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Abstract

The tolerable duration of continuous high-intensity exercise is determined by the hyperbolic Speed-tolerable duration (S-
tLIM) relationship. However, application of the S-tLIM relationship to normalize the intensity of High-Intensity Interval Training
(HIIT) has yet to be considered, with this the aim of present study. Subjects completed a ramp-incremental test, and series of
4 constant-speed tests to determine the S-tLIM relationship. A sub-group of subjects (n = 8) then repeated 4 min bouts of
exercise at the speeds predicted to induce intolerance at 4 min (WR4), 6 min (WR6) and 8 min (WR8), interspersed with bouts
of 4 min recovery, to the point of exercise intolerance (fixed WR HIIT) on different days, with the aim of establishing the
work rate that could be sustained for 960 s (i.e. 464 min). A sub-group of subjects (n = 6) also completed 4 bouts of exercise
interspersed with 4 min recovery, with each bout continued to the point of exercise intolerance (maximal HIIT) to determine
the appropriate protocol for maximizing the amount of high-intensity work that can be completed during 464 min HIIT. For
fixed WR HIIT tLIM of HIIT sessions was 399681 s for WR4, 8926181 s for WR6 and 15176346 s for WR8, with total exercise
durations all significantly different from each other (P,0.050). For maximal HIIT, there was no difference in tLIM of each of
the 4 bouts (Bout 1: 229627 s; Bout 2: 262637 s; Bout 3: 235649 s; Bout 4: 235653 s; P.0.050). However, there was
significantly less high-intensity work completed during bouts 2 (153.5640. 9 m), 3 (136.9638.9 m), and 4 (136.7639.3 m),
compared with bout 1 (264.9658.7 m; P.0.050). These data establish that WR6 provides the appropriate work rate to
normalize the intensity of HIIT between subjects. Maximal HIIT provides a protocol which allows the relative contribution of
the work rate profile to physiological adaptations to be considered during alternative intensity-matched HIIT protocols.
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Introduction

In classic epidemiological data it is well established that there

are significant health benefits associated with leading a physically

active lifestyle (e.g. [1,2,3]). This assertion is further strengthened

by the demonstration that training interventions can increase the

maximal rate of pulmonary oxygen uptake ( _VVO2max) (a primary

measure of physical fitness/exercise capacity and performance,

and a strong predictor of all-cause mortality [4,5]) (e.g. [6,7]); and

improve both metabolic and cardiovascular function when

integrated as part of a lifestyle intervention or rehabilitation

program (e.g. [8,9,10,11]). Hence, exercise training has the

capacity to improve both performance/exercise tolerance and

reduce risk factors for both metabolic and cardiovascular disease.

Therefore, given the implications of training for improving

exercise performance, and in the prevention/rehabilitation of

chronic disease, establishing optimal training strategies – not only

to maximize training adaptations and associated health-related

benefits, but also to improve participation and adherence in the

general population – is of critical importance.

Key in this regard is the intensity of the exercise. It has been

suggested that improvements in physiological functioning resulting

from exercise training exist on a continuum [12,13,14], such that

continuous higher-intensity exercise leads to greater benefits than

that of a moderate-intensity [6,15,16,17]. However, accumulation

of high volumes of continuous, progressively higher intensity

exercise is limited by the mechanisms that result in rapid exercise

intolerance – i.e. tolerable duration is intensity dependent [18,19].

This has led to significant interest in High-Intensity Interval

Training (HIIT). Repeated short-duration (i.e. ,30 s) all-out

Wingate-style HIIT; i.e. Sprint Interval Training (SIT) is popular,

and has been demonstrated to effectively improve endurance

capacity and time-trial performance [20,21,22,23], muscle oxida-

tive enzyme activity [20,21,22,23] and aerobic capacity ( _VVO2max)

([21,24]), as well as specific health-related parameters such as

insulin sensitivity [24,25], blood pressure [24] and vascular

function [26] in a time-efficient manner (compared with current

moderate-intensity physical activity guidelines; i.e. 150 min/week;

[27]).

Despite the significant evidence demonstrating benefits in both

health and performance related parameters with short-duration

(i.e. ,30 s) SIT, there is evidence to suggest there may be similar,

or even greater benefits attained from lowering the absolute work

rate, prolonging the duration of the high-intensity interval (i.e.
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,4 min) and performing this as either an all-out sprint (matched

for total work with a SIT session; [28]), or at a constant WR, in

both health and disease (e.g. [10,11,12,29,30]). However, when

high-intensity constant-load exercise bouts are extended beyond

,2 min, exercise tolerance is shaped by the hyperbolic Power-

tolerable duration (P-tLIM) relationship (analogous to the Speed-

tolerable duration (S-tLIM) relationship in treadmill exercise)

[18,31]. The P-tLIM relationship is therefore of critical significance

when trying to identify the correct WR for an HIIT protocol in

which the exercise bouts are prolonged.

