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Dynamic traffic assignment approximating the kinematic wave model: system optimum, marginal 

costs, externalities and tolls  

 

Malachy Carey. Institute for Transport Studies, University of Leeds, Leeds LS2 9JT. 

Tel:  +44 28 90 203 659, Email:  m.carey@its.leeds.ac.uk  

 

Abstract   
  System marginal costs, externalities and optimal congestion tolls for traffic networks are generally 

derived from system optimizing (SO) traffic assignment models and when these are treated as varying 

over time they are all referred to as dynamic.  In dynamic SO network models the link flows and travel 

times or costs are generally modelled using so-called „whole link‟ models. Here we instead develop an 

SO model that more closely reflects traffic flow theory and derive the marginal costs and externalities 

from that. The most widely accepted traffic flow model appears to be the LWR (Lighthill, Whitham and 

Richards) model and a tractable discrete implementation or approximation to that is provided by the cell 

transmission model (CTM) or a finite difference approximation (FDA). These handles spillbacks, traffic 

controls and moving queues in a way that is consistent with the LWR model (hence with the kinematic 

wave model and fluid flow model). An SO formulation using the CTM is already available, assuming a 

single destination and a trapezoidal flow-density function. We extend the formulation to allow more 

general nonlinear flow density functions and derive and interpret system marginal costs and externalities. 

We show that if tolls computed from the DSO solution are imposed on users then the DSO solution would 

also satisfy the criteria for a dynamic user equilibrium (DUE). We introduce constraints on the link 

outflow proportions at merges and inflow proportions at diverges. We also extend the model to elastic 

demands and establish links with previous dynamic traffic assignment (DTA) models.  

 

Keywords: cell transmission model; system optimum; dynamic traffic assignment; marginal costs; 

externalities; optimal tolls  

 

1.  Introduction  

 

This paper is concerned with deriving system marginal costs, externalities and hence system optimizing 

congestion tolls for road networks when traffic flows and travel times are varying over time. In view of 

that it adopts a dynamic system optimizing (DSO) formulation. We present and analyse a DSO model for 

dynamic traffic assignment (DTA) in which the traffic flows are modelled by approximation to the widely 

accepted traffic flow model originated by Lighthill and Whitham (1955), Richards (1956), referred to as 

the LWR model.  Since the latter is a differential equation model, continuous in time and space, it is not 

analytically or computationally tractable for general traffic network modelling and it is more convenient 

to approximate it by a finite difference approximation, as in Daganzo (1994, 1995a, 1995b).  Daganzo 

(1994, 1995a) developed the cell transmission model (CTM) that approximates the LWR model when the 

flow-density function is assumed to be triangular or trapezoidal, as in Fig. 1.  Daganzo (1995b) extended 

the analysis to allow general nonlinear flow-density functions as in Fig. 2 and refers to this model as a 

finite difference approximation (FDA) to the LWR model.  For brevity we will often refer to both the 

CTM and FDA model as the CTM. For each of these models he showed that as the discretisation of time 

and space is refined to the continuous limit the model converges to a correct solution of the LWR model.   

 

In the above papers and in various later papers the CTM in a network context is usually presented as a 

simulation model in which traffic at junctions and intersections merges and diverges in fixed proportions 

at each point in time and route choice is fixed.  Later the CTM was used as the network loading 

component in dynamic traffic assignment models for user equilibrium (e.g. Lo (1999), Lo and Szeto 

(2002), Szeto and Lo (2004), Carey and Ge (2011) or see reviews of DTA such as Szeto and Lo (2006)). 

An important reason for using the CTM in this way is that, in traffic assignment models, route choice, and 

hence the proportions of traffic using the various links, are endogenously determined rather than being 



 2 

prespecified. To solve the user equilibrium formulation the spatial route allocations are iteratively 

adjusted until an equilibrium is achieved.  

 

Ziliaskopoulos (2000) reformulated a relaxed form of the CTM as a set of linear constraints and hence 

developed a linear programming model for the single-destination system optimum DTA problem for a 

network.  The model was further analysed and applied by Waller (2000), Li et al. (2003), Alecsandru 

(2006), Ukkusuri and Waller (2008), Zeng (2009 and Lin and Liu (2010).  The present paper introduces a 

similar system optimizing formulation, though it instead assumes that the flow-density function for each 

link may have a general nonlinear form rather than the triangular or trapezoidal form usually assumed in 

the CTM.  The latter forms can be thought of as special cases of a general nonlinear form. This yields a 

nonlinear convex DSO model rather than a linear programme.  

 

Though this paper is concerned with marginal costs, externalities and optimal congestion tolls or prices 

for road traffic it does not further pursue the various aspects of congestion pricing. For a comprehensive 

discussion of the mathematical and economic theory of road pricing see Yang and Huang (2005). Also, 

the focus in the paper deterministic rather than stochastic: some recent stochastic extensions and 

applications of the CTM can be found in Karoonsoontawong and Waller (2005), Alecsandru (2006), Boel 

and Mihaylova (2006), Szeto (2008) and Sumalee et al. (2010).  

 

For various reasons we assume a general nonlinear form of flow-density function rather than the usual 

triangular or trapezoidal form. First, it can include the piecewise linear forms as special cases.  Second, in 

some cases one may wish to avoid some properties of the triangular or trapezoidal form. For example, a 

triangular flow-density function implies that travel time as a function of flow is initially a horizontal line 

until it switches to backward-sloping (as in Fig. 1(b)), and a trapezoidal flow-density function has a 

similar implication except that the travel time function has a vertical piece before sloping backwards.  

Neither form allows an upward sloping travel time function, which is widely used in static traffic 

assignment.  A further and more immediate reason for assuming a nonlinear flow-density function in this 

paper is that it can be assumed differentiable whereas piecewise linear forms are not.  Differentiability is 

very convenient for the derivation and analysis of marginal costs in this paper.  However, for readers who 

prefer a triangular or trapezoidal flow-density function, or a more general piecewise-linear flow-density 

function, it is worth noting that a nonlinear differentiable curve can be chosen to fit as closely as we wish 

to any piecewise linear curve. To obtain a smooth differentiable curve we need only assume an arbitrarily 

small rounding or smoothing at the break-points of the piecewise linear curve.  This rounding can be 

assumed so small that it does not affect numerical results – is less than the working tolerance in 

computations.  
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Fig. 1(a). A triangular flow-density or flow-occupancy f‟n.  Fig. 1(b). Corresponding link travel-time f‟n. 
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      Fig. 2.  A nonlinear flow-density or flow-occupancy function.  

 

A system optimising formulation can lead to the phenomenon of “holding back” of flows on some links, 

which has been identified by a number of authors as a common feature in models that seek to optimize 

traffic flows on a network over time.  By holding back some of the traffic that would otherwise enter a 

link it may be possible to keep the traffic density from moving onto the downward-sloping (congested) 

part of the flow density function. Moving onto that portion of the curve would reduce the traffic outflow 

and eventually cause a reduction in inflow and throughput and hence increase overall system travel times 

or costs. Holding back of traffic could be used to reduce or prevent that and hence can be interpreted as a 

desirable form of traffic flow control (as in Carey (1987) and Ziliaskopoulos (2000)).  Such flow controls 

could potentially be implemented by variable speed controls, ramp metering or other methods associated 

with future intelligent traffic and transport systems.  

