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Abstract. An outstanding problem in biogeochemical mod-
elling of the ocean is that many of the key processes oc-
cur intermittently at small scales, such as the sub-mesoscale,
that are not well represented in global ocean models. This is
partly due to their failure to resolve sub-mesoscale phenom-
ena, which play a significant role in vertical nutrient supply.
Simply increasing the resolution of the models may be an
inefficient computational solution to this problem. An ap-
proach based on recent advances in adaptive mesh compu-
tational techniques may offer an alternative. Here the first
steps in such an approach are described, using the example
of a simple vertical column (quasi-1-D) ocean biogeochemi-
cal model.

We present a novel method of simulating ocean biogeo-
chemical behaviour on a vertically adaptive computational
mesh, where the mesh changes in response to the biogeo-
chemical and physical state of the system throughout the sim-
ulation. We show that the model reproduces the general phys-
ical and biological behaviour at three ocean stations (India,
Papa and Bermuda) as compared to a high-resolution fixed
mesh simulation and to observations. The use of an adap-
tive mesh does not increase the computational error, but re-
duces the number of mesh elements by a factor of 2–3. Un-
like previous work the adaptivity metric used is flexible and
we show that capturing the physical behaviour of the model
is paramount to achieving a reasonable solution. Adding bi-
ological quantities to the adaptivity metric further refines the
solution. We then show the potential of this method in two

case studies where we change the adaptivity metric used to
determine the varying mesh sizes in order to capture the dy-
namics of chlorophyll at Bermuda and sinking detritus at
Papa. We therefore demonstrate that adaptive meshes may
provide a suitable numerical technique for simulating sea-
sonal or transient biogeochemical behaviour at high vertical
resolution whilst minimising the number of elements in the
mesh. More work is required to move this to fully 3-D simu-
lations.

1 Introduction

Biogeochemical processes in the ocean are a key component
of Earth’s climate system and, in particular, of the carbon
cycle. Understanding of the latter is crucial for projections
of future climate change. However, modelling the biogeo-
chemistry of the oceans presents a formidable challenge as
many of the key processes occur at scales (both horizontal
and vertical) not resolved by state-of-the-art climate models.
Both mesoscale and sub-mesoscale processes are thought to
be important – for example, in the supply of nutrients to the
surface water of the oligotrophic gyres that cover one-third
of the earth’s surface (Oschlies, 2002; McGillicuddy et al.,
2003; Lévy et al., 2012). It is generally considered that the
representation of the physical processes is a key part in cor-
rectly representing ocean biogeochemistry (e.g. Friedrichs
et al., 2006), including the representation of the light spectra
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324 J. Hill et al.: Adapting to life

(Kettle and Merchant, 2008). Furthermore, many of the pro-
cesses affecting biogeochemistry at the mesoscale and sub-
mesoscale have significant vertical structure (Lévy et al.,
2012), meaning that vertical resolution is also important.
In addition, the surface fluxes that drive mixed-layer depth
(MLD) behaviour can greatly affect the vertical nutrient
fluxes (Berline et al., 2007), highlighting the importance of
the representation of vertical processes. Thus there is a need
to have sufficiently high vertical resolution to correctly repre-
sent vertical advection together with mixed-layer deepening
and shallowing. Current ocean models use decreasing reso-
lution with increasing depth, concentrating resolution in the
upper layers (e.g. Popova et al., 2006). Multiscale resolution
is possible using an unstructured mesh where horizontal res-
olution can vary spatially by orders of magnitude, but the
same method can be applied in the vertical also. A number
of coastal and regional models use such an approach to model
complex coastlines and bathymetries (e.g. Ji et al., 2008; Luo
et al., 2012). These models have been successfully coupled to
biogeochemical models to study nutrient cycling and plank-
ton blooms (Khangaonkar et al., 2012; Ji et al., 2008), and
water quality (Menendez et al., 2013). In addition to mul-
tiscale resolution which alters resolution spatially, it is also
possible to alter the resolution temporally – mesh adaptiv-
ity, which aims to alter resolution only when and where it
is required (e.g. Hiester et al., 2011). This approach aims to
reduce the number of elements required whilst maintaining
some measure of error. Here, as a first step, the suitability of
mesh adaptivity for providing appropriate vertical resolution
is tested using a simple vertical-column coupled physics and
ecosystem model. We neglect vertical advection terms and
focus on mixed-layer dynamics only.

The behaviour of ocean ecosystems, and the associated
biogeochemistry, is driven largely by physical processes
(stirring and mixing). These vary depending on location;
for example, differing between the subpolar and subtropi-
cal gyres. Therefore, simulations at different locations in the
ocean may require different resolution structure (meshes) in
the vertical. Adaptivity should allow the best mesh structure
to be chosen for each location. By carefully selecting the
adaptivity metric and parameters controlling the mesh, com-
putational cost can in principle be minimised by reducing
the number of degrees of freedom (Hiester et al., 2011; Hill
et al., 2012). There is also a need to conserve biogeochemi-
cal quantities, so interpolation between meshes during adap-
tation can therefore be key in ensuring conservation. Adap-
tivity has been used previously in ocean-type settings. Hill
et al. (2012) showed that adaptivity can reduce the number
of elements required to model the mixed layer, using Fluid-
ity, the model also used here. Adaptive techniques have been
shown to reduce levels of numerical mixing in a number of
idealised examples (Hofmeister et al., 2010). Other models
have shown effective use of adaptive grids to improve the
representation of vertical mixing processes (Burchard and
Beckers, 2004). This paper represents the first study to assess

the effect of adaptive meshes on ocean ecosystem model nu-
merical accuracy.

The adaptive mesh technique used in Fluidity differs from
previous implementations of adaptive mesh techniques used
in similar models in that the number of elements (or in
the case of finite-difference models, grid points) can change
throughout the simulation. For example, in both Burchard
and Beckers (2004) and Hanert et al. (2006) the num-
ber of grid points remains fixed: the adaptive mesh moves
them to locations to minimise an error metric; in essence
a mesh movement algorithm. The techniques of Burchard
and Beckers (2004) have been extended to 3-D by allow-
ing each horizontal location to have a different vertical mesh
(Hofmeister et al., 2010). Again, the number of grid points
is fixed. In addition to the number of elements being able
to vary throughout the simulation, the model presented here
also allows the adaptivity metric weights to be user defined,
giving a great deal of flexibility on the adaptivity metric com-
position. This allows a comparison of using only biological
tracers in the adaptivity metric, only physical variables, or a
combination of both.

In order to examine a wide range of ocean conditions, three
ocean stations (Fig. 1) were chosen to test the performance of
mesh adaptivity in conjunction with ocean biogeochemistry
models. These were Ocean Weather Station Papa, Ocean
Weather Station India and the Bermuda Atlantic Time-series.
These stations show very different mixed-layer and biologi-
cal behaviours and so test a model’s ability to accurately sim-
ulate a range of physical and biological behaviours. Whilst
Papa is ideal for carrying out 1-D studies due to the lack of
significant horizontal advection (Denman and Miyake, 1973;
Gaspar et al., 1990; Burchard and Bolding, 2001), India and
Bermuda both experience significant horizontal advection.
Previous attempts to model Bermuda in one dimension have
resorted to ad hoc “fixes” (Anderson and Pondaven, 2003;
Weber et al., 2007) in order to simulate the physical and bio-
logical behaviour here. However, the aims of these previous
studies were to understand the processes occurring in more
detail. In this study we are concerned with how well adap-
tive remeshing can replicate the results of a fixed-mesh sim-
ulation whilst minimising the number of elements used. We
therefore do not expect a perfect match to observed data for
these two stations, but the simulations must replicate the gen-
eral observed behaviour at all three stations. In addition, we
do not necessarily expect model skill to increase when using
adaptive remeshing. We are instead examining the numerical
response of the model. Without numerical confidence in the
model, altering biological parameters to tune the model may
“lead to misconceptions in the interpretation of ecosystem
dynamics” (Oschlies and Garçon, 1999).