In the P-tLIM model, once a critical threshold (i.e. the critical

power (CP) or critical speed (CS)) is exceeded – with this the

asymptote of the P-tLIM relationship which represents the upper

limit for which a steady-state in _VVO2, arterial blood acid-base

status and intramuscular phosphocreatine and inorganic phos-

phate can be attained [18,32] – tolerable duration is predictably

determined by the rate at which a fixed quantity of work above the

CP asymptote is performed. This fixed quantity of supra-CP work

is termed W9 (cycle ergometry) or D9 (treadmill exercise), with this

hypothesized to reflect either a fixed energy store associated with

O2 deficit-related mechanisms (i.e. muscle phosphocreatine, stored

O2, glycolysis/glycogenolysis) or the accumulation of related

fatigue metabolites (e.g. intramuscular inorganic phosphate and

H+, interstitial K+) to a fixed critical limit [18,32,33]. As the

asymptote (CP) of the hyperbolic P-tLIM relationship does not

change with prior exercise [34,35], subsequent high-intensity

(supra-CP) exercise tolerance is therefore determined by the

balance between the extent of W9 depletion in the preceding bout

and subsequent W9 repletion during the intervening recovery

period [34,35,36].

Despite this, there has been little consideration of the P-tLIM

relationship when determining the ‘intensity’ (or more correctly,

the work rate) for HIIT that is comprised of exercise bouts longer

than ,2 min, with studies typically defining the work rate used

based on % HRmax (,95% HRmax; [10,11,12,30]) or % _VVO2max

(,90% _VVO2max; [29,37,38]). However, as CP does not occur at a

fixed % of HRmax or _VVO2max [19] and W9 does not represent the

same volume of supra-CP exercise in all individuals (e.g. [39])

these approaches are sub-optimal. The consequence is that the

metabolic stress and thus the exercise intensity experienced during

the HIIT program will be variable between participants unless the

P-tLIM is accounted for. However, given the proposed relationship

between intensity and both health- and performance-related

fitness benefits [12,13,14], and the potential for the duration of

the high-intensity exercise bout to have an impact on the training

adaptations [28], the P-tLIM relationship should be taken into

account when normalizing the intensity of HIIT to appropriately

investigate these assertions.

HIIT protocols comprising 464 min bouts are commonly used

in both health and disease as a viable, more effective training

protocol than traditional moderate-intensity interventions (e.g.

[10,11,12,29,30]). Hence, the purpose of this investigation was to

determine the appropriate constant-WR for a 464 min HIIT that

would allow for the completion of the desired 464 min bouts,

normalizing the intensity of HIIT between individuals, and then

consider how the P-tLIM relationship can be applied to maximize

the volume of high-intensity work that can be completed in

464 min bouts in a HIIT program, thus making longer duration

HIIT analogous to SIT (i.e. all-out effort in each bout) and

providing a method to consider the relative importance of the

work rate profile during intensity-matched training to the

physiological adaptations. We hypothesized that for constant-

WR HIIT the P-tLIM relationship can be used to identify the WR

that normalizes the intensity of a 464 min HIIT protocol. In

addition, we hypothesized that W9 depletion and subsequent W9

repletion occurs at a fixed rate, allowing the P-tLIM relationship to

be used to maximize the volume of work that can be completed in

a 464 min HIIT program.

Methods

Subjects
A total of 11 healthy, recreationally active males (mean 6

standard deviation (SD); age 2364 yr; height 17865 cm; mass

7265 kg) who met the inclusion criteria (i.e. recreationally active

males, aged 18–35 yr who were free from illness or any medical

condition) volunteered, and provided written informed consent to

participate in the study (as approved by the Faculty of Biomedical

and Life Sciences Ethical Committee for non-clinical research,

University of Glasgow, in accordance with the Declaration of

Helsinki). All subjects were well accustomed to high-intensity

exercise. Although none of the subjects were participating in

competitive training at the time of the study 2 subjects had a

running background, with the others involved in recreational

running training. Following familiarisation with all equipment,

protocols and procedures, subjects visited the laboratory on at least

6 separate occasions, each at a similar time of day, with at least

24 hr between each test. Each individual participated in no more

than 3 experimental sessions in any given week. For each test,

subjects were instructed to arrive rested (no strenuous exercise in

the previous 24 hr), and having abstained from alcohol (24 hr),

food (2 hr minimum) and caffeine ingestion (4 hr) prior to each

test. Throughout the study participants were asked to consume

their normal diet, and prior to all testing, arrive at least 2 hr

postprandial having consumed a normal, healthy meal.

Equipment and measurements
All exercise tests were conducted on a motor driven program-

mable treadmill (PPS Med, Woodway, Weil am Rhein, Germany)

set at a gradient of 1% to take into account the lack of air

resistance with indoor treadmill running, and thus match the

energetic cost of the treadmill exercise with that of outdoor

running [40]. During all tests subjects breathed through a

mouthpiece connected to a large 2-way non-rebreathing valve

(2700 series, Hans Rudolph, Shawnee, KS, USA), allowing

collection of the respired gas (via a 1.5 m length of 3.5 cm

diameter tubing) in a Douglas bag. This allowed measurement of

the expired gas concentrations (Paramagnetic (O2) and Infrared

(CO2) analyzers; Servopro 4100 gas analyzer, Servomex, Crow-

borough, UK) and gas volume (Dry gas meter; Harvard

Apparatus, Edenbridge, UK), thus allowing calculation of gas

exchange variables (specifically _VVO2). Prior to each test the gas

analyzers were calibrated in accordance with manufacturers

guidelines using precision analyzed gases which spanned the

physiological range of inspired and expired gas concentrations,

with gas mixtures re-sampled post-test to confirm stability in

relation to the initial gas calibration.

