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Efficient Downlink Channel Estimation Scheme

Based on Block-Structured Compressive Sensing for

TDD Massive MU-MIMO Systems
Yang Nan, Li Zhang, and Xin Sun

Abstract—In this letter, an efficient channel estimation ap-
proach based on the emerging block-structured compressive
sensing is proposed for the downlink massive multiuser (MU)
MIMO system. By exploiting the channel properties of block
sparsity and channel reciprocity in TDD mode, the auxiliary
information based block subspace pursuit (ABSP) algorithm is
proposed to recover the downlink channels, where the path
delays acquired from uplink training is utilized as the auxiliary
information. Unlike traditional approaches where the channel
estimation overhead is proportional to the number of BS anten-
nas, the proposed approach could provide an accurate channel
estimation approaching the performance bound while reduce the
pilot overhead by nearly one-third.

Index Terms—Massive MU-MIMO, channel estimaion, block
compressive sensing.

I. INTRODUCTION

As a promising technology for future communication sys-

tems, massive multiuser (MU) multiple-input multiple-output

(MIMO) has received more and more attentions [1]. Similar

with classical MIMO system, one massive MU-MIMO base

station (BS) with lots of antennas serves many single antenna

user terminals (UTs) simultaneously. Such that, the spectrum

efficiency and data rates could be substantially increased.

However, to implement this technique in practice, there are

still many issues that need to be properly addressed. For

example, the exact channel state information (CSI) is crucial

to the massive MU-MIMO system, since it has significant

impact on the accuracy of signal detection. As the number

of BS antennas increases, the acquisition of CSI becomes

challenging due to the large channel matrix that has to be

estimated. The downlink channel estimation is even more

difficult since the time required to transmit downlink pilot

symbols is proportional to the number of antennas at the BS

side, which is unaffordable in a massive MIMO system. For

this reason, most of the researches avoid the downlink channel

estimation and prefer the time division duplexing (TDD) in

massive MIMO systems, owing to the channel reciprocity

whereby the UTs could use the CSIs estimated from uplink

training directly. However, the uplink CSIs could be inaccurate

or even outdated for the downlink in fast time-varying channel
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conditions, which will consequentially lead to performance

deterioration.

Recently, some researches become aware of this issue. In

[2], the authors propose a channel reciprocity based beamform-

ing training scheme which utilizes the precoded sequence to

estimate the effective channel. However, this scheme is not

reliable enough since it overly depends on the uplink training.

In order to efficiently estimate the downlink channel in massive

MIMO systems, the authors in [3] propose a compressive

sensing (CS) based channel estimation scheme. However, this

scheme only considers systems in frequency division duplex-

ing (FDD) mode. To the authors’ best knowledge, the pilot

based downlink channel estimation has not been considered

in TDD massive MIMO systems.

In this letter, we propose an efficient channel estimation

approach under the framework of block-structured CS. This

work is inspired by the recently proposed idea of common

support in sparse channels [5], whereby the channel impulse

response (CIR) between different transmit and receive antenna

pairs exhibits sparse block structure. In addition, channel

reciprocity in TDD mode enables us to use the path delays

estimated from uplink training as an auxiliary information

to improve the channel estimation performance in downlink.

Therefore, we propose the Auxiliary information based Block

Subspace Pursuit (ABSP) method which could acquire the

channel parameters with only few pilots1. Compared with con-

ventional CS based channel estimation methods, the proposed

method could reduce the computational complexity and pilot

overhead significantly while providing superior mean square

error (MSE) performance.

The rest of the paper is organized as follows. We first

describe the massive MU-MIMO system model in Section II.

Then the ABSP algorithm is introduced in Section III. Section

IV presents the performance analyses of the proposed method.

Numerical experiments are presented in Section V. Finally,

section VI concludes the paper.

Notations: Throughout this paper, boldface lower and upper

case symbols represent vectors and matrices, respectively.