In Sect. 2 the numerical model used in this study is de-
scribed, including the biogeochemical model used, turbu-
lence parameterisation and mesh adaptivity algorithm. This
model is then evaluated in Sect. 3, before the results from
fixed-mesh simulations are described. Section 4 then presents
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Fig. 1. Map of station locations (A) and 2-D view of the model
domain at showing two different meshes produced by the adaptivity
algorithm (B).

results from the adaptive mesh simulation. Finally, two ex-
periments are described in which the mesh is adapted to con-
centrate resolution not only in critical regions such as at the
MLD, but also to track sinking detritus at Station Papa to well
below the mixed layer depth and the subsurface chlorophyll
maximum at Bermuda, which occurs below the mixed layer.
The paper then assesses the merits of the adaptive algorithm
presented and draws some conclusions.

2 Methods

Here, the non-hydrostatic Boussinesq equation system is
considered in the context of Fluidity (Ford et al., 2004; Pain
et al., 2005; Piggott et al., 2008b), a highly flexible finite ele-
ment/control volume modelling framework which allows for
the numerical solution of the following set of equations:

∂u

∂t
+ u · ∇u + f k × u =

− ∇
(

p

ρ0

)

−
ρ

ρ0
gk + ∇ · (ν∇u) , (1)

∇ ·u = 0, (2)

∂T

∂t
+ u · ∇T = ∇ · (κT ∇T ), (3)

∂S

∂t
+ u · ∇S = ∇ · (κS∇S), (4)

ρ ≡ ρ(T ,S), (5)

where u is the 3-D velocity vector, t represents time, p is
the pressure, g is the acceleration due to gravity acting in the

k = (0,0,1)T direction, T is temperature and S is salinity. ρ

is the density which is given in terms of an equation of state
function with temperature and salinity as input arguments,
and ρ0 is a constant background value for density. ν is the
tensor of kinematic viscosities and κT , κS are the thermal
and saline diffusivity tensors respectively. f is the Coriolis
parameter which in this work is assumed constant. We also
assume, for simplicity, a Cartesian coordinate system with k

pointing in the direction of gravity.
The above equations were discretised on an unstruc-

tured mesh of tetrahedral elements using the finite-element
method. The form of the discretisation is determined by the
order of the polynomials used for the different solution vari-
ables and whether or not they are continuous or discontin-
uous across element faces. A constant time step of 360 s is
used with Crank–Nicolson temporal discretisation.

Here, we use a linear continuous Galerkin method for ve-
locity and pressure, with a control volume formulation used
for all tracer fields, including turbulence and biological trac-
ers. Discontinuous linear Galerkin discretisations have also
been tested and work successfully. For further details see Pig-
gott et al. (2008b, 2009).

2.1 Boundary conditions

The domain used is quasi-1-D, 100 m square in the horizontal
with depths of either 1000 m for Station Papa and Bermuda,
or 2000 m for Station India. This ensures that the maximum
MLD is well above the lower boundary at all stations. The
lateral boundaries have a Dirichlet condition applied to the
velocity such that the vertical component is zero. The top and
bottom surfaces also have this condition applied. Boundary
conditions for the turbulent quantities are as described in Hill
et al. (2012) and are Neumann conditions for both turbulent
equations. The top surface cell is subjected to heat, momen-
tum and salinity fluxes. These are derived via the Large and
Yeager (2004) bulk formulae, with atmospheric data supplied
from ERA40 (Uppala et al., 2005). Both Station Papa and
Station India use atmospheric forcing from 1970 onwards as
this is when most observation data from those stations are
available. Bermuda uses atmospheric forcing from 1980 on-
wards, again as most observational data was available during
this period. Briefly, the three surface kinematic fluxes cal-
culated – heat, 〈wθ〉; salt, 〈ws〉; and momentum, 〈wu〉 and
〈wv〉 – can be related to the surface fluxes of heat Q, the
freshwater F and the momentum τ = (τu,τv) via

〈wθ〉 = Q
(

ρCp

)−1
(6)

〈ws〉 = F
(

ρ−1S0

)

(7)

(〈wu〉, 〈wv〉) = τρ−1 = (τu,τv)ρ
−1, (8)

where ρ is the ocean density, Cp is the heat capacity
(4000 J kg−1 K−1) and S0 is a reference ocean salinity, which
is the current sea surface salinity. These fluxes are then
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applied as upper-surface Neumann boundary conditions on
the appropriate fields.

2.2 Biogeochemical model

The model used here is a six-component model similar to the
globally applicable model of Popova et al. (2006). Heuristi-
cally, the model consists of nutrients (ammonium and nitrate)
which are fixed by phytoplankton in the presence of sun-
light (photosynthetic active radiation – PAR). Phytoplankton
shading is included, reducing the amount of PAR down the
water column. Zooplankton grazes on phytoplankton and de-
tritus partially recycling them back into inorganic nutrients
and partially converting into detritus. Phytoplankton and zoo-
plankton mortality also produce detritus which is gradually
converted back to nutrients as it sinks through the water col-
umn.

Nutrients (ammonium and nitrate), detritus, phytoplank-
ton and zooplankton are solved prognostically, whilst chloro-
phyll is a diagnostic variable, derived from phytoplankton.
Initial conditions for phytoplankton, detritus and zooplank-
ton concentrations were the same for all stations and are
0.1 mmol m−3 above 100 m and 0.005 below 100 m. Ammo-
nia was set to an initial value of 0.01 mmol m−3. Nitrate pro-
files were taken from Kleypas and Doney (2001) for Station
Papa and Bermuda and Popova et al. (2006) for station India.
For more details of this model see Appendix A1, which in-
cludes all parameters used. Note the parameters were tuned
to give a good fit to all stations presented here, but were not
altered between any model runs.

2.3 Vertical turbulence model

The generic length scale (GLS) turbulence parameterisation
simulates vertical turbulence at a finer than that of the mesh.
As the GLS model is a RANS parameterisation there is no
dependency on the mesh resolution, provided the advective
model simulates no turbulent processes, so is ideal for adap-
tive ocean-scale problems. GLS has the additional advantage
that it can be set up to behave as a number of classical turbu-
lence models: k–ǫ, k–kl, k–ω, and an additional model based
on Umlauf and Burchard (2003), the gen model. The GLS
model has been implemented within Fluidity and shown to
work well with adaptive remeshing (Hill et al., 2012). Here,
we use it in k–ǫ mode as detailed in Hill et al. (2012), which
is a two-equation model. The first equation deals with the
turbulent kinetic energy, k:

∂k

∂t
+ ui

∂k

∂xi

=
∂

∂z

(

νM

σk

∂k

∂z

)

+ P + B − ǫ, (9)

where σk is the turbulence Schmidt number for k, and P

and B represent production by shear and buoyancy which

are defined as

P = −u′w′ ∂u

∂z
− v′w′ ∂v

∂z
= νMM2

M2 =
(

∂u

∂z

)2

+
(

∂v

∂z

)2

, (10)

B = −
g

ρ0
ρ′w′ = −νH N2

N2 = −
g

ρ0

∂ρ

∂z
. (11)

Here, N is the buoyancy frequency, νM is the kinematic eddy
viscosity and νH is the kinematic eddy diffusivity, given by:

νM =
√

klSM + ν0
M , νH =

√
klSH + ν0

H . (12)

ν0
H is the background diffusivity (set to 1×10−6 m2 s−1), ν0

M

is the background viscosity (1 × 10−6 m2 s−1), SM and SH

are often referred to as stability functions, k is the turbulent
kinetic energy, and l is a length scale. When using GLS the
values of νM and νH become the vertical components of the
tensors ν and κT in Eqs. (1) and (3) respectively. Other tracer
fields, such as salinity use the same diffusivity as tempera-
ture, i.e. κT = κS .