Throughout all tests heart rate (HR) was measured and

recorded every 5 s using a short-range telemetry HR monitor

(S610i, Polar Electro Oy, Kempele, Finland). At specific time

points in all protocols a small sample (approximately 25 ml) of

capillary blood was obtained from the fingertip of the heated hand

and analyzed immediately post-test for whole-blood [lactate]

([L2]) using an automated analyzer (GM7, Analox Instruments,

London, UK). The analyzer was calibrated using an 8 mM

standard L2 solution, the concentration of which was also checked

post-test to confirm the validity of the measurements obtained.

Interval Training and Exercise Intensity
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Exercise protocols
All exercise tests were preceded by a period of at least 6 min

brisk walking at a speed of 5.5 km?h21 (with the exception of the

incremental-ramp test; see below for details), and concluded with a

period of 6 min walking at a speed of 4.0 km?h21. For each test,

subjects were instructed to run as long as possible (i.e. to the point

of exercise intolerance), and at the point at which they could not

longer maintain the set treadmill speed – despite strong verbal

encouragement – they were instructed to support their weight on

the handrails and straddle the treadmill. At this point (i.e. exercise

intolerance) the speed of the treadmill was immediately reduced,

and the 6 min cool-down at 4.0 km?h21 commenced. For a

schematic of the exercise protocols please refer to Figure 1.

Incremental-ramp test. This test, to exercise intolerance,

was performed to determine peak _VVO2 ( _VVO2peak), and establish an

appropriate starting speed to characterize the S-tLIM relationship

(see below). In the incremental-ramp test, following a period of

6 min running at 8 km?h21, speed was increased at a rate of

1 km?h21?min21, until the point of exercise intolerance (Figure 1).

Once the subject was considered to be close to the point of exercise

intolerance, serial expired gas samples of a 60 s duration were

collected in Douglas bags to ensure _VVO2peak was captured. In the

event that the limit of tolerance was obtained less than ,20 s into

the gas collection, the value obtained from the previous 60 s gas

collection was assumed to be _VVO2peak.

Characterization of the Speed-tolerable duration (S-tLIM)

relationship. A randomized series of four separate constant-

speed tests were conducted across a range of speeds selected to

induce intolerance within a duration of ,3–20 min [18]. During

these tests the treadmill speed was rapidly increased to that

required (treadmill acceleration 0.72 km?h21?s21, 0.200 m?s21?

s21) from the 5.5 km?h21 baseline, with subjects instructed to

continue running at this speed until the point of exercise

intolerance (Figure 1). From these tests the S-tLIM relationship

Figure 1. Schematic of the treadmill speed profiles performed during the Incremental-ramp test, the constant-speed tests for
characterization of the Speed-tolerable duration (S-tLIM) relationship – dotted line (top left and right respectively), the fixed HIIT
protocols in which 4 min bouts at WR4, WR6 or WR8 were alternated with 4 min recovery bouts until the limit of tolerance was
attained (middle row), and the maximal HIIT protocol in which each bout was performed to the limit of tolerance, with a fixed
4 min recovery between each bout (bottom). N represents the limit of exercise tolerance in all protocols.
doi:10.1371/journal.pone.0076420.g001
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was characterized, with CS (intercept) and D9 (slope), the

parameters of this relationship, estimated using least-squares

linear regression of the linear S-tLIM
21 relationship (i.e. S = (D9/

tLIM)+CS) [18]. Following estimation of the parameters of the S-

tLIM relationship within acceptable limits (defined as the standard

error (SE) of the estimate being less than 2% for CS and 10% for

D9; requiring additional tests at a different speed in 2 subjects), the

speeds predicted to induce exercise intolerance at 4 min (WR4),

6 min (WR6) and 8 min (WR8) were derived by interpolation of

the S-tLIM relationship, and used as the work rates for the ‘‘ON’’

bouts for the interval training sessions.
_VVO2 in these tests was measured in the final minute of the

5.5 km?h21 warm-up, thus establishing the baseline _VVO2. _VVO2peak

was established by serial sampling of the expired gas (60 s

collections) once the subject was considered to be close to the point

of exercise intolerance (see Incremental-ramp test protocol above

for further details). This _VVO2peak was confirmed as _VVO2max for

each subject by establishing no difference in the _VVO2peak attained

with increases in constant-speed. Capillary blood samples were

taken for lactate concentration ([L2]) analysis at rest, 30 s prior to

the end of the 5.5 km?h21 warm-up and immediately following

the attainment of the limit of tolerance.

