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A Study in Three-Dimensional Chaotic Dynamics:

Granular Flow and Transport in a Bi-Axial Spherical Tumbler∗

Ivan C. Christov† ‡ § ∗∗, Richard M. Lueptow¶∗∗, Julio M. Ottino‖∗∗, and Rob Sturman††

Abstract. We study three-dimensional (3D) chaotic dynamics through an analysis of transport in a granular
flow in a half-full spherical tumbler rotated sequentially about two orthogonal axes (a bi-axial
“blinking” tumbler). The flow is essentially quasi-two-dimensional in any vertical slice of the sphere
during rotation about a single axis, and we provide an explicit exact solution to the model in this case.
Hence, the cross-sectional flow can be represented by a twist map, allowing us to express the 3D flow
as a linked twist map (LTM). We prove that if the rates of rotation about each axis are equal, then
(in the absence of stochasticity) particle trajectories are restricted to two-dimensional (2D) surfaces
consisting of a portion of a hemispherical shell closed by a “cap”; if the rotation rates are unequal,
then particles can leave the surface they start on and traverse a volume of the tumbler. The period-
one structures of the governing LTM are examined in detail: analytical expressions are provided
for the location of period-one curves, their extent into the bulk of the granular material, and their
dependence on the protocol parameters (rates and durations of rotations). Exploiting the restriction
of trajectories to 2D surfaces in the case of equal rotation rates about the axes, a method is proposed
for identifying and constructing 3D Kolmogorov–Arnold–Moser (KAM) tubes around the normally
elliptic period-one curves. The invariant manifold structure arising from the normally hyperbolic
period-one curves is also examined. When the motion is restricted to 2D surfaces, the structure of
manifolds of the hyperbolic points in the bulk differs from that corresponding to hyperbolic points
in the flowing layer. Each is reminiscent of a template provided by a non-integrable perturbation
to a Hamiltonian system, though the governing LTM is not. This highlights the novel 3D chaotic
behaviors observed in this model dynamical system.

Key words. chaotic advection, transport, linked twist maps, granular flow
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1. Introduction. Chaotic dynamics in higher dimensions remains relatively unexplored.
The great variety of transport and mixing behaviors of three-dimensional (3D) flows, many
of which are distinct from those in two-dimensional (2D) systems, have been studied only
sparingly [87] and even fewer studies [25] have considered higher-than-three dimensional dy-
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namics. The study presented here makes clear why. The system considered—an idealization of
a laboratory granular mixing flow—is, superficially, simple, quite possibly one of the simplest
3D flows. But the wealth of complexities associated with analyzing 3D dynamics, even when
restricting ourselves to the simplest member of the family, a half-full case, demonstrates that
the need to develop mathematics for such 3D chaotic dynamics can keep researchers busy
for a long time to come. We discuss novel 3D chaotic behaviors exhibited in the blinking

spherical tumbler flow, a 3D chaotic flow of granular materials in a bi-axial spherical tumbler
[31, 59, 80, 45, 44]. The name comes from an analogy to an early example of 2D chaotic fluid
mixing—the blinking vortex flow [4]—because a 3D spherical tumbler sequentially rotated
about two distinct axes “blinks” between the two rotations. Such a mode of operation is
distinct from, e.g., a transitory dynamical system in which the transition between two types
of dynamics occurs smoothly in finite time [62]; here, the transition is instantaneous.

Early work explored quasi-3D flows (specifically, 2D steady flows with a periodically re-
peating cross-section in the third dimension), which were easily analyzed using the techniques
applicable to 2D time-periodic flows [64]. This approach has proven fruitful leading to many
examples, including but not limited to, the partitioned-pipe mixer [47], the twisted-pipe mixer
[43], the Kenics mixer [30], mixing tanks with impellers [51, 36], the staggered herringbone
mixer [79], screw extrusion mixers [41], and the rotated arc mixer [60].