There is also the option to add an extra term to account
for additional oceanic physics, such an internal waves break-
ing. This is based on the NEMO ocean model (Madec, 2008)
and takes a user-defined percentage of the surface k and dis-
tributes it down-depth using an exponential profile:

k(z) = k0(z) + αksur exp(−z/lk), (13)

where k is the new turbulent kinetic energy value at depth z,
k0 is the original turbulent kinetic energy, ksur is the surface
turbulent kinetic energy, α is a constant for the amount (per-
centage) of surface turbulent kinetic energy to transfer down
the column, and lk is a length scale (m) over which this decay
occurs. In this work, α = 0.05 and lk = 30.

The second equation gives the dissipation ǫ, which is de-
scribed by

∂ǫ

∂t
+ ui

∂ǫ

∂xi

=
∂

∂z

(

νM

σǫ

∂ǫ

∂z

)

+
ǫ

k
(c1P + c3B − c2ǫ), (14)

where c1, c2, c3 and σǫ are constants with values given by
Hill et al. (2012).

The MLD can be defined in a number of ways. Here, we
use two definitions: (1) where k < 1 × 10−5 m2 s−2 and (2)
where density is 0.125 kg m−3 less than surface density (i.e.
at z = 0). We use the second when comparing to observa-
tional data and the first for determining weighting of the k

field when using adaptivity (see next section).

2.4 Dynamic adaptive mesh optimisation

The mesh adaptivity algorithm used in this work attempts to
optimise the size as well as the shape of individual elements
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of the mesh in order to minimise an optimisation functional
(Pain et al., 2001; Piggott et al., 2005, 2008b). We use the in-
terpolation error which is often a reasonable indication of the
error due to spatial discretisation in finite-element problems
(Pichelina et al., 2000). In Fluidity, mesh adaptivity aims to
increase resolution in regions of the domain with large curva-
tures of given fields and decrease resolution elsewhere. This
approach allows good representation of the small-scale dy-
namics and sharp gradients without the need for high spatial
resolution throughout the entire domain (Piggott et al., 2005).
The mesh is adapted through a series of local topological and
geometrical operations as described by Pain et al. (2001). In
this work we adapt in the vertical direction only. A single
column of mesh vertices is first adapted. This column is then
replicated to the other three columns, which are then joined
to form a quasi-1-D column of tetrahedra. The location of the
vertices is constructed such that all elements in that first 1-D
column have unit edge length when measured with respect to
a given adaptivity metric, M .

In Fluidity a relatively simple adaptivity metric M is em-
ployed. For chosen fields fi , adaptivity metrics Mi are de-
fined by

Mi = det |Hi |−
1

2p+n
|Hi |
εi

, (15)

where εi is a user-defined weight corresponding to the field
under consideration and |Hi | is the Hessian matrix (second-
order derivatives) for that field where the absolute values of
its eigenvectors have been taken, p ∈ Z and n is the dimen-
sion of the space (Loseille and Alauzet, 2011). The Hes-
sian matrix contains information about both the magnitude
and direction of the curvature of a field and hence can be
used to guide generation of anisotropic elements. The final
adaptivity metric used, M , is formed from a superposition of
the adaptivity metrics for individual fields: M =

⋃

i Mi (Pain
et al., 2001). In the work presented here we tested values of
p of 2 and ∞ as both have been used in previous work, but
p = 2 has shown superior results in resolving both weak and
strong curvatures simultaneously within the same simulation
(Loseille and Alauzet, 2011; Hiester et al., 2011) and is used
in all simulations presented. ε may be varied spatially and
temporally, but neither is utilised here. In general, for a given
solution field, decreasing ε will lead to greater refinement of
the mesh and increasing ε will lead to more coarsening. At
this point the adaptivity metric is also modified to take into
account bounds upon the maximum and minimum element
size, maximum allowable aspect ratio, edge length grada-
tion, and number of elements. For more details see Pain et al.
(2001); Piggott et al. (2005, 2008b); Hiester et al. (2011) and
references therein.

The mesh is adapted at run time and the frequency with
which it adapts can also be specified. Here, we specify an
adapt frequency of 5 h. After an adapt the solution fields
must be interpolated from the pre- to post-adapt meshes. Two
methods are available: “linear-interpolation” and “bounded

Galerkin-projection” (Farrell et al., 2009). All prognostic
fields are interpolated, along with any diagnostic fields as
required. Three different interpolation methods were tested
in this work: linear interpolation, which is bounded but non-
conservative; Galerkin projection, which is conservative and
can be made bounded at the expense of a minimal amount
of diffusion (Farrell et al., 2009); and a mixture of the two,
in which Galerkin projection was used for biological trac-
ers, and linear interpolation was used for physical quantities.
It is anticipated that conservation of the integral of biologi-
cal quantities is crucial to obtaining a satisfactory solution,
but that the physical quantities – velocity, temperature and
salinity – only require linear interpolation (Hill et al., 2012).
As linear interpolation is less computationally demanding
than Galerkin projection, further savings in computational
cost over and above those obtained through those obtained
through the use of adaptivity can be gained using linear in-
terpolation where it is adequate.

The adaptivity metric used to alter the mesh is crucial to
obtaining an optimal simulation (Hiester et al., 2011). Here,
we test four different adaptivity metric formulations which
govern element sizes: PAR, Bio, Bio and Phys, and Phys.
These use the photosynthetic active radiation only (PAR),
biological fields and photosynthetic active radiation (Bio),
physical fields only (Phys) or a combination (Bio and Phys).
The same adaptivity metrics are used for all three test stations
as we are attempting to provide an adaptivity metric formu-
lation that works well in a variety of ocean settings and to
avoid “tweaking” of the adaptivity metric for a particular lo-
cation. The physical fields used are the density and velocity,
and the biological fields used are the nutrients and PAR. De-
tails of the fields used and the weighting of each field are
given in Table 1. It is important to note that Fluidity allows a
great deal of flexibility in choosing the adaptivity metric, un-
like in the previous studies described above. Here, we investi-
gate how the choice of which fields (physical and biological)
are included in the adaptivity metric affects a simulation. We
do not investigate the effects of changing the user-defined
weights ε; they are chosen to give a reasonable result and
may not be optimal. For the purposes of this paper ε being
sub-optimal is not critical. The weights were chosen based
on a preliminary parameter study and give a good compro-
mise between good results and minimal element numbers.

The aim of choosing these fields is to enable tracking of
the MLD variation on both a daily and seasonal level. This
will concentrate resolution only where changes of the above
quantities are large, minimising the number of elements else-
where. The physical fields chosen are density and velocity.
Density will show a steep vertical change at the base of the
mixed layer, whilst velocity varies strongly in the top few
metres of the water column. However, if winds strengthen,
more resolution will be added as the mixing deepens. The bi-
ological tracers chosen are the nutrients and PAR. Fluxes of
nutrients from depth are the main cause of plankton blooms
at both India and Bermuda. However, the nutrient high, and

www.ocean-sci.net/10/323/2014/ Ocean Sci., 10, 323–343, 2014
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Table 1. Weighting of fields used for each metric used in this study. A “–” indicates that this field was not used in the metric construction.
See Eq. (15).