Fixed WR HIIT. A sub-group of 8 subjects completed a series

of 3 HIIT sessions, one at WR4, WR6 and WR8, in a random

order. Following the completion of the 5.5 km?h21 warm-up, the

work rate alternated between 4 min of the appropriate ON work

rate (i.e. WR4, WR6, or WR8) and 4 min brisk walking at

5.5 km?h21. This was repeated until the point of exercise

intolerance, or until a maximum of 8 ON bouts were completed

(Figure 1), allowing the total ON time, % of the target 16 min ON

duration (i.e. 4 ON bouts of 4 min) to be calculated for each of the

work rates performed.

Maximal HIIT. Given that effort is not maximal until the

final bout in the fixed-WR HIIT protocol, a sub-group of 6

subjects completed a HIIT session in which the aim was to

maximize effort in each of the 4 ON bouts, thus maximizing the

amount of high-intensity work that can be completed with this

format of training (i.e. analogous to SIT), with an anticipated

duration of 4 min for each bout. The first ON bout was conducted

at WR4 until the point of exercise intolerance was attained (at

which point D9 is theorized to be fully ‘depleted’; [18,31,35]). The

remaining 3 ON bouts were conducted at WR8 and continued

until the point of exercise intolerance, with this theorized to result

in a tLIM of ,4 min (based on evidence suggesting a D9 recovery

of ,50% with an intervening recovery of 4 min [35]; Figure 1). In

each ON bout tLIM was recorded and used to calculate the extent

of D9 recovery in the preceding recovery period, and the amount

of supra-CS work done for each bout.

During both HIIT protocols, ‘‘baseline’’ _VVO2 was measured in

the final 60 s of the initial 5.5 km?h21 warm-up, and in the final

60 s of each 4 min recovery between each ON bout. _VVO2peak was

also measured in the final 60 s of each ON bout, with serial

sampling conducted when the subject was considered to be close to

their tolerable limit (see above) to ensure _VVO2peak was captured at

the point of intolerance. Similarly, capillary blood samples were

taken for [L2] analysis at rest, 30 s prior to the end of the

5.5 km?h21 warm-up and 30 s prior to the onset of the next ON

bout (‘‘baseline’’), immediately following the completion of each

ON bout and immediately at the point of exercise intolerance.

Subjects were informed during the HIIT protocols that if access to

water was required this could be provided during the fixed 4 min

recovery periods.

Analysis
Normal data distribution was confirmed using Kolmogorov-

Smirnov test. A one-way ANOVA for repeated measures, with

post hoc analysis (bonferroni) where appropriate, was used to

compare _VVO2peak and peak [L2] values obtained in all protocols

and baseline _VVO2 and [L2] values obtained during the maximal

HIIT protocol. Similarly this test was used to compare the ON

duration sustained during HIIT at WR4, WR6 and WR8, and the

amount of supra-CS work performed during each interval during

the maximal HIIT protocol. In addition, where appropriate,

Cohen’s d was used of provide a measure of the Effect size. The a
was set at 0.050. Values are expressed as mean 6 SD unless

otherwise stated.

Results

Incremental-ramp test
_VVO2peak (4.1260.42 l?min21; 57.664.3 ml?kg21?min21; Range

50.9–65.0 ml?kg21?min21) was attained at an average speed of

18.961.8 km?h21 during the incremental-ramp test. Peak [L2]

was 8.961.4 mM, and peak HR was 19268 beats?min21.

Characterization of the S-tLIM relationship

The individual values for _VVO2peak were not influenced by

treadmill speed (P.0.050), hence the mean of these values was

taken as _VVO2max (4.1360.39 l?min21). Similarly, there was no

difference in peak [L2] (P.0.050; mean 8.561.3 mM) or peak

HR (P.0.050; mean 18868 beats?min21) with work rate at the

point of exercise intolerance. Tolerable duration was well

described by a hyperbolic function of the external treadmill speed,

with the SE of the CS and D9 estimates of this relationship

,0.06 m?s21 (,2%; Range 0.3–1.8%) and ,18 m (,10%;

Range 1.6–7.9%), respectively, in all instances (Figure 2). CS

and D9 averaged 3.85360.429 m?s21 (equivalent to

13.961.5 km?h21) and 269.1673.2 m, respectively. WR4, WR6

and WR8 interpolated from this S-tLIM relationship were

4.97460.527 m?s21 (17.961.9 km?h21), 4.60060.475 m?s21

(16.661.7 km?h21) and 4.41360.455 m?s21 (15.961.6 km?h21),

respectively.

Fixed WR HIIT
In the sub-group of 8 subjects who completed the 3 fixed work

rate HIIT sessions at WR4, WR6 and WR8 the tolerable duration

of the HIIT sessions were 399681 s (95% CI; 331–467 s),

8926181 s (95% CI; 741–1044 s), and 15176346 s (95% CI;