However, even earlier, Arnold [5] (followed by Hénon [37]) showed that 3D chaotic fluid
particle trajectories occur in a spatially periodic idealized fluid flow [the so-called in Arnold–
Beltrami–Childress (ABC) flow], thus motivating another set of early work on 3D chaotic
dynamics [23, 26, 12, 40, 90]. Later, a more realistic and bounded 3D flow, a poloidal Hill vor-
tex, was considered [10, 77, 48, 15] as a model system for mixing within droplets. Mixing in the
3D flow induced by the motion of a droplet along a serpentine channel has also been examined
[71, 78, 18] more recently. Cartwright et al. [17] showed the existence of chaotic fluid particle
trajectories in a spherical Couette flow. Meanwhile, Ashwin and King [8] analyzed 3D fluid
motion in a Taylor–Couette flow between eccentric cylinders, and chaotic particle trajectories
were found in a wavy-vortex Taylor–Couette flow using both simulated [69] and experimen-
tal [1] velocity fields. Soon, laboratory studies of the fundamental mixing tank (an upright
cylinder with an angled impeller driving the flow from the top) [28] provided experimental
verification of the theoretical results. Cavity flows have also proven attractive for studying
3D mixing. Anderson et al. [2] considered a box whose side-walls are allowed to translate in
two coordinate directions, while Speetjens et al. [57, 73, 67] studied an upright cylinder whose
entire top (and/or bottom) wall is allowed to execute arbitrary motions. Clearly, the notion
of 3D chaotic advection has proven quite attractive for the analysis of fluid mixing devices.
The 3D dynamical systems framework has even found applications in pollution transport in
estuaries [76].

In contrast, the detailed mathematical study of 3D granular flows has only recently begun.
What appears to be one of the first quasi-3D granular flows (specifically, rocking motions of a
rotating cylindrical container that give a weak three-dimensionality to the flow) was studied
experimentally and numerically (using the discrete element method) in [88]. Meanwhile, 3D
effects in granular flows in rotating cylindrical and spherical tumblers have been analyzed
experimentally [32]. Through a dynamical systems framework, it has become possible to gain
a deeper understanding of how mixing and segregation (demixing) manifest themselves in



THREE-DIMENSIONAL CHAOS IN GRANULAR FLOW 3

3D granular flows [59]. Most research on 3D granular flows, however, has remained on the
practical side, exploring mixing of powders in industrial devices [53, 24], rather than focusing
on the underlying mathematics of 3D chaotic dynamics.

Once it had been established that fluid particle trajectories in non-turbulent 3D fluid flows
could be chaotic, the natural question arose: What are the possible types of dynamics (regular,
chaotic or, perhaps, other) that can be observed in 3D? Whereas a 2D non-integrable Hamil-
tonian flow can, roughly speaking, be decomposed into Kolmogorov–Arnold–Moser (KAM)
islands (regular regions) and tangles of manifolds (chaotic regions), there is no similar obvious
classification for a 3D chaotic flow. Nevertheless, regular and chaotic regions still exist [26],
which has suggested (at least) two types of classifications for 3D chaotic flows based on either
structure of invariant tori by analogy to the KAM theorem [17] or local flow structure near
periodic points [57]. For example, in certain 3D chaotic flows, it is possible to have chaotic
regions restricted to 2D spheroidal surfaces, while KAM islands, which by construction do
not admit chaotic trajectories, may have a 3D character manifesting themselves as KAM-like
tubes [23, 47, 26, 49] in spatially periodic domains and KAM tori [28] in bounded domains.

Many of the dynamical systems considered so far were chosen, in part, because of their
simplicity or due to their representation as a perturbation of an integrable Hamiltonian tem-
plate. Such constructions have been the subject of a number of studies, concurrent with
studies of chaotic 3D fluid particle motion, on the generic (mathematical) properties of 3D
dynamical systems [26, 20, 56, 9, 61, 82]. Specifically, the question of invariants of the motion
and their classification has been an important topic [34, 33, 63]. The notion of action-angle
variables and, specifically, action-action-angle variables as we discuss below, for 3D dynamical
systems are also a useful concept [17, 84, 85, 83, 80] to prove rigorous results and to better
characterize invariant structures. In the present work, on the other hand, we explore the
3D chaotic dynamics emerging from a linked twist map (LTM) [81]. Though the LTM can
be constructed from the composition of two fully integrable action–action–angle maps, the
combined map is capable of producing 3D chaotic dynamics.

Recently, the question of 3D coherent structures created by chaotic advection has been
further explored in some experimentally realizable flows [74, 75, 67, 91, 72]. For example,
one new (uniquely 3D) phenomenon emerging from the latter studies is resonance-induced

merger of coherent structures. Put simply, in the parameter regime of the system that is only
a slight perturbation of the regime in which all motion is constrained to invariant surfaces,
it is possible to find particle trajectories that still do not traverse the whole volume of the
domain. They remain restricted to two of the previously invariant surfaces, which have now
become fused through a “channel” surrounding a parabolic periodic point of the flow.

