naive estimate Θ∗

where the corresponding error is 26.1%. It is particularly interesting to note that Σ̂ has provided

a reasonable estimate of the covariance between the flows on routes 2 and 3. These routes service

different inter-zonal movements but there is a correlation of 0.43 between the route flows. This

is a result predicted by the preceding discussion, since these routes share link 3 in common.

4 Conclusions

The work in this paper provides a methodology for computing an approximation to the equi-

librium covariance matrix in the important class of Markov traffic assignment models where

the traveller learning mechanism is described by a linear filter with exponentially decreasing

weights. This covariance matrix, in combination with a standard SUE assignment, allows the

full equilibrium distribution of the process to be approximated. The methodology described has

the potential to be of significant practical benefit, since our approximations of Eqns (11) and

(24) (or (28)) can be computed efficiently in comparison to existing methods. In comparison, if

a Monte Carlo simulation approach were instead adopted, long and highly time-consuming runs

would typically be required in order to obtain reliable results; as shown in section 2.3, shorter

simulation runs are liable to produce highly variable (and hence unreliable) estimates. As an

avenue for further research, it would be valuable to extend our methodology to cope with more

general learning mechanisms. However, this appears to be a non-trivial problem because it is
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the structure of the linear learning filter with exponentially decreasing weights that allows the

fundamental decomposition of Eqn. (19) to be employed.

On a wider level, the research reported has significance for those developing complex computer

microsimulation models, incorporating interacting sub-models of traveller choice behaviour and

vehicular movement, such as the TRANSIMS program (e.g. Nagel and Barrett, 1997; Smith,

2001). The Markovian environment described here is in principle applicable at levels of detail

down to the individual traveller, as well as to choice mechanisms other than route selection,

and has the advantage of providing a formal mathematical framework within which to analyse

the phenomenon model-users refer to as ‘feedback’.
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TABLE 1.

Mean Variance Mean Variance Mean Variance

θ = 0.01 θ = 0.1 θ = 1

Simulation 20.35 10.08 20.55 10.30 21.06 112.60
Naive 20.07 10.00 20.67 9.99 21.00 9.98
Approximation 20.07 10.00 20.67 10.32 21.00 137.12
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TABLE AND FIGURE LEGENDS

• TABLE 1: Estimates of the equilibrium mean and variance of flows on route 1 in a two

route network.

• FIGURE 1: Network topology for probit example.

• FIGURE 2: Network topology for example with two inter-zonal movements.