 

Section 2 outlines the Daganzo (1995a) finite difference approximation to the LWR model and re-writes 

the max function from this as inequalities. This allows flow controls of the type mentioned in the previous 

paragraph. Section 3 extends this formulation from a single link to a network of such links and formulates 

the traffic DSO assignment problem as a convex nonlinear programme. The merge and diverge 

proportions at junctions are determined endogenously within the programme so as to minimize travel 

costs or maximise traveller net benefits. Section 4 derives, analyses and interprets optimality conditions, 

marginal costs, externalities and optimal tolls. Section 5 introduces constraints on merge and diverge 

proportions at junctions (nodes) to more realistically reflect actual constraints on these. Section 6 

discusses extending to cost-elastic travel demand functions and Section 7 concludes.  Appendix A 

considers relationships between the CTM and the Merchant-Nemhauser model and Appendix B considers 

other forms of cost-elastic travel demand functions for Section 6.  

 

2.  A finite difference approximation to the LWR model  
 

The LWR traffic flow model (Lighthill and Whitam (1955) and Richards (1956) assumes that the flow at 

each point in space and time (z,t) depends only on the density at that point, and not at any later or earlier 

points, hence can be stated as a flow-density equation ),),,((),( tztzkQtzq  .  Here, as is commonly 

done, we assume that the link is homogeneous over space and time: if capacity changes along a link it can 

be sub-divided into homogeneous links. This reduces the flow-density function to  

)),((),( tzkQtzq             (1) 

In the LWR model this is combined with a conservation or continuity equation  

 ttzkztzq  /),(/),(          (2) 

To approximate (1)-(2) by a difference equation Daganzo (1995b) discretised (1)-(2) as follows.  Divide 

the time span into time intervals t = 1, …, T, each of length t, and divide the link into j = 1, …, J, 

segments or cells such that the free-flow travel time for each cell is one time interval.  This satisfies the 

Courant-Friedrichs-Lewy (CFL) condition (Courant et al. (1967)) that the cell lengths travelled per time 

 

 

q q  
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step should not exceed one, which is a necessary condition for the convergence of a finite difference 

approximation to solve a partial differential equation as the step sizes go to zero.  Daganzo shows that the 

scheme converges without explicitly referring to the CFL condition.  

 

We can assume that the given link is homogeneous, so that all cells will be of the same length d.  Let jtk  

denote the cell density, which can be assumed constant along the cell length or can be taken as the mean 

density in the cell.  The flow-density function for a cell can then be written as )( jtjjt kQq  , but it is 

convenient here to work in terms flow-occupancy dkx jtjt   rather than flow-density jtk .  Substituting 

dxk jtjt /  in the flow-density function gives the flow-occupancy function denoted )( jtj xg .  From the 

latter, construct two functions )( jtj xg   and )( jtj xg 
 :  )( jtj xg   is obtained by taking the upward sloping 

part of )( jtj xg  and extending it to the right via a horizontal straight line from its peak, and )( jtj xg 
  is 

obtained by taking the downward sloping part of )( jtj xg  and extending it back to the vertical axis via a 

horizontal straight line from its peak.  Then, as in Daganzo (1995b), for consistency with the continuous 

LWR model, the number of vehicles exiting from cell j into the next downstream cell j+1 in time interval 

t should satisfy  

jtv  = })(),(min{ ,11     tjjjtj xgxg 



         (3) 

 = min{(sending capacity of cell j in time interval t),  

(receiving capacity of the next downstream cell j+1 in time interval t)}.  

Except for the final cell on a link, the outflow jtv  from cell j in any time interval equals the inflow tju ,1  

to next downstream cell j+1 in the same interval, thus  

tjjt uv ,1             (4)  

as illustrated in Fig. 3.  The number of vehicles in cell j in time interval t+1 is the number present in time 

interval t plus the inflow minus the outflow in interval t, thus,  

jtjtjttj vuxx 1,            (5)  

Equations (3)-(5) comprise a finite difference approximation to the LWR model (1)-(2).  Equation (3) can 

be rewritten as )( jtjjt xgv   and )( ,11 tjjjt xgv 

  if we assume for the moment that the outflow jtv  is 

held at the maximum consistent with these inequalities, so that one or other of these inequalities is a strict 

equality.  In that case (3)-(4) can be rewritten as  

)( jtjjt xgv   and  )( ,1,1 tjjtj xgu 


          (6.1) 

      if the flow tjjt uv ,1  is at the maximum consistent with (6.1).         (6.2) 

The finite difference approximation to the LWR model now consists of (4)-(6.2).  The advantage of the 

inequalities in (6.1), for the purposes of a mathematical programming model below, is that they represent 

convex sets, since )( jtj xg 
 and )( ,1 tjj xg 


 can be assumed to be concave functions.  In contrast, (3) is a 

nonlinear equation hence represents a nonconvex set.   
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If the flow tjjt uv ,1  is less than the maximum given by (6.1) then the outflow from cell j to j+1 will is 

less than the flow rate given by the CTM equation (3).  However, this shortfall may be interpreted as a 

traffic control system “holding back” the “natural” flow rate, as already mentioned in the Introduction.  

 

                                                Occupancy  

                     Node k                of cell j = jtx             Node i     

 

                           Inflow jtu .                Outflow jtv .  Inflow tju ,1 .  

 

Fig. 3.  Inflow, outflow and occupancy ( jtu , jtv  and jtx ) for cell j.  

 

 

3.  A system optimising DTA model based on a finite difference approximation to the LWR model  
 

Consider a network consisting of a set of nodes N
O
 connected by a set of directed links A

O
, with 

individual nodes and links denoted i  N
O
 and j  A

O
 respectively.  Let each of the original links in the 

network be divided into cells, introduce an artificial node between each pair of neighbouring cells and 

treat each cell as a link between these neighbouring nodes.  Denote this expanded set of nodes as N and 

expanded set of links as A, thus N
O

N  and A
O

A . Let B(i) denote the set of links immediately before 

node i (pointing into node i) and A(i) denote the set of links immediately after node i (pointing out of 

node i).  

 

Extending the cell conservation equation (5) to a network.  To extend (5) to the network, simply rewrite it 

for all cells j  A in the network, thus  

jtjtjttj vuxx 1,     Aj .      (7)  

Extending the node conservation equation (4) to a network.  To ensure conservation at all nodes i  N of 

the network, let the sum of the inflows to each node equal the sum of the outflows from the node, thus  

  )()( iBj jtitiAj jt vDu    i  N       (8) 

where itD  is the exogenous travel demand from node i to the destination. We can assume an artificial link 

or cell exiting from the destination node. For the new nodes along the original links (nodes i  N, i  N
O
), 

itD  = 0 and (8) reduces to (4), i.e. tjjt uv '  where j' is the (single) cell immediately after cell j.   

 

Extending the exit flow equations (6.1)-(6.2) to a network.  

 

Applying (6.1) and (6.2) to all cells on all links we have the following.  For each cell j the outflow vjt 

should not exceed the sending capacity )( jtj xg 
 of the cell, thus,  

)( jtjjt xgv  .     j A        (9.1)  

and for each cell j the inflow jtu  should not exceed the inflow capacity or receiving capacity )( jtj xg   of 

the cell, thus,  

)( jtjjt xgu        j A        (9.2)  



 6 

and 

either (9.1) or (9.2) is a strict equality      j A.      (9.3)  

Condition (9.3) is needed to be consistent with (6.2) and hence (3). However, we wish to construct a 

mathematical programming model for system optimizing and an either-or constraint such as (9.3) 

converts a convex programme to a combinatorial problem or 0-1 integer programme, which is nonconvex.  

Such a programme is potentially very time consuming to solve because of the very large number of cells 

in the network. Fortunately, in the mathematical programme that we construct later below, condition (9.3) 

is frequently satisfied in a solution of the mathematical programme without having to be imposed as an 

explicit constraint. Furthermore, any deviation from satisfying (9.3) may be interpreted as a system 

optimising flow control, as noted in the Introduction.  