1228–1807 s), respectively with total ON durations all significantly

different from each other (P,0.050) (Figure 3A). This was

equivalent to 41.668.4% (95% CI; 34.5–48.6%), 93618.9%

(95% CI; 77.2–108.8%) and 158.1636.1% (95% CI; 127.9–

188.2%) of the target 960 s (i.e. 464 min) ON duration. There

was, however, no difference in the _VVO2 attained at the limit of

tolerance of WR4, WR6 or WR8 protocols, with this _VVO2 not

different from _VVO2max in this cohort of 8 subject (P.0.050), thus

confirming _VVO2max was attained in all protocols. However, there

was a tendency for the _VVO2 attained during WR8 to be lower than
_VVO2max (Cohen’s d = 0.55) due to some subjects being able to

complete the maximum 8 ON bouts, hence these subjects did not

attain the point of exercise intolerance before the protocol was

terminated (Figure 3B; Table 1). Similarly, there was no difference

in peak HR at the point of exercise intolerance in all protocols

(P.0.050; Table 1). In addition, peak [L2] was not significantly

different from that attained during the constant-speed tests used to
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characterize the S-tLIM relationship at the point of exercise

intolerance in WR6 and WR8 (P.0.050); however, peak [L2] was

significantly higher in WR4 at the point of exercise intolerance

than that attained in all other protocols (P,0.050; Table 1). Thus

WR6 provides the appropriate work rate to normalize the intensity

of HIIT to the very-heavy intensity domain, with this speed

equivalent to 8863% (Range 83–93%) of the speed attained at
_VVO2max in the incremental-ramp test.

Maximal HIIT
In the sub-group of 6 subjects who completed this protocol,

there was no significant difference in tolerable duration for each of

the 4 ON bouts (ON Bout 1: 229627 s; Bout 2: 262637 s; Bout 3:

235649 s; Bout 4: 235653 s; P.0.050); with _VVO2max attained in

each of the 4 ON bouts (Table 2; Figure 4). Although there was a

statistical difference in the _VVO2 attained at the point of exercise

intolerance between ON bouts 2 and 3 (P = 0.047), neither of these

was different from _VVO2max determined during the constant-speed

tests (P.0.050), and there was less than a 0.20 l?min21 difference

Figure 2. The relationship between speed and tolerable duration for 4 constant-speed tests (continued to exercise intolerance) in a
representative subject (N). A hyperbolic relationship has been fitted to these data (solid line) allowing estimation of critical speed and D9. Also
plotted is the _VVO2 for each of these constant-speed tests (#), demonstrating _VVO2max was attained in each test.
doi:10.1371/journal.pone.0076420.g002

Figure 3. Left panel: The tolerable duration of HIIT at WR4, WR6 and WR8 (i.e. the work rate interpolated from the Speed-tolerable
duration relationship to induced exercise intolerance in 4 min, 6 min and 8 min if performed at a constant speed), relative to the
target HIIT duration of 960 s (i.e. 464 min; dotted vertical line). Right panel: The corresponding _VVO2 attained at exercise intolerance during

HIIT at WR4, WR6 and WR8, relative to _VVO2max (dotted line), and that attained in the constant-speed (CL) tests. Note _VVO2max was attained in all

protocols, although _VVO2 during HIIT at WR8 was slightly (insignificantly) lower due to some subjects being able to complete the maximum 8 bouts.
doi:10.1371/journal.pone.0076420.g003
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between all measurements of _VVO2 at the point of exercise

intolerance in all subjects and _VVO2max. Hence, _VVO2 remained well

within the expected test-retest variability of 10% [41]. Similarly,

there was no difference in HR at the point of exercise intolerance

between each of the ON bouts, or that attained during the

constant-speed tests (P.0.050; Table 2). In addition, although

there was a significant difference in peak [L2] between ON bouts

1 and 2 (P,0.050), there was no difference in peak [L2] between

all other bouts, and that attained in the constant-speed tests

(P.0.050; Table 2).
_VVO2 prior to each ON bout was elevated compared to the pre-

exercise baseline value (P,0.050), however this was not signifi-

cantly different between recovery (REC) bouts (P.0.050; Table 3,

Figure 4). Similarly HR was elevated compared to the pre-exercise

baseline value (P.0.050); however, there was no significant

difference between the HR attained during the recovery bouts

(Table 3). In addition, [L2] was significantly elevated prior to the

pre-exercise baseline value in all recovery bouts (P.0.050);

however, there was no significant difference in [L2] attained

between each intervening recovery bout (P.0.050; Table 3).

These results are consistent with the finding that there was no

difference in supra-CS work in Bout 1 compared with D9

(264.9658.7 m vs. 283.7679.5 m; P.0.050), but that there was

significantly less work accomplished in ON bouts 2, 3 and 4

(P,0.050), with the amount of supra-CS work not different

between these bouts (Bout 2: 153.5640. 9 m; Bout 3:

136.9638.9 m; Bout 4: 136.7639.3 m; Figure 5; P.0.050)

suggesting a constant rate of D9 ‘recovery’ – thus fixed quantity of

D9 recovered in 4 min – between bouts. D9 recovery averaged

54.767.8%, 48.9610.2% and 48.9611.2% for bouts 2, 3 and 4

respectively, with this recovery not significantly different between

bouts (P,0.050).