Operators T , H and † represent transpose, Hermite and Moore-

Penrose matrix inversion, respectively. ‖x‖p and suppK(x)
denote the ℓp-norm and the largest K elements in the support

1It is worth noting that the proposed algorithm is different from the
conventional channel estimation approache called Auxiliary information based
Subspace Pursuit (A-SP) in [7] which acquires the path delays by time domain
pilot sequences and is only applicable to single-input single-output (SISO)
systems.
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of x, respectively.

II. MASSIVE MU-MIMO SYSTEM MODEL

Consider a massive MU-MIMO system where the BS is

equipped with M antennas and serving a large number Nu

autonomous single-antenna UTs (M > Nu). The down-

link transmission is organized in OFDM symbols where

Np pilots ti are randomly allocated in N subcarriers. To

reduce the pilot overhead, pilots in different transmit an-

tennas share the same locations, but each pilot sequence

tm = [tm1 , tm2 , · · · , tmNp
], m = 1, 2, · · · ,M is unique, in order

to distinguish the CIRs corresponding to different transmit

antennas. In this letter, we simply generate the pilot sequence

by setting tmi = 1 or tmi = −1 following the identically and

independently distributed (i.i.d) random Bernoulli distribution

[3].

The CIR vector between the ith transmitting antenna and a

certain UT can be denoted as hi = [hi(0), · · · , hi(L − 1)]T ,

where L is the maximum delay spread of the CIR. Due to

the sparse nature of MIMO channels [3], there are only K
nonzero or significant elements in hi, and K ≪ L.

Next, let y be the received pilot sequence after cyclic prefix

removal and DFT , then we have

y =

M
∑

m=1

diag{tm}FNp,Lhm + w

=
M
∑

m=1

TmFNp,Lhm + w

(1)

where Tm = diag{tm} is the diagonal matrix with tm on its

main diagonal, FNp,L is the sub-matrix of the N × N DFT

matrix F collecting the Np rows according to tm and first L
columns of F. w represents the additive white Gaussian noise

(AWGN) with zero mean and variance σ2. Let P denote the

Np × LM matrix as

P = [T1FNp,L T2FNp,L · · · TMFNp,L], (2)

and h = [hT
1 , · · · , hT

M ]T , then we can rewrite (1) as

y = Ph + w. (3)

A traditional approach to recover the channel h from (3) is

the least square (LS) method [2], whereby the solution will be

obtained as ĥ = (PHP)−1PHy. Note that Np ≪ML is always

satisfied in the massive MU-MIMO system, due to the large

number of BS antennas M and limited number of pilots Np.

Thus, equation (3) is underdetermined, where infinite choices

of h exist for a given y. However, since the channel is sparse

in nature, the CS based channel estimation methods could be

used to recovery the high-dimensional CIR h from the low-

dimensional pilot vector y.

TABLE I
PARAMETERS OF COMMUNICATION SYSTEMS

Standard Bandwidth(B) dmax =
C

10B
d =

λ

2

CDMA2000 1.25 MHz 24 m 0.15m

3GPP LTE 20 MHz 1.5 m 0.058m

III. ABSP ALGORITHM FOR MASSIVE MU-MIMO

SYSTEMS

A. Analyses of Block Sparsity and Channel Reciprocity

It is suggested in [4] that two channel taps are resolvable

if the time interval of arrival is larger than 1
10B where B is

the bandwidth of signal. Therefore, it is obvious that the CIRs

measured at different antennas share a common support [5] if
dmax

C
≤ 1

10B , where dmax is the maximum distance between

two BS antennas and C is the speed of light. In other words,

the path delays of nonzero elements in CIRs between different

transmit-receive pair are identical while the path gains are

distinct, e.g.,

supp(hi) = supp(hj), i 6= j, (4)

where supp(hi) denotes the support of hi defined as

supp(hi) =

{

1 hi(l) 6= 0

0 hi(l) = 0
, 0 ≤ l ≤ L− 1. (5)

In Table 1 we summarize the system parameters of two clas-

sical communication standards in terms of the bandwidth B,

maximum distance dmax and distance between two adjacent

antennas d = λ
2 where λ is the signal wavelength [6]. For

example, in the 3GPP LTE standard, the maximum distance

between two BS antennas of a 16× 16 array is 15d < dmax,

which proves the reliability of this assumption2.