 

A system optimising DTA model  

 

We can now set up a system optimising dynamic traffic assignment model, consisting of minimising the 

network travel costs for all users, subject to the constraints (7)-(9.2).  Let the length of each time interval 

be 1. Then the total time spent by users jtx  in cell j in time interval t is 1 jtx , the total time spent by all 

users on the network is   

T

t Aj jtx
1

 and the total cost of this user time is  

   


T

t Aj jtjt xcC
1

           (10) 

where jtc  is the users‟ cost per unit of time spent in cell j in time interval t.  To obtain system optimising 

flows on the network, minimise (10) subject to (7)-(9.2) and nonnegativity of all the variables.  This is set 

out more formally as follows.  

 

S: Minimise (10)  

 

subject to, for all time intervals t = 1, …, T,  

 

( 0
jt )   )( jtjjt xgv      j A      (11.1) 

 

( 0
jt )   )(  jtjjt xgu      j A      (11.2) 

 

(jt)             jtjtjttj vuxx 1,     j A     (11.3) 

 

(it)      )()( iBj jtitiAj jt vDu     i  N    (11.4) 

 

xjt  0, ujt  0, vjt   0              Aj .     (11.5) 

 

The variable in brackets before each equation (i.e., 0
jt , 0

jt , jt and jt) is a dual variable or 

Lagrange multiplier corresponding to that equation and will be used later. S is a convex programme since 

the objective function (10) and the constraint sets (11.3) and (11.5) are linear and the constraints (11.1) 

and (11.2) represent convex sets since both are “less than or equal to” constraints with a linear l.h.s. and a 

concave function on the r.h.s.  
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In model S it is implicitly assumed that at a merge node the flows on the links pointing into the junction 

(node) can enter it in any proportions, subject only to flow conservation. Similarly, at a diverge node it is 

assumed that the flows on the links pointing out of the junction can exit from it in any proportions. 

However, the layout of the junction and/ or the traffic control system may impose additional restrictions 

on these proportions. This is ignored here but is reintroduced in Section 5. Until then it can be assumed 

that the layout and controls can be adjusted to accommodate whatever solution is given by Programme S.  

 

It is interesting to consider what happens if the equations (11.2) are dropped from the above model S.  

Equations (11.2) are redundant if all links in the solution of S are uncongested, that is, if the cell 

occupancies jtx  are never in the downward sloping part of the exit-flow functions )( jtj xg . Without 

(11.2), the above model becomes formally the same as the DTA model of Merchant and Nemhauser 

(1978a, 1978b) except that, in the latter, the equations (11.1) are written as strict equalities whereas here 

they relaxed to inequalities.  The MN model with (11.1) as inequalities was introduced by Carey (1987), 

where it was noted that it converts the nonconvex optimisation model of MN to a convex model.  The 

latter is formally the same as the above model, except that the MN model has usually been applied to 

networks with each link treated as a whole link.  However, the MN model can equally well be applied 

after first discretising the whole links into cells and discretising time as in the above model S.  Further 

relationships between the CTM, FDA and LWR models on the one hand and the MN model on the other 

are discussed in Appendix A and in Carey and McCartney (2004). 

 

Solving programme S. 

 

The above convex nonlinear programme S is linear except for the concave functions in (11.1) and (11.2) 

hence can be solved easily in various ways.  It can be solved by using linear programming if we first 

piecewise linearise the concave functions (11.1) and (11.2).  Many commercial LP (or mathematical 

programming) packages include a facility for automatically performing such piecewise linearization.  

Alternatively, the programme S can be solved using available commercial packages for solving convex 

programming problems with nonlinear constraint (e.g., Minos, Conopt, or other solvers available with 

GAMS).  Or special purpose solution algorithms can be devised to take advantage of the special structure 

of the model.  As already noted, the programme S is similar to the form of DTA model formulated in 

Merchant and Nemhauser (1978), except for the additional constraints (11.2).  Various algorithms were 

devised to take advantage of the structure of the latter model and these could be extended to the present 

model.  The model S also has another special feature which would speed up its solution: most of the links 

j in S were formed by discretising the original links in the network, hence are have only a single link 

(cells) pointing in and out of them.  That simplifies the structure and greatly increases the sparsity of the 

matrix of constraint coefficients, which may make standard mathematical programming algorithms 

competitive with special purpose algorithms.  

 

4.  Properties of the model:  system marginal costs, externalities and optimal tolls 
 

To investigate the properties of solutions of Programme S we use the Kuhn-Tucker (K-T) optimality 

conditions which can be set out as below.  These conditions are necessary and sufficient to characterise an 

optimal solution of S since the objective function and constraint set of S are convex.  

 

The K-T conditions for Programme S consist of the following, for t = 1, …, T:  

 

Equations (11.1)-(11.5)         (12.0) 

 

Complementarity for the pairs of inequalities in (11.1) and in (11.2).  
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(ujt  0)   jtktjt  ,    j  A(k), k  N    (12.1) 

 

(vjt  0)    jtitjt  ,    j  B(i), i  N    (12.2) 

 

(xjt  0)   )()(')(' 1, 
  tjjtjtjtjjtjtjjt cxgxg  ,   j A  (12.3) 

 

Complementarity for the pairs of inequalities in (12.1)-(12.3). 

 

Complementarity or „complementary slackness‟ means that, in a solution of the K-T conditions, if either 

one of a pair of inequalities is a strict inequality then the other one must be a strict equality.   

 

To interpret the above optimality conditions we first consider the system marginal costs (s.m.c‟s).  In a 

constrained optimisation programme such as S, the Lagrange multiplier or dual variable associated with 

any constraint is the amount by which the optimal value of the objective function will change per unit 

change in the value of a constant term in the constraint, such as the itD  term in (11.4), while holding all 

other parameters fixed. This is also referred to as the system marginal cost, hence it  is the s.m.c. of 

increasing itD . Since a unit increase in itD  will move through the network, governed by (10)-(11.5), 

until it exits at the destination, it  can be described as the s.m.c. of travelling from node i in time interval 

t to the destination.  

 

In a similar way the dual variables in (12.1)-(12.2), i.e. jt , kt , it , 
jt  and 

jt , can be interpreted as 

follows. For time interval t:  

jt               is the s.m.c. of adding an extra unit of traffic to cell j in (11.3), i.e. the s.m.c. of travelling 

from cell j to the destination.  

kt  and it  are the s.m.c‟s per extra unit of traffic travelling to the destination from node k (at the 

entrance of cell j) and node i (at the exit of cell j) respectively.  

jt  and 

jt  are s.m.c‟s incurred by the capacity restrictions (11.1) and (11.2) on entering and exiting 

cell j.  

The K-T equations (12.1) and (12.2) (i.e.  jtjtkt   and  jtitjt  ) contain similar variables, 

hence to illustrate the difference between them, Fig. 4 places these dual variables alongside the 

components of the network with which they are associated ( jt  beside cell j, 
jt  and 

jt  beside the 

entrance and exit respectively of cell j, and kt  and it  beside the nodes at the entrance and exit 

respectively of cell j). Equation (12.1) states that the first variable in Fig. 4 (i.e. kt , starting from the left) 

is   the sum of the next two variables. Equation (12.2) states that the third variable in Fig. 4 (i.e. jt ) is 

  the sum of the next two variables.  

 

                      Node k                                                Node i      

                         kt                            jt                       it     

 

       
jt      Cell j   

jt    

 

Fig. 4.  Dual variables associated with cell j.  
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Proposition 1.  Let itP  denote the set of time-space paths from node i to the destination setting out in 

time interval t.  Then in an optimal solution of programme S  

(a) the s.m.c. of traversing the utilised time-space paths itP  is given by the value the dual variable it  in 

the optimal solution of S, hence  

(b) is the same for all utilised the time-space paths in itP  and 

(c) is less than or equal to the s.m.c. of traversing any unutilised time-space path in itP .  