Discussion

This is the first study to apply the S-tLIM relationship to identify

the appropriate work rate for HIIT to normalize the relative

intensity between subjects to the very-heavy intensity domain,

identifying that WR6 for a 464 min HIIT session provides the

appropriate balance between D9 depletion during the ON bouts,

and repletion in the intervening 4 min recovery period that

allowed for the completion of the required ,4 (3.760.7; i.e. 93%)

ON bouts. Hence, this protocol allows for the appropriate

consideration of the role of exercise intensity in determining

training adaptations, normalizing this between individuals. Fur-

thermore, this study establishes a protocol that, with knowledge of

the extent of D9 recovery between bouts, maximizes the amount of

high-intensity work that can be completed in a 464 min HIIT

protocol, precisely normalizing the intensity of both the overall

session, and each ON bout (i.e. each ON bout resulted in the

attainment of _VVO2max). Hence, this protocol provides a means of

differentiating the relative importance of the work rate profile (c.f.

SIT) and exercise intensity to promote physiological adaptations.

Exercise intensity
While a specific work rate can be of a high absolute intensity

(e.g. 100% _VVO2max) when performed as a continuous bout, this

same specific work rate can be undertaken during HIIT in a

manner which means the overall intensity of the training session

can be either moderate, (metabolic rate,Lactate threshold (LT),

no sustained metabolic acidosis), heavy (metabolic rate.LT,CS/

CP, sustained metabolic acidosis which eventually attains a steady-

state) or very-heavy/severe (progressive increase in _VVO2, resulting

in the attainment of _VVO2max if continued to tLIM, progressive

metabolic acidosis which continues throughout the exercise until

tLIM) [19,42]. While the specific work rate performed in relation to

the overall intensity of training is not a consideration in short-

duration SIT, as the ,30 s sprints are an all-out effort (e.g.

[20,21,22,23,24]) with this long enough to result in the attainment

(or very near attainment) of HRmax and _VVO2max in each sprint (i.e.

very-heavy/severe intensity), the specific work rate used during

HIIT is an essential consideration with respect to exercise intensity

(and normalizing this between participants) when the duration of

the ON exercise bout is extended.

Exercise bouts of 4 min are frequently used in HIIT both for

health and performance benefits (e.g. [9,10,12,29,30]) in the

format of a 464 min training session, with an intervening recovery

of 3–4 min. Typically work rate is determined from % HRmax or

% _VVO2max; however, this fails to account for the variability of the

derived work rate with respect to the parameters of the high-

intensity relationship (i.e. CS and D9) between individuals (e.g.

[19,39]). This is highlighted by the result in this study that WR6

exists at 87% of the speed attained at _VVO2max in the incremental-

ramp test, but with a range of 83–93%. In addition, any specific

prescribed % _VVO2 or % HR during HIIT is only attained

fleetingly as a steady-state is never achieved, with these variables

continuing to increase towards their respective maxima through-

out each bout [19]. However, by accounting for the S-tLIM

relationship during treadmill running to normalize exercise

intensity we were able to demonstrate that WR6 (i.e. the work

rate derived from the S-tLIM relationship that leads to the limit of

tolerance in 6 min) was optimal, providing the required balance

between D9 ‘‘depletion’’ during ON bouts and ‘‘repletion’’ during

the intervening recovery that allowed for the completion of the

required ,4 ON bouts. As this resulted in the attainment of
_VVO2max and peak lactate in the final bout this, by definition

[19,42], puts the overall intensity of training for all subjects within

the very-heavy intensity domain.

Maximal HIIT
While WR6 defines a work rate for HIIT that normalizes

intensity to the very-heavy intensity domain for 464 min HIIT,

with this resulting in a high _VVO2 and HR (with these variables

continuing to increase towards their respective maxima through-

out each bout until the limit of tolerance is attained), maximal

effort is not required until the final bout (c.f SIT; [43]). Therefore,

while WR6 normalizes exercise intensity it does not maximize the

Table 1. _VVO2max, HR and [L2] attained at the limit of
tolerance during Control, and fixed WR HIIT protocols
performed at WR4, WR6 and WR8.

Control WR4 WR6 WR8

_VVO2max (l?min21) 3.9560.26 3.9460.23 3.9260.21 3.8160.25

HR (beats?min21) 188643 19063 18966 18864

[L2] (mM) 8.461.1 9.761.1* 8.561.5 8.061.0

Values are means 6 SD. _VVO2max (maximal rate of pulmonary oxygen uptake);
HR (heart rate) and [L2] (Lactate concentration) measured at the limit of
tolerance during the constant-speed tests used to characterize the Speed-
tolerable duration (S-tLIM) relationship (Control) and during HIIT performed at
WR4, WR6 and WR8 (work rates predicted to induce exhaustion at 4, 6 and 8 min
respectively).
*Significantly higher [L2] than that attained in Control, WR6 and WR8 protocols.
doi:10.1371/journal.pone.0076420.t001
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amount of supra-CS work that can be completed during 464 min

HIIT. For high-intensity, supra-CS exercise of ,2–30 min

tolerable duration is dependent on the rate of D9 depletion, with

this rate of depletion increasing proportionally with work rate.