Thus, it natureally leads us to exploit the inherent block

structure of massive MU-MIMO channels. By rearranging

the elements of h as c = [cT0 , · · · , cTl , · · · , cTL−1]
T with

cl = [h1(l), · · · , hM (l)]T , we have

y =

l=L−1
∑

l=0

Ψlcl + w = Ψc + w, (6)

where Ψ = [Ψ0, · · · ,Ψl, · · · ,ΨL−1], Ψl =
[pl, · · · , p(M−1)L+l] is a Np × M matrix, where pl is

the lth column vector of P. Therefore, based on the

assumption of sparse common supports within different CIRs,

the channel vector c shows block sparsity, which could be an

additional constrain to solve the underdetermined problem in

(3) [10].

So far, most researches solve the channel estimation prob-

lems by exploiting the channel reciprocity in TDD massive

MIMO systems, assuming the CSIs do not change during

an uplink-downlink duration so that the CSIs estimated at

the BS in uplink could be directly feedback to the UTs.

However, this assumption is sometimes unrealistic in time

varying channels where the uplink CSIs could be inaccurate

or even outdated for the downlink, resulting in significant

performance deterioration [2][3]. In this letter, we adopt a

more reliable assumption requiring only the path delays remain

unchanged during an uplink-downlink process, while the path

gains could be quite different. This assumption is reasonable

since the coherence time of path gains is inversely proportional

2For the larger antenna array, e.g. a 40 × 40 array with the maximum
distance 39d > dmax, we can still utilize the property of common support
based on the information exchange strategy between neighboring antennas.
For details, readers are referred to [6].
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to the frequency of system carrier, while the coherence time for

path delays is inversely proportional to the signal bandwidth

[8]. For example, the variation rate of path delay is about

100 times lower than that of the path gains in the digital

terrestrial multimedia/television broadcasting (DTMB) system

with carrier frequency of 770MHz and signal bandwidth of

7.56 MHz [9].

B. Auxiliary Information based Block-Structured Subspace

Pursuit Algorithm

To take practical advantage of block sparsity and channel

reciprocity of the massive MU-MIMO channel, we exploit

the block-structured CS framework and then propose the

ABSP algorithm to improve the accuracy of downlink channel

estimation for massive MIMO. Note that the ABSP is similar

with the classical subspace pursuit (SP) algorithm [11] but

with three main differences:

1) Initial Configuration. In the SP algorithm, the initial

approximation of the support set Γ is set to the K̃ indices of

the largest magnitude entries in the matching vector x = ΨHy,

where K̃ is the approximated channel sparsity, if no prior

knowledge of the target signal is available. In the proposed

ABSP scheme, by exploiting the channel reciprocity, we can

set Γ = Υ̃ directly, where Υ̃ is the approximated path delays

estimated from the uplink training containing the accurate

path delays with overwhelming probabilities. By this way,

we use the path delays estimation as auxiliary information

to improve the channel estimation performance of SP without

any additional overhead.

2) Matching Vector. The matching vector x = ΨHy is

used to determine the support set Γ in each iteration. Different

from the SP algorithm which calculates the matching vector

for only one channel vector, the proposed ABSP exploits the

block sparsity and computes matching vector corresponding

to all the channel vectors simultaneously and then obtain the

joint matching vector as

mB
x = [mB

x (0), · · · ,mB
x (j), · · · ,mB

x (L− 1)], (7)

where mB
x (j) (0 ≤ j ≤ L − 1) is the B − order sum of

matching vector x defined as [10]

mB
x (j) =

M
∑

i=1

B
∑

r=1

|x(i+ jM)|r (8)

where B ≥ 1 is an integer.