 

Proof. We can show this in the same way as is done for static traffic assignment but since the expressions 

and summations involved are much more cumbersome than for the static traffic assignment model we do 

not write them out here in full. 

(a) As noted above, this follows from the usual interpretation of dual variables.  

(b)  Along any utilised time-space path itP  the cell and link inflows jtu , outflows jtv  and occupancies 

jtx  must be positive which, by complementarity in the K-T conditions, means that the corresponding 

equations (12.1)-(12.3) will be strict equalities. In that case we can write these equations for each cell 

along the time-space path and, by sequential substitution, express the it  at the start of the path as a sum 

of cell s.m.c. terms along the path. But since the sum for each utilised path is it  and it  is independent 

of path (has no path subscript), the sum is the same for all paths.  

(c)  Along any time-space path itP  that is not utilised, some of the cell and link inflows jtu , outflows jtv  

or occupancies jtx  may be positive (as in (a)) but at least one of them must be zero, otherwise the path 

would be utilised. Again, by complementarity in the K-T conditions, this means that at least one of the 

corresponding equations (12.1)-(12.3) will be a strict inequality. In that case, when we perform sequential 

substitution from (12.1)-(12.3) along the time-space path we obtain it    the sum of the s.m.c. terms 

along the time-space path.                  

 

4.1.  System marginal costs, externalities and optimal tolls  

 

For congested road traffic, an additional or marginal traveller tends to cause an increase in travel times or 

costs for other users and this increase in costs is referred to as the congestion externality caused by the 

additional user.  It is normally assumed that, when deciding whether or when to travel, each road user 

takes account only of the travel time or cost that they experience and does not take account of any 

congestion externality.  The total cost caused by an additional (marginal) user of a road path, link or cell 

is referred to as the system marginal cost (s.m.c.) and is (the cost experienced by a marginal/ additional 

user) plus (the congestion externality caused by the marginal/ additional user). If a toll just equal to the 

externality is imposed on each user then the total cost experienced by each user (own cost + toll) becomes 

equal to the s.m.c. so that the user is induced to take account of the full s.m.c. when making travel 

decisions.  In other words, the user is induced to "internalise" the externality and the resulting user 

equilibrium will also be a system optimum.  

 

In static traffic assignment models the above optimal tolls are obtain directly from the solution of the 

model or K-T optimality conditions for the model.  We can do that because there are explicit analytic 

expressions for the link travel times, s.m.c‟s and externalities and these are included in the model (in the 

objective function) and in the K-T optimality conditions. Unfortunately, for the CTM/ FDA based DTA 

model it seems that it is not possible to do that.  The reason is that the K-T conditions for this model do 

not include or yield any variables or analytic expressions for the link travel times or costs experienced by 

individual users.  These are not explicit in the model or its solution. Instead, the link and path travel times 

are obtained only by applying a computational procedure, as follows, to the solution of S after it is solved.  
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Computation of path travel times p
it  and link travel times.  Let p

it  denote the travel time experienced by 

a user travelling from node i at time t to the destination via spatial path itPp .  In CTM based models, 

and other exit flow models, this is computed by a cumulative flow method, comparing the cumulative 

inflow and outflow from a path, e.g. if the n‟th user enters a spatial path at time t1 and exits from it at 

time t2 then the path travel time is t2 – t1.  For further details of this method of computing travel times 

see for Cayford, Lin and Daganzo (1997), Tong and Wong (2000) and Lo and Szeto (2002)). Link or cell 

travel times are computed in the same way, the only difference being in the location of the points at which 

the cumulative flows are computed.  

 

Definition of DUE:  

Let itP  denote the set of time-space paths starting from node i in time interval t and travelling to the 

destination.  Then a flow pattern is a DUE if and only if, for each it  

(a) the travel time/ cost experienced by users is the same for all utilised time-space paths in itP  and  

(b) is less than or equal to the travel times/ costs for unutilised time-space paths in itP .  

 

Note that the following discussion and propositions do not provide a general DUE model based on the 

CTM in the absence of optimal tolls. It instead allows us only to take a DSO model based on the CTM 

(i.e. S) and from it derive tolls that, if imposed on users, will ensure that the DSO solution is also a DUE.  

A DUE methodology based on the CTM is developed in Ukkusuri (2002) and Ukkusuri and Waller 

(2008).  In that approach the objective function is not initial fully specified but instead certain cost or 

penalty parameters have to be iteratively adjusted to force the solution ever closer to a DUE solution.  It 

seems not possible to-date to develop an analytic DUE model analogous to the above CTM based SO 

model.  As a result it has not been possible to take a DUE model based on the CTM, insert tolls in the cost 

function and obtain an analytic solution to examine how the tolls affect the solution.  

 

Since the link and path travel times can be computed only after solving the Programme S, we have to take 

a quite different approach to obtaining optimal tolls than is followed in static assignment models.  

 

Proposition 2.  

Take a solution of Programme S and in the solution divide the set of spatial paths itP  from each it into 

two sets, utilized u
itP  and unutilized un

itP . Define tolls  

 
p
itit

p
ittoll    for paths u

itPp   

 
p
itit

p
ittoll    (e.g. 

p
itit

p
ittoll    + a constant) for paths un

itPp   

where the 
p

it  are as defined above and the it ‟s are the values of the dual variables (s.m.c‟s) from the 

solution of Programme S or its dual.  

If these tolls are imposed on users of the network then they will choose a user equilibrium flow pattern 

that is identical to the solution of Programme S, i.e. the DUE will also be a DSO.  

 

Proof.  The travel times experienced by users on paths itPp  are 
p

it  hence if tolls 
p
itit

p
ittoll    are 

imposed on paths in u
itP  then the cost experienced by users of these paths is it

p
itit

p
it   )(  and if 

tolls 
p
itit

p
ittoll    are imposed on paths in un

itP  then the cost experienced by users of those paths is 

it
p

it
p
it toll   .  This satisfies the above definition of a DUE hence the proposition follows.           
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Proposition 3. The path s.m.c‟s, travel times and tolls in Proposition 2 can be decomposed into the sum 

of s.m.c‟s, travel times and tolls respectively on the time-space links along each time-space path. For 

example, the s.m.c‟s for traversing successive links along a time space path are ''tiit   , ""'' titi   , etc. 

, i.e. the differences between the it ‟s for successive nodes.  Similarly for link travel times and tolls.  

 

Proof. The s.m.c‟s for traversing successive links along a time space path are ''tiit   , ""'' titi   , etc. , 

i.e. the differences between the it ‟s for successive nodes.  

From this definition of link s.m.c‟s it follows immediately that their sum along a time-space path is the 

s.m.c. it  for the initial node of the path minus the s.m.c. for the final node.  The latter is zero hence the 

sum is simply the path s.m.c. it . Replacing the  ‟s with  ‟s in the preceding sentences gives the same 

result for link travel times ""'' titi    and their sums on time-space paths. The tolls are the differences 

between the s.m.c‟s and the travel times hence the same result holds for those, i.e. the sum of link tolls 

along a time-space path equals the path toll.                 

 

It is worth noting a discretisation issue which arises in summing s.m.c‟s, externalties or tolls along a time-

space path.  The s.m.c. of travelling to the destination from node i at the entrance of link j in time interval 

t is it  and from node i at the exit of link j at time e(jt) is )(, jtei . Hence the s.m.c. of a vehicle using link 

j, entering it in time interval t, is ( it  – )(, jtei ).  Note that traversing the link may take a non-integer 

number of time intervals, hence the exit time e(jt) may not have an integer value, hence may not 

correspond to exactly the beginning or end of one of the time intervals t in the model.  Because of that, 

the dual variable )(, jtei , defined above, may not be associated with the equation (11.4) for a specific 

(integer) time interval t , hence would not be immediately available in the solution of programme S.  