Metric Nutrient (ε) (mmol m−3) PAR (ε) (W m−2) Velocity (ε) (m s−1) Density (ε) (kg m−3)

Bio 10.0 0.1 – –
Phys – – (0.1, 0.1, 10.0) 0.01
Bio and Phys 10.0 – (0.1, 0.1, 10.0) 0.01
PAR – 0.1 – –

hence phytoplankton high, may not be at the surface; this
is the case in Bermuda where there is a significant subsur-
face chlorophyll maximum. By resolving the nutrient fluxes
closely we aim to also then resolve the other biological trac-
ers as a consequence. In contrast, Station Papa shows only
weakly varying surface nutrient changes. However, the up-
ward flux of nutrients can lead to erroneous timings of the
spring bloom. Therefore, the base of the MLD shows a sub-
stantial vertical nutrient change and hence adding resolution
here should minimise spurious vertical numerical diffusivity.
PAR is important only in the top 100 m of the domain and
varies daily and hence adding this field to the adaptivity met-
ric will add extra resolution during daylight hours down to
the bottom of the photic zone.

To examine the effect of adaptive remeshing on biogeo-
chemical models we perform a number of experiments. For
each station we run fixed mesh simulations at different res-
olutions to examine the effects of vertical mesh resolution
on the biogeochemistry. We qualitatively compare the results
from the highest fixed-mesh resolution to available observa-
tions at each station. We then perform experiments varying
the adaptivity metric at each station and evaluate the results
compared to the highest resolution fixed-mesh simulation us-
ing the root mean square error of a number of fields to quan-
titatively evaluate the performance. Finally, we perform two
specific examples tracking other biological tracers to demon-
strate possible uses for the adaptive remeshing technology.

3 Model evaluation

We first examine a single fixed-mesh case for each station,
comparing them to available observational data from Kleypas
and Doney (2001) and Popova et al. (2006), before showing
that the simulated response depends on the model’s vertical
resolution.

Station Papa in the Northwest Pacific is an ideal testing
station for a 1-D simulation. There is little horizontal advec-
tion, and as such, Papa has been used to assess numerical
models (Denman and Miyake, 1973; Burchard and Bolding,
2001; Hill et al., 2012). Fluidity has also been previously
shown to work well at replicating the expected physics with
adaptive meshes here (Hill et al., 2012). Papa’s distinguish-
ing feature is that nutrients are not limited and hence sur-
face nutrients exhibit only a small seasonal variation. Surface
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Fig. 2. Summary of simulated physical and biological behaviour at
Station Papa for a uniform (2.5 m), non-adaptive simulation. From
top to bottom, panels show MLD, surface chlorophyll, integrated
primary productivity and surface nutrients. Where available, mea-
sured data are shown as green squares. Measured data are plotted
against day of year due to lack of data for some quantities.

values are those occurring on the uppermost element, which
should be the same throughout the MLD. The results of
the biogeochemical model show reasonable agreement with
measured data (Fig. 2), replicating the major features of
this station. The surface nutrients show the desired dip over
the summer months, though this is not quite as pronounced
as the observed data. The surface chlorophyll shows good
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Fig. 3. Summary of simulated physical and biological behaviour at
Bermuda for a uniform (2.5 m), non-adaptive simulation. From top
to bottom, panels show MLD, surface chlorophyll, averaged pri-
mary productivity and surface nutrients. Where available, measured
data are shown as green squares. Measured data are plotted against
day of year due to lack of data for some quantities.

agreement to observed data, as does the integrated primary
production (note: this is integrated over the mixed layer).

The model result at Bermuda, unlike Papa, shows some
differences to the measured data (Fig. 3). The surface nutrient
shows the observed nutrient-limited behaviour, but the limit-
ing of nutrients occurs too early in the year. The third win-
ter (days 700–900) shows a marked deepening of the mixed
layer. This is due to surface forcing particular to that year,
and longer simulations (not shown) show a return to the more
normal behaviour seen in years one and two. Surface chloro-
phyll values lie on the upper limit of observed data, with a
small peak in the spring. The primary production (note: aver-
aged over MLD) is around a factor of two too low. However,
given that we are simulating an isolated 1-D column, without
any horizontal transport of quantities in or out of the domain,
we believe this is a reasonable result. There is a substantial
subsurface chlorophyll maximum (Fig. 4) as has been shown
in measured observation and it is of similar magnitude to that

Fig. 4. Time–depth plot of chlorophyll at Bermuda, showing the
clear subsurface chlorophyll maxima.

obtained in previous modelling studies (e.g. Anderson and
Pondaven, 2003).

Unlike for the previous stations there is a lack of MLD
data for Station India. However, the model again gives a suf-
ficiently good match to available data, although with larger
discrepancies compared to other stations (Fig. 5). The spring
bloom (as shown by the surface chlorophyll) happens around
30 days early, with a peak that is perhaps a factor of four too
high. Similarly, the integrated primary production (note: in-
tegrated over the mixed layer) shows a peak of around 2–3
times the observed value at the same time. However, the val-
ues during the rest of the year lie around the lower limit of
observed data. Surface nutrients show reasonable agreement
with the timing of the spring decrease, but the level is perhaps
a factor of two too high during the summer months.

3.1 Resolution dependence

For all stations we have run the simulations on a number of
fixed meshes, varying the vertical resolution between 20 m
and 2.5 m. We use the highest resolution (2.5 m) fixed-mesh
simulation as “truth” when assessing the performance of the
adaptive mesh simulations. In addition, we use qualitative
comparisons to observational data at each station to ensure
that the model performs as expected, given the lack of hori-
zontal dynamics.

A standard root mean square (rms) error was used to assess
model performance. The rms error is calculated as

ǫrms =

√

√

√

√

√

n
∑

i=1
(xi − yi)

2

n
, (16)

where xi is the quantity being assessed in the high-resolution
simulation and yi is the value of the quantity produced by
the simulation being considered. All simulations were run
for three years. Output for all runs was produced every 12 h,
giving n = 2190. For each field of interest a separate ǫrms is
calculated, giving ǫMLD for the MLD. For biological quanti-
ties the L2norm of the water column was used, giving ǫN for
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Fig. 5. Summary of simulated physical and biological behaviour at
Station India for a uniform (2.5 m), non-adaptive simulation. From
top to bottom, panels show MLD, surface chlorophyll, integrated
primary productivity and surface nutrients. Where available, mea-
sured data are shown as green squares. Measured data are plotted
against day of year due to lack of data for some quantities.

nutrients, ǫP for primary productivity, ǫC for chlorophyll and
ǫZ for zooplankton. Here, the L2norm is defined as

L2norm =

√

√

√

√

√

n
∫

0

|S|2dV , (17)

where V is the volume of the domain and S is the scalar field
in question.

Figures 6–8 show a single year (year 2 of the 3-year sim-
ulation to allow for model spin-up) for each station. For Sta-
tion Papa (Fig. 6) there is a noticeable difference in MLD be-
haviour with higher resolutions showing deeper winter mix-
ing. This in turn affects the upward mixing of nutrients,
which show a marked jump when resolution is refined from
10 to 5 m. Both 5 and 2.5 m resolutions show broadly sim-
ilar patterns. The difference in upward mixing of nutrients
then affects the primary productivity, and surface chlorophyll
shows a difference in peak surface chlorophyll of around
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Fig. 6. Summary of simulated physical and biological behaviour at
Station Papa using uniform meshes at a number of resolutions. From
top to bottom, panels show MLD, surface chlorophyll, integrated
primary productivity and surface nutrients.

20 days. Bermuda shows a similar pattern (Fig. 7) with in-
creased resolution producing higher peak nutrients due to in-
creased upmixing, which in turn leads to increased surface
chlorophyll. Finally, Station India (Fig. 8) shows a marked
increase in primary productivity within the MLD, which is
doubled when resolution is refined from 20 to 2.5 m. The
surface nutrient data show little difference with resolution,
so a sensible interpretation is that this is due to the slight
increase in summer MLD depths with increased resolution.
It is therefore clear that all stations show a response to ver-
tical resolution which is the result of a complex interaction
between the mixing caused by the vertical turbulence model
and the biological sources and sinks.