Therefore, interpolating WR4 from the S-tLIM relationship

maximizes supra-CS work on Bout 1 of 464 min HIIT (Bout 1

tLIM: 229627 s; Range 117–248 s), with this leading to the

attainment of HRmax and _VVO2max. As CS is unchanged following

fatiguing exercise, subsequent exercise tolerance is dependent

exclusively on the extent of D9 recovery, with this demonstrated to

be ,50% in 4 min recovery [35]. Hence, in Bout 2 WR8 should

be sustainable for ,4 min, thus providing the necessary work rate

to maximize supra-CS work in 4 min. In this study as D9 recovery

averaged ,50%, and confirms the assumption that the extent of

D9 recovery does not differ between repeated bouts [44], WR8 is

then the appropriate work rate for bouts 2, 3 and 4 to maximize

the amount of supra-CS work that can be accumulated in 4 min

(tLIM: Bout 2: 262637 s; Bout 3: 235649 s; Bout 4: 235653 s),

and provides a protocol to maximize the amount of supra-CS

work that can be accumulated in 464 min HIIT, resulting in the

attainment of HRmax and _VVO2max in each bout. This makes this

464 min HIIT analogous to SIT, allowing the relative contribu-

tion of the work rate profile, when matched for exercise intensity,

to be investigated. These data also confirm the assumption that

during this 464 min HIIT protocol performance is determined by

the S-tLIM relationship, with the profile of D9 depletion and

recovery alone ‘‘shaping’’ supra-CS exercise tolerance [44].

Consideration of the work rate profile of HIIT and
practical applications

By correctly defining and normalizing the intensity of HIIT

between participants to maximize the amount of supra-CS work

that can be accumulated in a 464 min HIIT protocol, thus

ensuring the same metabolic stress throughout training, this allows

appropriate comparison of different interval training strategies

(e.g. short vs. long duration ON bouts). Hence, the relative

Figure 4. The _VVO2 response during the maximal HIIT protocol. Although there was some (insignificant) variability in ON duration at WR4

(bout 1) and WR8 (bouts 2, 3 and 4) (horizontal error bars), note the constancy of the _VVO2 attained, with this indistinguishable from _VVO2max. Similarly,

although _VVO2 did not recover to baseline (BASE) following 4 min recovery (REC; P,0.050, w), there was no difference in the _VVO2 attained in REC
following WR4 (bout 1) or WR8 (bouts 2 and 3).
doi:10.1371/journal.pone.0076420.g004

Table 2. _VVO2max, HR and [L2] attained at the limit of
tolerance during the control and maximal HIIT protocols.

Control
ON
Bout 1

ON
Bout 2

ON
Bout 3

ON
Bout 4

_VVO2max (l?min21) 4.2260.51 4.2860.47 4.2960.53 4.1860.48 4.2060.53

HR (beats?min21) 19063 18866 18569 18965 18866

peak [L2] (mM) 8.261.1 7.261.5* 9.761.6 9.361.2 9.161.4

Values are means 6 SD. _VVO2max (maximal rate of pulmonary oxygen uptake);
HR (heart rate) and [L2] (Lactate concentration) measured at the limit of
tolerance during the constant-speed tests used to characterize the Speed-
tolerable duration (S-tLIM) relationship (Control) and ON bouts 1, 2, 3 and 4 of
the maximal HIIT protocol.
*Significantly lower [L2] than that achieved in Bout 2.
doi:10.1371/journal.pone.0076420.t002

Table 3. _VVO2max, HR and [L2] attained at the pre-exercise
baseline, and in the 4 min recovery bouts during the maximal
HIIT protocol.

Baseline REC 1 REC 2 REC 3

_VVO2max (l?min21) 1.3760.13 1.6460.18* 1.6760.24* 1.6160.20*

HR (beats?min21) 10866 13267* 13367* 13768*

peak [L2] (mM) 0.960.2 9.261.4* 8.861.3* 8.661.9*

Values are means 6 SD. _VVO2max, maximal rate of pulmonary oxygen uptake;
HR, heart rate; [L2], Lactate concentration and; REC, recovery bout.
*Significantly higher than the pre-exercise baseline.
doi:10.1371/journal.pone.0076420.t003

Interval Training and Exercise Intensity

PLOS ONE | www.plosone.org 7 November 2013 | Volume 8 | Issue 11 | e76420



contributions of both exercise intensity and the intermittent/

interval work rate profile to any training induced physiological

adaptations can be appropriately deconvoluted, with this having

important implications when investigating the mechanistic basis

for training adaptations.

While exercise intensity is an essential consideration with

regards to training adaptations [16,30,45,46,47] there is evidence

emerging that the actual work rate profile is also important

[12,28]. Even when appropriately matching for exercise intensity

and total work the physiological changes during HIIT (in terms of,

for example, the dynamics and proportional contribution of the

different energy systems to the energy demand, and blood flow

dynamics) will be significantly different with short, compared with

long ON bouts. That is, when the overall intensity of the exercise

session is controlled, but the duration of the ON bout is extended,

there is a proportionally greater aerobic contribution to the overall

energy requirement when matched for energy expenditure. Hence

with longer ON bouts (i.e. ,4 min), given the response dynamics

of _VVO2, HR and cardiac output, there will be a greater time

accumulated at a relatively high proportion of these respective

maxima, compared with short (i.e. 30 s) ON bouts. Although this

requires further systematic investigation, this is likely to have

significant consequences with regards to the specific physiological

adaptations seen (e.g. [28]) following a training program.