However, in that case we can compute )(, jtei  by interpolating between the values of 'it  for adjacent 

integer times, that is, compute )(, jtei  by interpolating between 'it  and 1', ti  where t < e(jt) < t +1, for 

example by using linear interpolation. 

 

We have not shown that the path tolls in Proposition 2 or link tolls in Proposition 3 are always positive. 

However, in Proposition 4 below we show that if a constant (say 
Rc ) is added to each of the tolls in 

Proposition 2, the resulting new tolls still satisfy Proposition 2, hence retain a DSO that is also a DUE. 

Thus, if any of the path tolls from Proposition 2 are negative, a 
Rc  can be added to each path toll to 

ensure that all path tolls become zero or positive. For example, set 
Rc  equal to the most negative of the 

path tolls.  Also, this additional flat toll 
Rc  brings in a revenue Dc R

 where  


T

t tDD
1

 hence 
Rc  can 

be adjusted to bring in any desired level of additional revenue while retaining a DSO that is also a DUE.  

 

Proposition 4.  From Programme S construct a new programme 
RS  by imposing an additional cost 

Rc  

on each unit of flow exiting at the destination, i.e. add  

T

t tj

R
Duc

1
 to the objective function to be 

minimized, where Dj  is an artificial link pointing out of the destination node. This:  

(a) increases the total system cost by a fixed amount Dc R
 where  


T

t tDD
1

, 

(b) makes no change in the optimal solution set of S, i.e. { R
itu , R

itv , R
itx } = { itu , itv , itx },  

(c) increases the s.m.c. it  at each time-space node by 
Rc , so that the new dual solution is R

it
R
it c   

and 
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(d) increases each of the optimal path tolls by Rc  to Rp
it

pR
it ctolltoll  .  

 

Remarks.  The above results indicate that the optimal path tolls are not unique but can be scaled up or 

down by adding 
Rc  to each path toll, without affecting the DSO/ DUE solution.  Since (a)-(d) indicate 

exactly how the optimal solution of S and its dual are affected by imposing an extra cost 
Rc  on each unit 

of inflow, there is no need to need to actually solve the new programme 
RS  or its dual to find the new 

solution. They are already given by (a)-(d).  

 

Note that the tolls p
itit    do not appear in the objective function of programme S; only the additional 

tolls 
Rc  appear there. Also, note that Programme S is convex programme hence either has a global 

optimum and a single optimal solution or a convex set of solutions (all of which yield the same optimal 

value).  

 

Proof.  (a)-(b). All of the fixed travel demand   


Ni

T

t iDD
1

 in S has to eventually exit into the 

artificial link Dj  hence  

T

t tjDu
1

 = D  hence  

T

t tj

R
Duc

1
= Dc R

.  But the latter is a constant hence 

 

T

t tj

R
Duc

1
 is a constant and adding a constant to the objective function of a convex programme S has 

no effect on an optimal solution of S, except that the optimal value of the objective function is increased 

by a fixed amount Dc R
.  

 

(c). Consider the dual of Programme S. Since S is a convex programme there is no duality gap, that is, the 

optimal value of S and its dual are equal. The objective function of the dual is   Ni

T

t ititD
1

 . We have 

seen that adding  

T

t tj

R
Duc

1
 to the objective function of S increases its optimal value by a constant 

Dc R
=   Ni

T

t it
R Dc

1
 hence increases the optimal value of the dual programme by the same amount, 

thus   Ni

T

t
R
ititD

1
  =   Ni

T

t it
R Dc

1
 +   Ni

T

t ititD
1

 . But R
it

R
it c   solves this equation 

hence is an optimal solution of the dual.  

(d).  From Proposition 2 the optimal path toll is p
itit    (i.e. the path s.m.c. it  minus the path travel 

time). P
it  is computed from the solution of S and since the latter is unchanged by introducing Rc  (see 

(b)) the path travel times are also unchanged, i.e. 
p

it
pR

it   . Also, from (c), the new s.m.c‟s are 

R
it

R
it c  . Hence the new optimal tolls are 

pR
it

R
it

pR
ittoll   = 

p
it

R
it c   )( = Rp

it ctoll  .          

 

The DUE in the above discussion and propositions is an “ideal” rather than “instantaneous” UE.  In the 

DTA literature, two different forms of UE have been generated, namely ideal and instantaneous. In both 

cases the UE is defined as above, that is, the travel times on utilised paths are equal and are less than or 

equal to the those for unutilised paths. However, the travel times are defined differently in the two cases.  

In instantaneous UE the travel times for links on a path are those that obtain at the time of entry to the 

path while in ideal UE they are the times that will be experienced by travellers when they arrive at those 

links. The ideal UE is thus more realistic. Instantaneous UE arises because in some network models 

traffic that enters a link or path at time t can exit instantaneously at the end of the link or path at the same 

time t. The DUE in the above discussion and propositions is an ideal DUE since the travel times on each 

link are those experienced when the traffic arrives at that link.  Ideal versus instantaneous for the CTM 

and FDA model is discussed further in Appendix A.  
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4.2.  Relationships between components of system marginal costs for paths 

 

S.m.c‟s are used above to obtain optimal congestion tolls, but there are also other possible uses for the 

s.m.c‟s obtained from the solution of programme S. For example, in time interval t the s.m.c. of travelling 

to the destination from nodes k or i are kt  and it  respectively hence the s.m.c. of letting a vehicle (a 

marginal unit of traffic) enter at node k instead of node i in time interval t is ( kt   it ).  Similarly, the 

s.m.c. of letting a vehicle enter at node i in time interval t  instead of in time interval t is (  ti,   it ).  

 

In 4.1 we considered the path s.m.c. that is incurred by an additional unit of traffic entering at node i, 

which is given by it  the dual variable associated with the conservation equation (11.4) for node i.  In the 

discussion below it is instead convenient to consider a path as starting from a link or cell j pointing into 

node i.  The s.m.c. for this path is given by the dual variable jt  associated with the conservation 

equation (11.3). We can interpret jt  and it  as follows, for time interval t:  

jt  = is the s.m.c. of an additional unit of traffic entering cell j and traveling from there to the 

destination.  

it  = is the s.m.c. of an additional unit of traffic entering at node i (at the exit of cell j) and traveling from 

there to the destination.  

The discussion in Section 4.1 was concerned mainly with the paths and the original links rather than the 

cells into which these are divided. However, the discussion below refers mainly to the cells.  

 

For traffic entering cell j in time interval t1, the path s.m.c. is 1, tj  and by rearranging the K-T 

condition (12.3) we can express this as  

)(')('1, jtjjtjtjjtjtjttj xgxgc 
          (12.3‟) 

It is unusual for both 
jt  and 

jt  to be nonzero for a cell j.  A nonzero 
jt  means that (11.1) is binding, 

i.e., the outflows jtv  from cell j are on the nondecreasing (or upward sloping) part )(' jtj xg   of the flow-

density function.  A nonzero 
jt  means that (11.2) is binding, i.e., the inflows jtu  to cell j are on the 

nonincreasing (or downward sloping) part )(' jtj xg   of the flow-density function. It is more usual that 

only one of (11.1) and (11.2) is binding for a cell j. Assuming only one is binding then complementarity 

implies that either 
jt  or 

jt  will be zero, which reduces (12.3‟) to  

)('1, jtjjtjtjttj xgc 
            (13.1) 

if )( '' tjjjt xgu   or  

)('1, jtjjtjtjttj xgc 
            (13.2) 

if )( jtjjt xgv  . From (12.2), 0jtv implies itjtjt    and, from (12.1), 0jtu  implies 

ktjtjt   . Substituting these for 
jt  and 

jt  above gives  
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)(')]('1[1, jtjitjtjjtjttj xgxgc 
           (14.1) 

or  

)(')]('1[1, jtjktjtjjtjttj xgxgc 
           (14.2) 

Equation (13.1) states that:  

(The s.m.c. of travelling from cell j to the destination, setting out a time t– 1) = (the s.m.c. if setting out 

one time interval later, at time t) + (the cost jtc  of waiting that extra time interval) – (the cost or penalty 

that would have had to be paid to enter the cell in time step t, but does not have to be paid since the traffic 

is already in the cell).  