Resolution dependence can also be seen in vertical pro-
files. Chlorophyll vertical profiles were taken at day 547
(mid-summer of the second year) and day 730 (mid-winter
at the end of the second year) (Fig. 9). Each station shows
a change in the simulated value with increasing resolu-
tion. This is perhaps most pronounced at Station Papa dur-
ing the winter, where the MLD increases from around 100
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Table 2. The rms error, ǫ, of fixed-mesh simulations compared to the simulation with 2.5 m vertical resolution at Station Papa. ǫ is shown
for MLD, and the L2norm of nutrient, primary productivity, chlorophyll and zooplankton. See Fig. 6 also.

Res (m) ǫMLD (m) ǫN (mmol m−3) ǫP (mmol m−3) ǫC (mmol m−3) ǫZ (mmol m−3) No. elements

5 m 5.244 0.119 0.098 0.0095 0.0045 1200
10 m 10.640 0.506 0.342 0.0445 0.0169 600
20 m 16.521 0.421 0.628 0.0486 0.0283 300

Table 3. The rms error, ǫ, of fixed-mesh simulations compared to the simulation with 2.5 m vertical resolution at Bermuda. ǫ is shown for
MLD, and the L2norm of nutrient, primary productivity, chlorophyll and zooplankton. See Fig. 7 also.

Res (m) ǫMLD (m) ǫN (mmol m−3) ǫP (mmol m−3) ǫC (mmol m−3) ǫZ (mmol m−3) No. elements

5 m 7.079 0.408 0.140 0.0129 0.0113 1200
10 m 12.630 0.402 0.149 0.0160 0.0236 600
20 m 18.710 0.397 0.226 0.0285 0.0410 300
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Fig. 7. Summary of simulated physical and biological behaviour at
Bermuda using uniform meshes at a number of resolutions. From
top to bottom, panels show MLD, surface chlorophyll, MLD aver-
aged primary productivity and surface nutrients.
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Fig. 8. Summary of simulated physical and biological behaviour
at Station India using uniform meshes at a number of resolutions.
From top to bottom, panels show MLD, surface chlorophyll, inte-
grated primary productivity and surface nutrients.
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Table 4. The rms error, ǫ, of fixed-mesh simulations compared to the simulation with 2.5 m vertical resolution at Station India. ǫ is shown
for MLD, and the L2norm of nutrient, primary productivity, chlorophyll and zooplankton. See Fig. 8 also.

Res (m) ǫMLD (m) ǫN (mmol m−3) ǫP (mmol m−3) ǫC (mmol m−3) ǫZ (mmol m−3) No. elements

5 m 137.03 1.04 303.258 1.538 0.222 2400
10 m 138.18 1.21 357.834 1.770 0.247 1200
20 m 142.71 1.50 455.565 1.992 0.264 600

to nearly 120 m when resolution is increased from 20 to
2.5 m. Bermuda shows a decrease of both winter and summer
subsurface chlorophyll maxima with increasing resolution.
These vertical profiles show that the model is numerically
stable, producing adequate results at even low resolution, but
that vertical resolution does affect the profile simulated.

The response to resolution can be examined more quan-
titatively using a simple convergence test. Although conver-
gence is non-trivial for nonlinear dynamics (Hill et al., 2012),
a decrease in error should be seen with increasing vertical
resolution. For all stations there is clear convergence (a de-
crease in error) for the MLD (Tables 2–4). Ideally, for the
set-up described previously, this should be at least first-order
convergence. Both Bermuda and Station Papa show this be-
haviour but Station India does not (though there is still a de-
crease in error with increasing resolution). However, for most
variables there is a decrease in the error measure compared
to the highest resolution simulations at each station.

The surface nutrients error stays approximately constant
at both Bermuda and Station India (Tables 3 and 4). Despite
these exceptions there is a clear dependence on resolution,
with higher resolutions generally matching the highest reso-
lution simulation with higher accuracy. At Papa, all biologi-
cal quantities bar nutrients show a general convergence in er-
ror as resolution is increased (Table 2). The error at 10 m ver-
tical resolution appears to be double that expected, but there
is a convergence in error from 10 to 5 m. Bermuda shows
clear first-order convergence of MLDs and zooplankton; and
less certain convergence of chlorophyll (Table 3). Surface nu-
trient error appears to be constant, as does primary produc-
tivity (average over the MLD). Finally, Station India shows
a general convergence with increasing resolution for all bio-
logical quantities, though not at first order (Table 4).

From these results we can see that there is a general de-
crease in error to the highest resolution run with increasing
resolution. Therefore, using vertical adaptivity should allow
a minimisation in the number of elements within the compu-
tational mesh whilst ensuring that error does not increase to
an unreasonable level.

4 Adaptivity

We have carried out the same simulations as above using an
adaptive mesh guided by a variety of different adaptivity met-
rics and, in addition, we have tested different interpolation

Fig. 9. Vertical profiles of chlorophyll at (A) Station Papa,
(B) Bermuda and (C) Station India over the top 150, 150 and 200 m
respectively using uniform meshes at a number of resolutions. The
left-hand column shows the profile in summer (day 182) and the
right-hand column shows the profile in winter (day 365). There are
changes in values at key depths of up to 15 % depending on the
vertical resolution used.
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Fig. 10. Representation of the meshes obtained via adaptivity for all stations using the bio and phys metric. A dot is placed on each vertex
in the mesh and this is repeated for each output time. Clustering of vertices therefore indicate higher resolution. Station Papa (A) shows
reduced resolution under the mixed layer during summer, but high resolution persists for some distance below the mixed layer. Bermuda (B)

shows substantial reduction of resolution below the mixed layer, but with the minimum resolution being maintained during the summer in
the upper layers. Similarly, India (C) tracks the MLD, with decreased resolution within the mixed layer, whilst maintaining good resolution
in the upper portion of the water column. Gradients in density mean that high-resolution zones are maintained at Station Papa (D) at up to
800 m depth.

methods at Station Papa. For simplicity, simulations at the
three test station used the same adaptivity settings. Adaptiv-
ity was performed every 5 h. This allows changes in ocean
surface forcing (which has a temporal frequency of 6 h) to
be captured, along with diurnal fluctuations. Over a 3-year
simulation a total of 5256 adapts are thus performed. This is
a large number and therefore any additional numerical diffu-
sivity or noise derived from adapting the mesh will be evident
in the final simulation results when compared to the fixed-
mesh simulations. The minimum and maximum edge lengths
permitted are set to 5 and 50 m respectively. We therefore
hope to find that the adaptive simulations are equivalent to
the 5 m fixed resolution simulations, but use substantially
fewer elements.

The adaptive algorithm was performed on a single vertical
column of mesh vertices and the position of these were repli-
cated to the other three columns. In this way we obtained a
layered mesh, with vertical resolution of the layers varying
according to the chosen adaptivity metric and the simulated
state at the time of the adapt. Apart from the adaptive mesh,
the simulations were completely identical to the fixed-mesh
simulations.

The meshes produced by the adaptive algorithm showed
broadly similar features between different adaptivity metrics
for each particular site (Fig. 10). Comparing those produced
by the adaptivity metric using both the biological and physi-
cal fields shows the mesh tracking the behaviour of the MLD.

In addition, high resolution is maintained in the photic layer,
but reduces with the mixed layer when the MLD increases
substantially.