Naturally, the study of coherent structures in 3D chaotic flows is underpinned by the
understanding of fixed and periodic points of the flow map. In 3D, fixed and periodic points
can be either isolated or part of continuous segments, thus classifications have been developed
for both situations [57]. While curves of periodic (or fixed) points lead to essentially 2D
dynamics on families of surfaces intersecting said curves, isolated periodic points can lead
to genuinely 3D dynamics [73, 72]. Analysis of fundamental symmetries [29] can provide
guidance in locating periodic (or fixed) points but locating all periodic (or fixed) points of
a 3D flow map is generally a nontrivial task. The blinking spherical tumbler flow that we
consider is defined by the pairwise composition of rotations about orthogonal axes. This fact
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provides a natural structure to the 3D flow map, which can be exploited in locating period-one
points. Specifically, a sufficient (but not necessary) condition that a point be a period-one
point of the flow map is that it is a period-one point of each rotation. This is the approach we
follow below. However, in the case that the individual rotations have no non-trivial period-one
points, an isolated period-one point of the composite flow map is still guaranteed by Brouwer’s
fixed-point theorem [14] (see, e.g., the example of the blinking cubical tumbler flow in [59]).
We do not focus on isolated period-one points in this study, but seek to analyze in full the
simplest periodic structures related to the symmetries in the system.

Here, we explore 3D chaotic dynamics in the physical system of a blinking spherical tum-
bler half-filled with granular material. Most granular flows encountered in nature and industry
are 3D. However, the modeling and mathematical theory of 3D flows, whether granular or fluid,
is far from straightforward. What is more, visualization of 3D flows remains a challenge [19].
Previous work on the kinematics of granular flow [38, 58, 22] has shown that there is already
a wealth of interesting phenomena occurring in quasi-2D granular flows. Thus, it is expected
that 3D granular flows will likely reveal even more striking representative features of complex
systems far from equilibrium. To this end, motivated by the successful application of dynam-
ical systems theory to granular flow in a blinking spherical tumbler initiated in [59, 80], the
present work focuses on providing a more thorough treatment of the 3D features of this flow
and, in particular, extending the results from [80].

A difficulty for previous studies of experimentally realizable 3D chaotic flows (e.g., [74,
75, 67, 91, 72]) has been the inability to perform any of the calculations required to locate
period-one structures or invariant surfaces and determine their dependence on the parameters
analytically. However, as shown in §3 and 4, these calculations can be done for the granular
flow considered in the present work. Moreover, the blinking spherical tumbler flow is realizable
in the laboratory [59, 80, 45], which opens the door for future experimental verification of the
theoretical results presented herein.

2. Continuum model of granular flow in a blinking spherical tumbler. In this section, we
summarize the continuum model [31, 59] for the kinematics of granular flow in the continuous-
flow (rolling) regime for a half-full spherical tumbler rotated alternately about two orthogonal
axes [for the present purposes, the z- and x-axes as shown in Fig. 2.1(a)]. A variety of other
continuum models of 3D granular flow exist. More details can be found in recent reviews on
the topic [59, 3, 46].

2.1. Rotation about the z-axis. Without loss of generality, we take the first rotation of
the half-full spherical tumbler of radius R to be clockwise about the z-axis (denoted by the
z subscripts) at a rate of ωz(> 0) for a duration τz, typically such that the angle of rotation
θz = ωzτz is of the order of π radians or less. The coordinate system used is Cartesian with
the origin at the center of the sphere, with the flow being in the x-direction in this case, and
the transverse direction being the z-direction [see the left portion of Fig. 2.1(b)]. Under this
version of the continuum model, the velocity in the flow direction, vz,x, is assumed to vary
linearly with the depth y in the flowing layer, which has thickness δz(x, z) and free-surface
half-length L(z), so that the shear rate γ̇z = ∂vz,x/∂y is constant. The remaining bulk of the
granular material is in solid body rotation. In an experiment, the flowing layer is at an angle,
referred to as the dynamic angle of repose, with respect to the horizontal. In the model, it
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Figure 2.1: Schematic of the blinking protocol for a spherical mixer (a). The z- and x-axis
are coplanar and orthogonal to each other, intersecting at the origin of the sphere. Top view
of the surface velocity profile due to rotation around each axis (b). The flow fields in the fixed
cross-sections for clockwise rotation around the z- and x-axis, respectively, are shown in panels
(c)(i) and (c)(ii). Adapted from [80] c© 2008 Cambridge University Press with permission.

is assumed that the coordinate system is rotated backwards by this fixed angle. Also, we
assume the transport in the transverse direction is negligible, a reasonable assumption over
the rotation angles considered here [89].

Let us introduce the following dimensionless variables:

(2.1) {x⋆, y⋆, z⋆, L⋆, δ⋆} = {x, y, z, L, δ}/R, t⋆ = ωzt, ψ⋆ = ψ/(R2ωz).