Equation (13.2) can be interpreted similarly, but note that )(' jtj xg   in (13.2) is non-positive, since 

)( jtj xg   is the nonincreasing or downward sloping part of the flow-density function, hence this penalty 

term is added rather than subtracted in (13.2). This is because in (11.2) an additional unit in cell j 

increases jtx  so that if )( jtj xg   is downward sloping this reduces or restricts the inflow jtu  on the l.h.s. 

of (11.2) which imposes a system cost given by the dual variable for (11.2) namely 
jt .   

 

To help interpret the optimality conditions (14.1)-(14.2) we use the following lemmas.  

 

Lemma 1.  Let )(xg j  have the following usual properties:  

(a) )(xg j  is a nonnegative concave function which starts from the origin ( x , )(xg j ) = (0,0), and  

(b) )( jtj xg   jtx , that is, the amount exiting from a cell/ cell in time interval t can not exceed its current 

occupancy jtx . Then  

(c) the gradient )(' xg j  at the origin is  1 and (d) 0  )(' xg j   1.  

Proof.  (c) follows immediately from the assumptions )(xg j  = x  at the origin and )(xg j   x  for x  ≥ 0.  

(d) follows immediately from (c) and the concavity of )(xg j  for all x  ≥ 0.             

 

Lemma 2.  (a) The r.h.s. of (14.1) is c plus a weighted average (convex combination) of jt  and jt .  

(b) The r.h.s. of (14.2) is c plus a weighted average (convex combination) of jt  and kt .  

Proof.  (a). From Lemma 1(c), 0  )(' jtj xg    1, hence 0  ( )('1 jtj xg )  1 and (a) follows.  

(b).  )(' jtj xg   is negative hence (14.2) can be rewritten as 1, tj  = jtc  + ] |)('|1[ jtjjt xg  + 

|)('| jtjkt xg  where |.|  denotes the absolute value.  Almost all relevant empirical evidence indicates 

that the gradient of the upward sloping (congested) part )(' jtj xg   of the flow-density function is less 

steep than the upward sloping part )(' jtj xg  .  This implies |)('| jtj xg    )(' jtj xg  , hence 0  

|)('| jtj xg    1 since 0  )(' jtj xg    1, hence also 0  ( |)('|1 jtj xg )  1, and (b) follows.          

 

An interpretation of the marginal cost equations (14.1)-(14.2)  
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The dual variable 1, tj  on the l.h.s. of (14.1) and (14.2) is the s.m.c. of getting from cell j to the 

destination, for traffic that enters cell j in time interval t-1.  Equations (14.1) and (14.2) express this s.m.c. 

as a sum of three components, and we will interpret these three components in turn below.   

 

Because of equation (11.3), traffic that enters a cell j in time interval t-1 is included in the traffic jtx  on 

the cell only in the next time interval t, and becomes eligible to exit from the cell only in that time interval 

(constrained by (11.1)-(11.2)). That ensures that traffic entering a cell in any time interval can not exit 

from it until the next time interval. The cost of remaining in the cell for this single time interval is jtc , the 

first term on the r.h.s. of (14.1) and (14.2).   

 

The second and third terms on the r.h.s. of (14.1) and (14.2) have very natural interpretations, as follows.  

Consider (14.1), which assumes that )( jtjjt xgv   is a strict equality and )(' jtjjt xgv    is slack.  For 

traffic jtx  present in cell j in time interval t, two things occur.  Some traffic exits from the cell in time 

interval t (an amount )( jtjjt xgv  ) and some remain behind on the cell (an amount )( jtjjt xgx  ).  

Hence, of any “marginal” increment of the traffic jtx  in the cell, the amount that exits in time interval t is 

the first derivative of )( jtj xg  , i.e. )(' jtj xg  , and the amount that remains behind is the first derivative of 

)( jtjjt xgx  , i.e. )('1 jtj xg . Then:  

 

(a) For traffic that remains behind in cell j in time interval t the s.m.c. of travelling to the destination is 

jt  hence the s.m.c. for a marginal increment )('1 jtj xg  in the traffic remaining in the cell is jt

))('1( jtj xg  .  

(b) For traffic that exits from the link j in time interval t, the s.m.c. of travelling to the destination is the 

s.m.c. of travelling from the exit node k of link j to the destination, which is given by jt , the dual 

variable associated with equation (11.4).  It follows that the s.m.c. for a marginal increment )(' jtj xg   

in the amount exiting the link in time interval t is jt ( )(' jtj xg  .   

 

Thus for a unit of traffic that enters the link in time interval t-1, some exits from the link in time interval t, 

incurring an s.m.c. of jt ( )(' jtj xg  , and some remains in the cell in time interval t, incurring an s.m.c. of 

jt ))('1( jtj xg  .  Summing these two s.m.c. components, plus the cost jtc  already explained above, 

gives equation (14.1).  

 

5.  Introducing constraints on flows at merges and diverges in Programme S  
 

In Programme S it is assumed that when there are two or more links pointing into a node, traffic is free to 

exit from these links in any proportions that will reduce travel costs.  However, that is not always 

possible. For example, if traffic light timings are fixed, then each out-link is allocated only a fraction of 

the time. We can assume that the traffic light timings can be adjusted to match or facilitate the outflow 

patterns obtained from the solution of Programme S, so that the solution of S can be interpreted as also 

designing network flow controls to match the solution. But even in that case there are limits to how much 

the timings can be adjusted. It is not feasible to reduce signal green times below certain limits. Also, if the 

merge junction is not signalised, the proportions exiting from the various arms of a merge are determined 

by the junction layout, numbers of lanes, lane widths, etc., which are not variable in Programme S.  These 
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issues are further discussed in Lin and Liu (2010) which indicates the importance of modeling priorities at 

merges in the CTM and sets out ways to do this. Similarly, at diverges, traffic may have preferences or 

requirements for choosing among out-links from the diverge node and additional constraints would be 

needed to enforce these in Programme S.  

 

We consider how to include such features in the Programme S and what effect that may have on the 

optimality conditions and their interpretation. For simplicity we follow Daganzo (1995a) in considering a 

merge node with a single out-link and a diverge node with a single in-link. We assume that the merge 

node has two or more in-links and the diverge node has two or more out-links. For illustration we assume 

certain systems at merges and diverges but other control systems are possible. Also, for simplicity below, 

we use the same notation j to denote a link and also to denote the first or last cell of that link.  

 

Merges  

 

Consider a merge junction i consisting of two or more in-links )(iAj  and a single out-link 'j . The 

receiving capacity of the first cell of the out-link 'j  sets the current throughput capacity of the junction, 

i.e. )(  ''' tjjtj xgu  . Let the junction inflows be controlled so that a fraction ij  of the time or space is 

allocated to each in-link )(iBj  so that 1
)(

  iBj ij . This restricts the outflow from the last cell of 

each in-link to tjijjt uv '   . To introduce this behaviour into Programme S we need only add the 

following equations to the constraint set of S,  

tjijjt uv '     for )(' iAj , all )(iBj  and all NNi M       (15) 

where 
MN  is the set of merge nodes.  