For example, it has been suggested that there may be an

intensity threshold over which exercise has to be performed to

promote cardiovascular benefits [13,14], although this suggestion

is not universal (e.g. [17]). Hence, it is likely that generating a high

relative HR and cardiac output (with respect to their maxima) is

important for inducing intrinsic cardiac benefits and promoting

improvements in vascular function [9,13,45]. Thus, as there is a

greater accumulation of time under these ‘‘conditions’’ i.e. high

HR and cardiac output in long vs. short bouts for the same overall

training session intensity and total training session time commit-

ment (i.e. ,30 min per session), the relevance of the work rate

profile is likely an essential consideration with regards to

developing optimal training strategies to maximize training

adaptations.

In addition, the physiological differences between different

HIIT protocols, even when matched for exercise intensity may be

of particular importance when considering adaptations relating to

metabolic and cardiovascular risk factors such as insulin sensitivity

and aerobic capacity. For example, increased mitochondrial

energy flux is associated with greater improvements in insulin

sensitivity [48]. In addition, while PCG-1a (a critical regulator of

mitochondrial biogenesis; [49]) has been demonstrated to be

activated following both short [50,51] and long [11] HIIT, given

the bioenergetic differences between the different interval training

strategies it is unclear which work rate profile will have the greatest

impact on, for example, mitochondrial capacity, insulin sensitivity

and aerobic capacity when exercise intensity is controlled.

Therefore, while the work rate profile likely contributes to training

adaptations, the specific work rate profile which maximizes specific

adaptations to subsequently improve physiological function (and

the interaction of this with the exercise intensity) has yet to be

resolved. However, the results from this study enable the correct

work rates to be identified, thus allowing intensity to be removed

as a confounding variable in order to investigate the relative

importance of the work rate profile in training strategies.

While it has been postulated that there is a dose-response

relationship between exercise intensity (quantified in terms of
_VVO2max) and training adaptations [14], the full nature of this dose-

response has yet to be established. Therefore, whether it is

necessary to provide an all-out effort to maximize any physiolog-

ical adaptations from training has yet to be resolved. Hence, it is

possible that, similar to the proposal that there is a minimum

intensity for some specific training induced adaptations [13,14],

there may also be an upper limit/optimal exercise intensity above

which the magnitude of any training induced adaptations is

diminished. However, calculating appropriate work rates based on

the S-tLIM relationship and the extent of D9 recovery, provides a

method of normalizing, and then titrating the overall training

intensity for longer duration ON bouts to identify the existence of

Figure 5. The quantity (with units of meters, m) of supra-CS work (i.e. D9) performed during the maximal HIIT protocol. Bars represent
the group mean (6 SD), with # representing the individual data. In bout 1, the amount of supra-CS work performed is indistinguishable from D9
determined from the Speed-tolerable duration relationship. However, in bouts 2, 3 and 4 significantly less supra-CS work is performed (,50%) with
this significantly less than D9 (P,0.050, w).
doi:10.1371/journal.pone.0076420.g005
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any intensity (comparing this with appropriate proposed ‘‘practi-

cal’’ short duration HIIT strategies; e.g. [52,53]), and thus effort

related threshold with regards to training adaptations. This

however, requires systematic investigation.

Of course underpinning all considerations with regards to

training strategies and physiological adaptations must be the

potential to translate effective lab-based training strategies in to the

home environment. There is evidence that interval training in

general may be a more enjoyable training strategy than continuous

moderate-intensity interventions [37], with this possibly related to

the challenge of undertaking the more challenging aspect of the

exercise intervals, rather than the monotony of continuous

moderate-intensity exercise. Hence, research into optimizing

HIIT has the potential to have a significant impact with regards

to establishing a range of effective training strategies as alternatives

to traditional continuous moderate-intensity exercise for the

improvement of exercise tolerance/performance and risk factors

for chronic illness, allowing individuals to adhere to training

strategies which fit with their individual training preferences and

lifestyle [54].

Limitations
While this study has identified that WR6 normalizes the

intensity of HIIT to the very heavy-intensity domain, it must be

acknowledged that the subjects in this study were from a relatively

homogenous group; therefore, whether these findings can be

extended to other populations remains unclear. In addition,

although these results highlight the importance of the S-tLIM

relationship to normalize the intensity of both continuous and

HIIT one of the primary limitations when considering the

translational application of these findings is the number of tests

required to characterize this relationship and identify the correct

work rates. Therefore, developing a strategy that allows quick and

accurate identification of the appropriate work rates from the S-

tLIM relationship for use in HIIT remains an important goal.

Conclusion
In conclusion, WR6 derived from the S-tLIM relationship

provides the appropriate work rate to normalize the intensity of

464 min HIIT to the very heavy-intensity domain. In addition, as

there is no difference in the extent of D9 recovery between fatigue

bouts, this study establishes an approach in which supra-CS work

can be maximized and exercise intensity can be normalized

precisely for each subject during 464 min HIIT. This strategy

therefore allows the relative contributions of exercise intensity and

the work rate profile to any training induced adaptations to be

appropriately quantified. This has important implications for

establishing HIIT strategies to maximize improvements in

physiological functioning.
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