3) Iteration Number. Compared with the conventional SP

which needs at least M×K iterations, the required number of

iterations in ABSP is sharply reduced since the path delay is

already known. For example, we consider system model with

M = 16, K = 6 and assume ‖Υ − Υ̃‖0 = 1, where Υ is

the actual path delays in the downlink channel. Then we can

use only one iteration to reconstruct the channel by ABSP

algorithm while 96 iterations are required by SP. The main

steps of ABSP algorithm is summarized in Algorithm 1.

Algorithm 1

Input: Received pilot sequence y, sensing matrix Ψ, ap-

proximated path delays Υ̃, approximated channel sparsity

K = ‖Υ̃‖0
Initialization:

The initial residual v0 = y, the estimated channel matrix

c̃ = 0, Γ = Υ̃ and k = 1
while ‖vk‖2 < ‖vk−1‖2 do

x← ΨHvk
Γ← Γ ∪ suppK(m2

x)
x← Ψ†

Γy

Γ← suppK(m1
x)

c̃← Ψ†
Γy

vk ← y−ΨH c̃

k ← k + 1
end while

Output: The estimatied CIR matrix c̃

IV. PERFORMANCE ANALYSIS OF ABSP BASED

ON MASSIVE MU-MIMO SYSTEM

In this section, we analyze the performance of the proposed

ABSP algorithm in terms of the spectral efficiency and com-

putational complexity.

A. Spectral Efficiency

From [10], we know that the scales of the required pilots

for estimating the CIRs by the block-structured CS method

is Np = O(MK + Klog(L/K)), which is a substantial

improvement over Np = O(MKlog(L/K)) required by

the conventional CS methods. Considering a massive MU-

MIMO system with N = 4096, M = 16, K = 6 and

L = 256. The conventional CS method requires at least

Nt = 16 × 6 × log(256/6) ≈ 160 pilots while the proposed

ABSP needs only 106 pilots, reducing the pilots by nearly

one-third. Moreover, let Np = 128 with some margin, the

required pilots by ABSP only occupy 3.1% subcarriers of the

total N = 4096 subcarriers, with the average pilot occupancy

of 0.19% on each antenna. For comparison, the average pilot

occupancy of structured CoSaMP is 0.3% [3], where channel

reciprocity is not taken into account.

B. Computational Complexity

Since the computational complexity of most recovery al-

gorithms are proportional to the number of measurements,

any reduction in the number of required pilots Np would

also reduce the total complexity. In addition, owing to the

introduction of auxiliary information, the proposed ABSP

algorithm convergents in much faster speed as discussed in

Section III-B, which could further reduce the computational

complexity. In details, the main computational load on the

proposed algorithm is computing the joint matching vector,

corresponding a complexity of O(LM + LlogL) in each

iteration [10]. Therefore, the overall complexity of ABSP

comprising S iterations is O(S(LM + LlogL)), where S =
‖Υ − Υ̃‖0. On the contrary, the total complexity of SP is
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Fig. 1. MSE performance versus SNR

O(MKNp(L+K2)), which is much higher than the proposed

method.

V. SIMULATION RESULTS

In this section, we conduct some simulation studies to

investigate the performance of the proposed ABSP algorithm.

Consider a massive MU-MIMO system where the number of

BS antennas M = 16. The number of total subcarriers in a

OFDM symbol is N = 4096, among which Np = 128 pilot

subcarriers are randomly placed in the frequency domain. The

Rayleigh fading channel with 6-tap multipath and maximum

delay spread L = 100 is considered. In addition, we assume

the channel reciprocity is imperfect where the CIRs of uplink

and downlink are not precisely identical.

Firstly, we compare the proposed ABSP with the structured

subspace pursuit (SSP) [3] that has already shown to outperfor-

m SP in Fig. 2. Meanwhile, the traditional way that utilizes the

uplink CIRs directly in the downlink channel recovery (namely

traditional method) and the exact least square (LS) channel

estimation which perfectly knows the common support Υ are

also included for comparison. It can be seen that the traditional

method cannot work since the channel reciprocity is imperfect.

Moreover, the MSE of the conventional SSP algorithm drops

slowly with the increase of SNR and then goes flat when

SNR > 20. On the contrary, the proposed ABSP algorithm

achieves good performance close to the exact LS estimation,

thanks to the use of auxiliary information.