 

Let jt  be the dual variables associated with constraints (15) when these constraints are inserted in 

Programme S. Since the constraints (15) are equalities the sjt '  can be positive or negative. Inserting 

(15) in Programme S adds jt  to the r.h.s. of the K-T equations (12.1) and (12.2). In (12.1) 
jt  is 

replaced by jtjt    and in (12.2) 
jt  is replaced by tjijjt  '  .  In view of that, the new K-T 

conditions can be interpreted in the same way as before, as in Section 4, except that the 
jt  and 

jt  

variables are now extended to include jt  or tjij  '  This is not surprising since, like the 
jt  and 

jt  

variables, the jt  variables are associated with entry and exit from each link.   

 

Since jt  appears in the K-T conditions it affects the values of the it ‟s which are s.m.c‟s used in 

deriving externalities and tolls. For example, equation (12.1), i.e.  jtjtkt  , becomes 

jtjtjtkt    . This in turn affects the values of the externalities and tolls computed in Section 4.1. 

Though the values are changed the rest of the discussion and results in 4.1 concerning externalities and 

tolls is unchanged.  

 

Note that (15) adds to the externalities and tolls for the same reason that any congested facility imposes an 

externality (an additional cost) on other potential users. If (15) is a binding constraint then the flows jtv  
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or tju '  in (15) must have squeezed out other potential users who will thus have to choose a less desirable 

(more costly) time-space path. jt  is the s.m.c‟s that this imposes.  

 

Diverges  

 

In programme S it is assumed that, at a diverge node, traffic is willing and able to exit from the in-link 

into any or all of the out-links in any proportions. For a single traffic type and a single destination that 

may be true.  However, even in that case drivers may have definite preferences or requirements among 

out-links. Daganzo (1995a) considers traffic at a diverge node with a single in-link, and assumes that the 

traffic has fixed preferences among the out-links hence exits to these in fixed proportions.  He assumes 

that traffic also respects first-in-first-out so that if the flow into an out-link is restricted (congested) or 

blocked that also holds back the traffic for the other out-links. To introduce that behaviour here, let the 

above exit proportions at a diverge node i be ij  for all )(iAj , 1
)(

  iAj ij . Let the inflow to the 

diverge node be tjv '  so that the inflow to each out-cell is tjijjt vu  ' , and summing these satisfies the 

conservation equation   )(iAj jtu = tjv  '  since the s'ij  sum to 1. To introduce this behaviour into 

Programme S we need only add the following equations to the constraint set of S,  

 tjijjt vu  '     for )(' iBj , all )(iAj  and all NNi D       (16) 

where NN D   is the set of diverge nodes. 

 

Let jt  be the dual variables associated with constraints (16) when these constraints are inserted in 

Programme S. Similar comments can be made about these as for the s'jt  for merges above. Since the 

constraints (16) are equalities the s'jt  can be positive or negative. Inserting (16) in Programme S adds 

jt  to the r.h.s. of the K-T equation in (12.1) and (12.2). In (12.1) 
jt  is replaced by jtjt    and in 

(12.2) 
jt  is replaced by tjijjt  '  .  In view of that, the new K-T conditions can be interpreted in the 

same way as before, except that the 
jt  and 

jt  variables are now extended to include jt  or tjij  ' . 

Again this is not surprising since again, like the 
jt  and 

jt  variables, the jt  variables are associated 

with entry and exit from each link.   

 

As for merges, the new terms jt  or tjij  '  in the K-T equations (12.1) and (12.2) affect the values of 

the s.m.c. variables it  which in turn affects the values of the externalities and tolls in Section 4.1, but 

again, though the values are affected the rest of the discussion and results in 4.1 is unchanged.  

 

6.  Extending to cost-elastic travel demands  
 

In the discussion so far we have assumed that the travel demands itD  are fixed, that is, they do not 

depend on any of the other variables in the problem.  However, in practice the origin-destination (O-D) 

travel demands may depend on the travel times or costs experienced or perceived by users, and the latter 

travel times or costs depend on the traffic flows.  Such travel demands are usually referred to as elastic or 

cost-elastic and can be introduced into Programme S by a slight extension of the well-known method used 

in models for static traffic assignment.  Recall that, in the latter, elastic travel demands are introduced by 
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taking the cost minimising objective function and replacing it with the maximizing the sum of the 

integrals of the inverse travel demand functions minus the travel costs.  

 

Thus, to introduce elastic demands, let the O-D travel demand from node i in time interval t be 

)( ititit cdD   where itc  is the cost experienced or perceived by a user travelling from node i to the 

destination, and let the inverse of this be )( ititit Dcc   where (.)itc  denotes (.)1
itd .  (In Appendix B we 

consider a different form of elastic demand.) The integral of this inverse function summed over all 

demand nodes and time intervals is     



T
t Ni D ititit

O
it

dDDcI 1 0
)(  , which can be interpreted as a 

measure of benefit to travellers.  To maximise net benefit (i.e. the above travel benefit function minus the 

travel costs (10)) proceed as follows: add the negative of the benefit function (i.e. I) to the objective 

function of Programme S, treat itD  as a variable rather than a constant in constraints (11.4) and leave 

Programme S otherwise unchanged.   

 

Now consider how the above introduction of elastic demands affects the K-T optimality conditions for 

Programme S, which are set out at the beginning of Section 4.  Since the demand functions )( ititit cdD   

can be assumed decreasing or non-increasing in itc , the inverse functions )( ititit Dcc   are decreasing or 

non-increasing in itD , hence the integral I is a concave function and the negative of the integral is a 

convex function.  It follows, as before, that the K-T conditions are necessary and sufficient to characterise 

an optimal solution of Programme S.  The K-T conditions are the same as before except that there is now 

an additional set of conditions,  

( itD )   )( ititit Dc ,      i  N
O
       (17) 

Inverting the latter gives )( ititit dD   as intended.  We saw in Proposition 1 that the s.m.c. of traversing 

any utilised time-space path from node i to the destination, setting out in time interval t, is given by the 

dual variable it .  Thus, (17) states that the travel demand itD  at each origin node increases up to the 

point where the s.m.c. it  of an additional trip is just equal to the travel cost )( itit Dc  that travellers are 

willing to incur to sustain that level of demand )( ititit dD  .  

 

7.  Concluding remarks  

 

Above we set out a system optimising model for a traffic network in which the flows within links are 

handled by a finite difference approximation to the LWR model.  From the model we show how to obtain 

system marginal costs (s.m.c‟s) and congestion externalities for each link and path of the network and 

discuss relationships among these. To obtain optimal tolls for paths or links it turns out that we can not 

follow the usual approach that is well-known from static assignment models, since neither the CTM or 

FDA based model nor their solution include any explicit expressions or variables for the link travel times 

experienced by users. These travel times are obtained by a computational procedure only after solving the 

CTM or FDA based model. We show that if tolls computed from the solution of the system optimising 

model are imposed on users then the system optimising solution also satisfies the criteria for a user 

equilibrium, that is, given these tolls, the DUE is also a DSO. For simplicity, the model as initially 

formulated does not handle restrictions on link outflow proportions at merges or link inflow proportions 

at diverges but these are introduced later in Section 5. We also extend the model to allow cost responsive 

travel demands, that is, let the travel demands realised at each origin node, at each point in time, depend 

on the current costs of travelling from there to the destination.  The results obtained for the fixed demand 

case continue to hold.  In an appendix we also set out interesting links between the cell-transmission 
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model, the present CTM or FDA based system optimising model and one of the oldest models developed 

for dynamic traffic assignment, namely the Merchant-Nemhauser model.   
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Appendix A: Comparing Programme S with the M-N model. 