4.1 Effect of interpolation method

The tests at Station Papa (Fig. 11) show that Galerkin projec-
tion for all fields gives the best result for both physical be-
haviour (MLD) and biological quantities. In particular, there
is a significant surface nutrient drift when using linear inter-
polation, and less so when using a mixed formulation. The
effect is clear by day 1000, where surface nutrients are 25 %
higher when using a mixed formulation and over 50 % higher
than the fixed-mesh simulation when using linear only. The
cause of this drift is additional numerical diffusion due to
the linear interpolation in the physical fields (mixed and
linear only) and lack of conservation (linear only). Using
Galerkin projection on both physical and biological fields
gives a result that is almost identical to the fixed-mesh simu-
lation. The MLD behaviour changes in response to the inter-
polation method used, with a marked shoaling of the MLD
around day 800 when using linear or mixed interpolation.
The mixed interpolation formulation performed only slightly
better in this regard and using Galerkin projection on the
turbulent parameterisation quantities only improved the so-
lution slightly (results not shown). These results contrast to
those presented by Hill et al. (2012), where linear interpola-
tion was used and adaptivity performed well at Station Papa.
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Table 5. The rms error, ǫ, of adaptive mesh simulations compared to the simulation with 2.5 m vertical resolution at Station Papa. ǫ is shown
for MLD, and the L2norm of nutrient, primary productivity, chlorophyll and zooplankton. See Fig. 6 also.

Res (m) ǫMLD (m) ǫN (mmol m−3) ǫP (mmol m−3) ǫC (mmol m−3) ǫZ (mmol m−3) No. elements (Mean, min, max)

5 m 5.244 0.119 0.0986 0.0095 0.0045 1200

Bio and Phys 4.769 0.053 0.385 0.0038 0.0020 458.5, 372, 558
Bio Only 14.211 0.589 0.529 0.0426 0.0300 386.1, 336, 450
Phys Only 4.837 0.070 0.398 0.0034 0.0021 310.1, 240, 408
PAR 23.324 2.664 0.592 0.0790 0.0330 612.2, 532, 660
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Fig. 11. Summary of simulation results from Station Papa compar-
ing the fixed high-resolution (2.5 m) simulation with adaptive sim-
ulation using different interpolation methods between meshes. Lin-
ear and mixed perform poorly, inducing extra vertical diffusivity,
compared to Galerkin projection. Panels and data are the same as in
Fig. 6.

However, here we have added the additional term to simu-
late internal wave breaking (Eq. 13) and the adaptivity met-
ric in Hill et al. (2012) was tuned to Station Papa only, with
a lower minimum edge length. It is also worth noting that the
temperature and salinity fields showed little or no difference
between the fixed and adaptive simulations as was shown in
Hill et al. (2012); it is the biological tracers that highlight un-
desired behaviour, i.e. upward fluxing of tracers, of the adap-
tive runs. Galerkin projection is therefore used for all subse-
quent adaptive simulations.
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Fig. 12. Summary of results comparing different adaptivity metrics
against measured data and the high-resolution (2.5 m) fixed-mesh
simulation for Station Papa.

4.2 Station Papa

All adaptive simulations at Station Papa completed success-
fully and produced results that are a reasonable fit to mea-
sured data (Fig. 12). Using an adaptivity metric formed of
physical or physical and biological quantities produces re-
sults that are not significantly different from that of the uni-
form 5 m resolution simulation (Table 5). All tracers give
similar or better results than the 5 m fixed simulation, though
given the lack of convergence shown in some of these quan-
tities some caution must be used in interpreting these val-
ues. It is clear that using only biology or just PAR to form
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Table 6. The rms error, ǫ, of adaptive mesh simulations compared to the simulation with 2.5 m vertical resolution at Bermuda. ǫ is shown
for MLD, and the L2norm of nutrient, primary productivity, chlorophyll and zooplankton. Note that the PAR and Bio only simulations failed
and recorded no result. See Fig. 7 also.

Res (m) ǫMLD (m) ǫN (mmol m−3) ǫP (mmol m−3) ǫC (mmol m−3) ǫZ (mmol m−3) No. elements (Mean, min, max)

5 m 7.079 0.408 0.140 0.0129 0.0113 1200

Bio and Phys 7.309 0.407 0.598 0.0084 0.0096 310.3, 264, 444
Phys Only 8.432 0.408 0.615 0.0076 0.0082 228.3, 174, 436

Table 7. The rms error, ǫ, of adaptive mesh simulations compared to the simulation with 2.5 m vertical resolution at Station India. ǫ is shown
for MLD, and the L2norm of nutrient, primary productivity, chlorophyll and zooplankton. See Fig. 8 also.

Res (m) ǫMLD (m) ǫN (mmol m−3) ǫP (mmol m−3) ǫC (mmol m−3) ǫZ (mmol m−3) No. elements (Mean, min, max)

5 m 137.03 1.04 303.258 1.538 0.222 2400

Bio and Phys 141.98 1.12 356.798 1.668 0.236 287.74, 150.0, 456.0
Bio Only 112.72 1.12 324.777 1.052 0.097 220.63, 120.0, 360.0
Phys Only 141.30 1.08 344.102 1.683 0.237 249.53, 150.0, 414.0
PAR 131.84 1.17 677.312 1.920 0.245 120.00, 120.0, 121.0

the adaptivity metric is not adequate at this location as the
values of the rms errors, ǫ, for all tracers are substantially
larger, apart from primary productivity, which has already
been identified as potentially problematic in use as an assess-
ment of performance.

4.3 Bermuda

Not all adaptive simulations were effective at Bermuda. Us-
ing either PAR or biology only to form the adaptivity met-
ric results in simulations failing with a solver error soon af-
ter the first or second adapt. This is attributed to insufficient
mesh resolution to ensure stability for the GLS turbulence
parameterisations. Unlike Station Papa, the MLD is well be-
low the photic zone in the initial stages of the simulation.
However, both simulations using either physics only or biol-
ogy and physics performed well. Both gave similar results,
quantitatively (Table 6) and qualitatively (Fig. 13). The two
adaptivity metrics also gave lower values of ǫC and ǫZ, but, as
with Station Papa, these values should interpreted with some
caution.

4.4 Station India

All adaptive simulations produced good results at Station In-
dia when compared to the high-resolution fixed-mesh reso-
lution regardless of adaptivity metric used (Table 7, Fig. 14).
Minor differences in the timing of the spring bloom occurred
with the biology-only adaptivity metric occurring some 25
days later than the fixed-mesh simulation. The biology-only
adaptivity metric also showed an increase in the number of
shoaling excursions in the spring. These did not occur when
using other adaptivity metrics or in the fixed-mesh simula-
tions. There are also minor differences in the magnitude of

the integrated primary productivity, but these variations are
much lower than those observed when changing resolution
in the fixed-mesh simulations (Figs. 8).

4.5 Summary of adaptive results

Adaptive remeshing can clearly be successfully applied at
the three ocean stations successfully using a variety of adap-
tivity metrics. Some adaptivity metric/station combinations
perform better than others. As well as reproducing the sur-
face values (i.e. at depth z = 0) and the MLD the adaptive
simulations also reproduce the vertical profiles of biologi-
cal parameters (see Fig. 15 for chlorophyll and compare to
Fig. 9).

The effect of adaptivity is clearly seen in the meshes pro-
duced by the simulations (Fig. 10). All stations show much
higher resolution around the MLD, as expected, with de-
creased resolution when the MLD is deep (for example at
Station India). The meshes contain far fewer elements than
the high-resolution fixed-mesh simulations and are therefore
more computationally efficient.