Next, we illustrate the MSE comparison of ABSP and SSP

with different number of BS antennas M and SNRs in Fig.

3. From the figure we can see that both of the channel esti-

mation methods suffer from performance degradations when

M becomes larger, due to the insufficient number of pilots.

However, the proposed ASBP is superior to SSP for all the

SNRs, especially when SNR increases from 20 to 30 where

ABSP shows a substantial improvement while SSP only reaps

little benefit.

VI. CONCLUDING REMARKS

This letter considers the downlink channel estimation for

TDD massive MU-MIMO system. By exploiting the inher-

ent block sparsity and channel reciprocity, an auxiliary in-

formation based block-structured SP algorithm is proposed
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Fig. 2. MSE performance versus different number of BS antennas and SNRs

to efficiently solve the pilot overhead problem in downlink

training within massive MIMO systems. Theoretical analysis

has demonstrated the effectiveness of the proposed method,

in terms of spectral efficiency and computational complexity,

while simulation results showed its good channel estimation

performance in terms of MSE.

ACKNOWLEDGEMENTS

The authors would like to thank the support by ”the

Fundamental Research Funds for the Central Universities

(2014YJS006)”.

REFERENCES

[1] T. L. Marzetta, Noncooperative cellular wireless with unlimited number

of base station antenns, IEEE Trans. Wireless Commun, vol. 9, no. 11,
pp. 3590-3600, Nov. 2010.

[2] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta Massive MU-MIMO

downlink TDD systems with linear precoding and downlink pilots,
Communication, Control, and Computing, 2013 51st Annual Allerton
Conference on, pp. 293-298, Oct. 2013.

[3] L. Dai, Z. Gao, Z. Wang, and Z. Yang, Spectrum-efficient superimposed

pilot design based on structured compressive sensing for downlink large

scale MIMO systems, General Assembly and Scientific Symposium (URSI
GASS), 2014 XXXIth URSI, vol. 1, no. 4, pp. 16-23, Aug. 2014.

[4] Y. Barbotin, A. Hormati, S. Rangan, M. Vetterli, Estimation of Sparse

MIMO Channels with Common Support, IEEE Transactions on Commu-
nications, vol. 60, no. 12, pp. 3705-3716, Dec. 2012.

[5] Y. Barbotin, M. Vetterli, Estimation of sparse MIMO channels with

common support, IEEE Trans. Commun., vol. 60, no. 12, pp. 93-100,
Dec. 2012.

[6] M. Masood, L. Afify, T. Al-Naffouri, Efficient Coordinated Recovery

of Sparse Channels in Massive MIMO, IEEE Transactions on Signal
Processing, vol. 63, no. 1, pp. 104-118, Jan. 2015.

[7] W. Ding, F. Yang, et al., Compressive sensing based channel estimation

for OFDM systems under long delay channels, IEEE Transactions on
Broadcasting, vol. 60, no. 2, pp. 313C321, June. 2014.

[8] L. Dai, J. Wang, Z. Wang, P, Tsiaflakis, and M. Moonen Spectrum- and

energy-efficient OFDM based on simultaneous multi-channel reconstruc-

tion, IEEE Transactions on Signal Processing, vol. 61, no. 23, pp.
6047-6059, Dec. 2013.

[9] Error-Correction, Data Framing, Modulation and Emission Methods for

Digital Terrestrial Television Broadcasting, Recommendation ITU-R BT.
1306-6, Dec.6, 2011.

[10] R. G. Baraniuk, V. Cevher, M .F. Duarte, and C. Hegde Model-based

compressive sensing, IEEE Transactions on Information Theory, vol. 56,
no. 4, pp. 1982-2001, Apr. 2010.

[11] W. Dai, O. Milenkovic Subspace pursuit for compressive sensing signal

reconstruction, IEEE Transactions on Information Theory, vol. 55, no.
5, pp. 2230-2249, May. 2009.