 

The Merchant and Nemhauser (1978a, 1978b) model (MN model) is seldom mentioned in connection 

with the CTM or FDA model, but comparing them sheds interesting light on both, in particular on the 

“instantaneous” versus “ideal” system optimum, FIFO and causality for both models.  Here we compare a 

mathematical programming version of the FDA model ((10)-(11.5)) and CTM with versions of the MN 

model.  Comparisons of other aspects of these models can be found in Carey and McCartney (2004). 
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The objective function and constraints of an optimisation version of the FDA model are set out in (10)-

(11.5).  An optimisation version of the CTM is basically the same, except that in that, for the CTM, 

)( jtj xg   and )(' jtj xg   are straight lines, with positive and negative slope respectively.  The objective 

function and constraints of the MN model are the same as (10)-(11.5) but with (11.2) deleted.   

 

The MN model has usually been applied to “whole links”, though it has often been remarked that it it 

more accurate or appropriate to first divide the links into small segments and then apply the MN model.  

Hence suppose that:  

(a) Before applying the MN model, time and space (link lengths) are divided into small segments as 

in the CTM or FDA models, i.e., divide time into small intervals (say 1 second each) and divide 

each link into segments or “cells” such that the free flow travel time in each cell is exactly one 

time interval.]  

(b) Let the exit function )( jtj xg  consist of only the increasing, or nondecreasing, part )( jtj xg  , as 

was always assumed in the MN model.  

(c) Consider a single destination network, as was assumed in the MN model.   

 

Applying assumption (b) to the FDA model and to the CTM means that the “min” functions in each of 

these becomes a strict equality, i.e., it reduces to the strict equality version of (11.1), without (11.2).  But 

that reduces the Programme S ((10)-(11.5)) to the original MN model. Or in other words, assumptions (a)-

(c) make the MN model the same as an optimisation version of the FDA model or CTM.  

 

“Instantaneous” versus “ideal” system optimum.  

 

It has often been remarked that the MN model or versions of it yield an “instantaneous” rather than an 

“ideal” system optimum.  Ideal and instantaneous traffic assignment are defined in Section 4.1 above. If 

the MN model is a special case of the CTM (or FDA), then how can it yield an “instantaneous” DSO 

while the CTM/ FDA based Programme S yields an “ideal” DSO?  We will see that the MN model yields 

an instantaneous DSO only if we treat time in the MN model as continuous rather than as discrete time 

intervals, while treating links as whole links.  To see this, proceed as follows. Consider an increase in the 

exogenous demand itD  at node i in time interval t.  This increases the inflows jtu  to the some out-links 

from the node (via (11.4)), which increases the occupancy 1, tjx  of these links in the next time interval 

t+1 (via (11.3)), which increases outflows 1, tjv  from these links in time interval t+1 (via (11.1)).  Thus 

some of the traffic that enters link j at time t and will exit at time t+1, hence traverses the link in a single 

time interval.  If the time intervals are made sufficiently small or continuous then traffic traverses the link 

instantaneously even though the link may be long. Proceeding in this way from link to link yields an 

instantaneous outflow at the destination, which is why the solution of the continuous-time MN model is 

referred to as yielding an “instantaneous” DSO.  However, if we coordinate the discretisation of time and 

space so that each link (cell) takes at least one time interval to traverse then the time delay between entry 

and exit from a link will reflect the true travel time.  That is, the solution of the MN model can yield an 

“ideal” DSO.  Whether the MN model yields an instantaneous DSO or an ideal DSO depends on how we 

discretise time and space prior to applying the model.   

 

FIFO and “causality” in the MN model and the CTM and FDA model  

 

It is sometimes stated that the MN model does not satisfy FIFO.  If the MN model is a special case of the 

FDA model (or CTM)), then how can it violate FIFO while the others do not? The answer is, if 

appropriately interpreted, the MN model does not violate FIFO.  The reason why it is sometimes said to 

violate FIFO is that inflow to a link increases the amount of traffic jtx  in the link and it seems that some 
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of this traffic instantly becomes eligible to exit from the link due to equation (11.1), i.e. outflow 

)( jtjtj xgv  .  This is sometimes explained by saying that, in the MN model, the traffic entering a link 

“instantly spreads out uniformly along the whole link”, so that some of it becomes eligible to exit 

immediately together with traffic that entered earlier, thus violating FIFO.  However, an alternative 

interpretation of )( jtjtj xgv   is that, when additional traffic enters the link, the sequence order of traffic 

on the link is maintained and the traffic jtx  on the link instantly spreads (readjusts) itself uniformly along 

the link, retaining its FIFO sequence order.  That ensures that traffic exits in the same order that it entered, 

hence is consistent with FIFO.  However, this interpretation implies that the MN model exhibits at least a 

minor violation of “causality”.  An traffic assignment model is said to violate causality if traffic at any 

point in time in the model affects the behaviour of traffic that entered earlier, instead of affecting only 

traffic that entered later.  The above interpretation of the MN model means that traffic entering link 

causes the existing traffic on the link to adjust elastically forward or backward on the link so that it exits 

sooner or later than it otherwise would have, which violates causality. If the links and time intervals in the 

MN are long, then this causality violation can be significant.  Conversely, as the discretisation (of links 

and time) in the model is refined, the causality violations are reduced and in the continuous limit they do 

not occur.  Not that this same causality violation is also present in the CTM and FDA model. These 

models are defined as having a very fine discretisation of space and time, but with rougher discretisation 

they would exhibit a slight violation of causality.  This simply illustrates that the fact that any discrete 

approximation in almost any model tends to introduces some loss of accuracy. 

 

Appendix B  Introducing an aggregate demand function for each node  

 

In Section 6 we assumed a separate demand function for each node i in each time interval t.  It is 

sometimes assumed instead that only the travel demand function relates only to the aggregate travel 

demand  


T

t iti DD
1

 at each node i, thus )( iii cdD  .  In that case we can extend the discussion in 

Section 6 as follows.  The inverse demand function is then )( iii Dcc   where ic (.) denotes (.)1
id  and 

the integral of this, summed over all demand nodes and time intervals, becomes 

    



T
t Ni D iii

O
i

dDDcI 1 0
)(  .  As before, add (I) to the objective function of Programme S, but also 

include an extra set of constraints,  

( i )    


T

t iti DD
1

      i  N
O
      (18) 

and treat itD  as a variable in (18) and (11.4).  The K-T conditions (17) corresponding to the demand 

variable itD  now become  

( itD )   iit   ,      i  N
O
     (19) 

which means it  is the same for all t hence reduces to i .  There is also a new set of K-T condition 

corresponding to the aggregate demand variable Di , thus  

( iD )   )( iii Dc ,      i  N
O
      (20) 

Combining (19) and (20) gives )( iii Dc  which is similar to (17), i.e. )( ititit Dc , hence the 

discussion and interpretation following (17) above continues to hold in the present case.  A significant 

difference between (17) and )( iii Dc  is that the latter is independent of t and inverting gives 

)( iii dD   so that the demand is the same in each utilised time interval t. This arises here and in other 
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DTA models when users have only an aggregate demand over time (i.e. )( iii Dcc   subject to (18)) and 

no preference for setting out at any particular time t.  If the travel time (here the travel s.m.c.) was higher 

for entering at certain times, then users would simply keep switching to other entry times until the entry 

costs are the same at all entry times.  

 

The travel demands )( iii dD   indicate that users have no preference as to when they start their journeys 

and the model S contains no preferences as to when they end their journeys. That is typically considered 

unrealistic for the journey to work, since travellers usually have a desired or planned work start time or 

time interval. That can be introduced here in the usual way by inserting costs or penalties per unit time 

that the users are early or late at their destination. These costs can be attached to the inflows tju *  to a 

destination link *j , for example by adding an a cost aa ctt )(   for arriving per minute earlier than time 

at  and a cost bb ctt )(   per minute later than time bt . This will not significantly affect the discussion or 

analysis in the rest of this paper. It simply means that in the expressions for path marginal costs it  and 

jt  the cost associated with last link *j  will be aa ctt )(   or bb ctt )(   instead of being  tjc *  or zero.  

 