For all stations it is important to include velocity and den-
sity in the adaptivity metric (labelled as “physics” in all fig-
ures) and the inclusion of nutrients appears to be only of
minor importance. However, using nutrients only or PAR
can lead to a numerically unstable simulations and more-
over, when the simulation is numerically stable, it gives
much larger errors than the adaptivity metrics that include
the physics. The simulated physics drives the biology and it
is therefore crucial to include measures of the physical sys-
tem in the adaptivity metric to correctly simulate the physical
behaviour of the system. The physical measures used here
are the vertical changes in velocity and density. However,
turbulent kinetic energy, temperature or salinity may also be
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Fig. 13. Summary of results comparing different adaptivity metrics
against measured data and the high-resolution (2.5 m) fixed-mesh
simulation at Bermuda. Note that the simulations using PAR and
biology only failed after only a few adapts.

sensible choices (Hill et al., 2012). Accounting for physical
behaviour in the adaptivity metric appears to be sufficient for
a successful simulation of biological behaviour. However, if
the physical properties are well simulated then the biologi-
cal processes do not necessarily also need including in the
adaptivity metric in order to achieve a reasonable output.

5 Specific adaptive examples

One of the primary advantages of the approach outlined
above is that the adaptivity metric used to calculate the mesh
edge length can be composed of any simulated or diagnosed
fields. We show the potential of that method here by simulat-
ing Bermuda with a adaptivity metric focusing on chloro-
phyll, and Station Papa concentrating on sinking detritus.
These simulations show how the mesh is able to adapt to the
particulars of the simulation, tracking transient behaviour but
with a lower computational overhead than a high-resolution
fixed-mesh simulation.
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Fig. 14. Summary of results comparing different adaptivity metrics
against measured data and the high-resolution (2.5 m) fixed-mesh
simulation for Station India.

The first experiment attempts to track falling detritus in
the Station Papa case. The detritus field is added to the adap-
tivity metric. The result, compared to the previous adaptive
simulation using only nutrients, velocity and density in the
adaptivity metric, shows a considerable change in the detri-
tus concentration at depth (Fig. 16). In the original adaptive
simulation, the detritus field is smoothed out at depths of over
300 m as the resolution here is relatively coarse. The effect of
adding detritus to the adaptivity metric is as expected – the
field maintains the sharp boundaries as it sinks, replicating
the highest resolution fixed-mesh simulation. This is clearly
seen in the resulting computational mesh (Fig. 17). In ad-
dition, we have carried out the same simulation based on a
fixed mesh with decreasing resolution with increasing depth,
as is typical in current ocean models. In this case we used
the resolution change specified by the NEMO model (Madec,
2008) where resolution varies from 3 m at the surface to 100
by 1000 m depth. The results show increased diffusion of de-
tritus by 100 m depth and by 700 m depth all detail in the
detrital pulse is lost.
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Fig. 15. Vertical profiles of chlorophyll at (A) Station Papa,
(B) Bermuda and (C) Station India over the top 150 m, 150 m and
200 m respectively comparing the performance of different adaptiv-
ity metrics. The left-hand column shows the profile in summer (day
182) and the right-hand column shows the profile in winter (day
365). Note that all metrics, bar biology only, show similar results.

A similar result is seen at Bermuda where chlorophyll is
added to the adaptivity metric. Here, we see that the subsur-
face chlorophyll maximum is maintained correctly (Fig. 18),
whereas in the previous adaptive simulation the simulated
value is lower around day 130 than for the fixed-mesh sim-
ulation. This is not the case when chlorophyll is added to
the adaptivity metric. The simulation using a typical ocean
model vertical resolution shows a lower chlorophyll peak
(day 100) and a slightly reduced subsurface chlorophyll
maximum throughout the summer compared to the high-
resolution simulation. The effect of adding chlorophyll to the
adaptivity metric can be seen in the resulting mesh (Fig. 17).

For both simulations there is, of course, an increase in
the number of elements used compared to the original adap-
tive simulations, but the average number of elements is still
much lower than the high-resolution fixed-mesh simulation,
and accordingly, the run times are much lower. The Bermuda
simulation used an average of 437 elements (576 maximum,
301 minimum). Compared to a fixed mesh of uniform reso-
lution 2.5 m (2400 elements) this is a fivefold reduction in el-
ements on average. The simulation based on a typical ocean
model vertical resolution uses 216 elements at the coast of
reduced resolution of the chlorophyll maximum. Similarly,
simulating detritus at Station Papa used an average of 726 el-
ements (507 minimum, 1120 maximum), compared to 2400
elements used in the 2.5 m fixed mesh simulation – a three-
fold reduction. The simulation using typical ocean model
vertical resolution uses 216 elements (as at Bermuda) and
is clearly incapable of accurately resolving sinking detritus.

6 Conclusions

This work has shown that the Fluidity model can success-
fully replicate expected biogeochemical behaviour at three
key ocean stations. Both fixed and adaptive mesh simulations
show very similar behaviour, but adaptive remeshing requires
careful consideration of the adaptivity metric used. The phys-
ical quantities must be included in this adaptivity metric, and
if the physical properties are well simulated then biological
tracers do not necessarily need including in the adaptivity
metric for reasonable output. This is consistent with a num-
ber of other studies where physical processes are the domi-
nate control of ocean biogeochemical models (Berline et al.,
2007). It is important to note that we have not shown an
increase in model skill with either increasing resolution of
when using adaptive meshes. We have, however, attempted to
demonstrate numerical convergence of the biological model
with increasing resolution.

It has been shown that a key component of successful
adaptive simulation is to conservatively interpolate fields be-
tween the previous and new mesh following an adapt when
using mesh hr-adaptivity. This is likely due to a change in
mesh topology inducing spurious numerical diffusion and
non-conservative methods are not suitable for biological trac-
ers as conservation is important. The requirement of us-
ing conservative interpolation is likely down to topological
changes to the mesh. Other adaptive mesh techniques such as
mesh movement or p adaptivity (where the order of the func-
tion space is altered) may not have such requirements. There
is already work exploring the effectiveness of higher-order
discretisations with biogeochemical models (Ueckermann
and Lermusiaux, 2010). The work presented here will be a
useful guide to future efforts in this area. In addition, we also
found that for this quasi-1-D domain each column of vertices
in the domain must be identical, such that there are no hor-
izontal gradients. Fluidity currently uses a columnar mesh
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Fig. 16. Time–depth plot of detritus at Station Papa from the original adaptive mesh simulation (A), the adaptive run with detritus included
in the metric (B), the high-resolution fixed-mesh simulation (C), and (D) the same simulation using decreasing resolution with increasing
depth. Including detritus in the adaptive metric increases the performance of the model at tracking detritus to depth, resolving detail in the
timing and level of detrital pulses. Note that (D) smooths those events into a single unresolved event by day 300.
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in the vertical for large-scale ocean models (Piggott et al.,
2008a) and is similar to the method used by Hofmeister et al.
(2010). The work here is therefore compatible with how Flu-
idity will simulate global- or regional-scale models, using an
unstructured horizontal mesh, with each vertical column then
being extruded to the required depth. However, each column
contains a different number of nodes in these cases which
may induce additional vertical diffusivity due to horizontal
gradients in the mesh. More work is required to ascertain if
this effect is present in such simulations.

Ocean biogeochemical numerical models may require
high numerical resolution in order to simulate measured data
accurately (Oschlies, 2002). In addition, ocean biogeochem-
ical models show sensitivity to a number of factors, such
as light spectra (Kettle and Merchant, 2008) and surface
fluxes (Friedrichs et al., 2006), but the main sensitivity is
to the representation of the physics controlling the biology
(e.g. Berline et al., 2007). A key part of this physical repre-
sentation is the vertical advection and MLD behaviour. Re-
gardless of whether a high horizontal resolution or adaptive
horizontal meshes are used, the vertical resolution does not
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Fig. 18. Difference plots of chlorophyll at Bermuda comparing adaptive simulations (A and B) and a fixed, but varying resolution mesh (C)

to the highest resolution (2.5 m) uniform mesh simulation (D). A clear improvement can be made in the subsurface chlorophyll maximum
representation by adding chlorophyll to the adaptivity metric. (A) The original adaptive mesh simulation shows larger discrepancies around
the subsurface maximum (B). Using fixed variable resolution as in other ocean models shows clear discrepancies in the spring and throughout
the summer (C).

need to be constant for each spatial location. Instead, as is
shown here, the resolution only needs to be placed at key
locations in the vertical. Enabling higher resolution around
the MLD and within the upper layers of the ocean is suffi-
cient for replicating high-resolution fixed-mesh simulations,
hence adaptive remeshing may be advantageous. However,
note that we have kept other parameters that may depend on
resolution constant, including the biogeochemical model pa-
rameters. The turbulence parameterisation is not resolution
dependant provided the model does not attempt to resolve the
turbulent scales included in the parameterisation. This is the
case here. For the stations simulated here , using the normal

ocean model vertical resolution where resolution decreases
with depth is sufficient to obtain a reasonable solution. How-
ever, mesh adaptivity also has another powerful feature: ad-
ditions to the adaptivity metric of other fields allows for the
tracking of transient features and of other fields, such as de-
tritus or chlorophyll. This is a powerful tool in tracking fea-
tures of interest whilst minimising the number of elements in
the computational mesh.

In summary, adaptive remeshing shows good potential to
reduce the number of required elements in the computational
mesh whilst maintaining, or even increasing, the accuracy of
vertical processes, but only where and when it is required.
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Appendix A

Biology model

As stated in the main body of the text, the biogeochemical
model used in this report was based on that of Popova et al.
(2006). Note, however, that the equations here are continu-
ous for all depths, which was not true in Popova et al. (2006)
where different source terms where used below the photic
zone. The model parameters have also been fitted to match
the data at all three test sites. The six components of the
model are: nutrients (ammonium and nitrate), phytoplankton,
chlorophyll, zooplankton and detritus.

A1 Biological source terms

The source terms for phytoplankton (P), chlorophyll (Chl),
zooplankton (Z), nitrate (N), ammonium (A) and detritus (D)
respectively are given by the following expressions:

SP = PJ (QN + QA) − GP − DeP, (A1)

SChl = (RP · J · (QN + QA) · P

+ (−GP − DeP)) · θ/ζ ), (A2)

SZ = δ · (βP · GP + βD · GD) − DeZ, (A3)

SN = −J · P · QN + DeA, (A4)

SA = −J · P · QA + DeD + (1 − δ) · (βP · GP

+ βD · GD) + (1 − γ ) · DeZ − DeA, (A5)

SD = −DeD + DeP + γ · DeZ

+ (1 − βP) · GP − βD · GD. (A6)

The terms in these equations are given in Table A1.
Note that unlike the model of Popova et al. (2006) we use

a continuous model, with no change of equations (bar one
exception) above or below the photic zone. For our purposes,
the photic zone is defined as 100 m water depth. First we
calculate θ :

θ =
Chl

Pζ
. (A7)

However, at low light levels, Chl might be zero, there-
fore we take the limit that θ → ζ at low levels (1 × 10−7)
of chlorophyll or phytoplankton.

We then calculate α:

α = αcθ (A8)

using the PAR available at each vertex of the mesh the light-
limited phytoplankton growth rate, J , is then calculated:

J =
vαIn

√

v2 + α2 + I 2
n

. (A9)

This can be used to calculate the limiting factors on nitrate
and ammonium:

QN =
Nexp−9A

KN + N
, (A10)

QA =
A

KA + A
(A11)

From these the diagnostic field, primary production (XP),
can be calculated:

XP = J (QN + QA)P. (A12)

The chlorophyll growth scaling factor is given by

RP = QNQA

(

θm

θ

)

(

v
√

v2 + α2 + I 2
n

)

. (A13)

The zooplankton grazing terms are now calculated:

GP =
gpPP2Z

ǫ +
(

pPP2 + pDD2
) , (A14)

GD =
gpDD2 · Z

ǫ +
(

pPP2 + pDD2
) . (A15)

Finally, the four death rates and re-mineralisation rates are
calculated:

DeP =
µpP2

P + kp

+ λbio · P, (A16)

DeZ =
µzZ3

Z + kz

+ λbio · Z, (A17)

DeD = µDD + λbio · P + λbio · Z, (A18)

DeA = λAA where z < 100. (A19)

A2 Photosynthetically active radiation (PAR)

The photosynthetically active radiation, or PAR is calculated
by

PAR = (Awater + APP)I, (A20)

where Awater and AP are the absorption rates of photosynthet-
ically active radiation by water and phytoplankton respec-
tively.

A3 Detritus sinking velocity

Detritus is assumed to be denser than water and so sinks
slowly through the water column. This is modelled by modi-
fying the advecting velocity in the advection–diffusion equa-
tion for detritus by subtracting a sinking velocity usink from
the vertical component of the advecting velocity.
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Table A1. Symbols used to describe the six-component NPZD model. Typical values are provided for externally set parameters.

Symbol Meaning Typical value Equation

α initial slope of P –I curve in (W m−2)−1 day−1 Eq. (A8)
αc Chl-a specific initial slope of P − I curve 2 gC gChl−1(W m−2)−1 day−1

βP,βD assimilation coefficients of zooplankton 0.75
DeD rate of breakdown of detritus to ammonium Eq. (A18)
DeP rate of phytoplankton natural mortality Eq. (A16)
DeZ rate of zooplankton natural mortality Eq. (A17)
DeA ammonium nitrification rate Eq. (A19)
δ excretion parameter 0.7
ǫ grazing parameter relating capture of prey items to prey density 0.4
GP rate of zooplankton grazing on phytoplankton Eq. (A14)
GD rate of zooplankton grazing on detritus Eq. (A15)
g zooplankton maximum growth rate 1.3 day−1

γ fraction of zooplankton mortality going to detritus 0.5
I0 photosynthetically active radiation (PAR) immediately below

surface of water. Assumed to be 0.43 of the surface radiation
J light-limited phytoplankton growth rate in day−1 Eq. (A9)
kA half-saturation constant for ammonium uptake 0.5 mmol m−3

kN half-saturation constant for nitrate uptake 0.5 mmol m−3

kP half-saturation constant for phytoplankton mortality 1 mmol m−3

kZ half-saturation constant for zooplankton mortality 3 mmol m−3

kw light attenuation due to water 0.04 m−1

kc light attenuation due to phytoplankton 0.03 m2 mmol−1

λbio rate of the phytoplankton and zooplankton transfer into detritus 0.05 day−1

λA nitrification rate 0.03 day−1

µP phytoplankton mortality rate 0.05 day−1

µZ zooplankton mortality rate 0.2 day−1

µD detritus reference mineralisation rate 0.05 day−1

9 strength of ammonium inhibition of nitrate uptake 2.9 (mmol m−3)−1

pP relative grazing preference for phytoplankton 0.75
pD relative grazing preference for detritus 0.25
QN non-dimensional nitrate limiting factor Eq. (A10)
QA non-dimensional ammonium limiting factor Eq. (A11)
RP Chl growth scaling factor Eq. (A13)
v Maximum phytoplankton growth rate 1 day−1

wg detritus sinking velocity 10 m day−1

z depth
θ Chl to carbon ratio in mgChl mgC−1

θm maximum Chl to carbon ratio 0.05 mg Chl mgC−1

ζ conversion factor from gC to mmolN based on C : N ratio of 6.5 0.0128 mmolN ngC−1
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