Then, leaving the ⋆ superscript understood, the equations of pathlines (i.e., for the advection
of a passive scalar) in the tumbler [59, 80] are

dx

dt
= vz,x(x, y, z) =





1

ǫ2z
[δz(x, z) + y] , y > −δz(x, z),

y, otherwise,
(2.2a)

dy

dt
= vz,y(x, y, z) =





x y

δz(x, z)
, y > −δz(x, z),

−x, otherwise,
(2.2b)
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dz

dt
= vz,z(x, y, z) = 0,(2.2c)

where ǫz is defined below. Here, the assumptions of incompressibility and no transport in the
transverse direction allows us to introduce a streamfunction ψ [64, §3.12] in terms of the x
and y coordinates alone:

(2.3) ψ(x, y, z) =





ψfl =
1

ǫ2z

[
δz(x, z)y +

1
2y

2
]
, y > −δz(x, z),

ψb = 1
2(x

2 + y2), otherwise.

Clearly, vz,x = ∂ψ/∂x and vz,y = −∂ψ/∂y. It can be shown [80, §2.1.1] that the streamfunction
can be made continuous, if necessary, across the interface y = −δz(x, z).

The shape of the flowing layer is given by

(2.4) δz(x, z) = δ0(z)

√
1− x2

L(z)2
= ǫz

√
1− x2 − z2,

where the second equality follows from the relations δ0(z) = L(z)
√
ωz/γ̇z and L(z) =

√
1− z2

for the local (dimensionless) depth and half-length of the flowing layer, respectively. Since
L(0) = 1, we have ǫz := δ0(0)/L(0) = δ0(0), meaning ǫz is the maximal (dimensionless) depth
(at x = z = 0). Of course, ǫz ≡

√
ωz/γ̇z , and it coincides with the definition of the small

parameter in the model from [22], except L and δ0 now depend on z rather than on t. Here
we note that, physically, a restriction ǫz . 0.5 can be enforced as it does not make sense for
the flowing layer to be thicker than (about) half the tumbler’s radius (= 1 in dimensionless
units). This assumption is supported by the available experimental data [42, 27, 66]; in fact,
typically ǫz ≃ 0.1.

2.2. Rotation about the x-axis. The blinking spherical tumbler protocol alternates be-
tween rotations about two orthogonal axes [recall Fig. 2.1(a)]. Once the rotation about the
z-axis is complete, a rotation about the x-axis at constant rate ωx for a duration τx follows.
In a laboratory experiment, the tumbler would need to be rotated backward by the static
angle of repose to make the free surface horizontal, before changing the axis of rotation, and
then rotated forward by the static angle or repose, before rotation and flow about the second
axis occurs. Both intermediate solid body rotation steps are performed in a way such that the
material remains in static equilibrium and, consequently, there is no flow. As far as the mathe-
matical analysis goes, however, the intermediate solid body rotation steps are inconsequential.
Thus, since the rotations are completely independent, we can make t and ψ dimensionless for
rotation about the x-axis using ωx. All other quantities are made dimensionless as in Eq. (2.1).

Similar to z-axis rotation, the interface between the flowing layer and the bulk is given by

(2.5) δx(x, z) = ǫx
√

1− x2 − z2 ,

where ǫx =
√
ωx/γ̇x. Note that if ǫz = ǫx, then δz(x, z) = δx(x, z). We shall refer to this as

the symmetric case in the discussion below. Then, ǫz 6= ǫx can be termed the non-symmetric

case. It is important to note that different values for ǫz and ǫx arise in physical systems
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Figure 2.2: Each row is a schematic representation of a cross-section perpendicular to the z-
or x-axis of rotation of the spherical tumbler. In the symmetric case (a), the flowing layer
thickness is the same during each rotation. For the non-symmetric case (b), the flowing layer
is thinner for rotation about the z-axis than for rotation about the x-axis because rotation
rates are unequal, specifically ωz < ωx.

due to different rotation rates ωz and ωx [42, 27, 66]. Thus, the symmetric case occurs for
identical rotation rates about the two axes of rotation, while the non-symmetric case arises
from different rotation rates. This is illustrated in Fig. 2.2.

It should be clear that the discussion from §2.1 can be repeated here as well (after for-
mally exchanging “x” and “z” in all equations and relations) to obtain the velocity field
corresponding to rotation about the x-axis.

3. A necessary condition for radial transport. In this section, we consider the trajectory
of a single tracer particle in the blinking spherical tumbler flow described in the previous
section. The results in this section establish the key difference between the symmetric and
non-symmetric cases.

In the symmetric case, i.e., when ǫz = ǫx, tracer particle trajectories are constrained to
surfaces determined by the tracer’s initial position [80]. The proof [80, Appendix B] follows
from the fact that if ǫz = ǫx, then δz(x, z) ≡ δx(x, z), which endows the dynamical system with
a “symmetry” and, hence, an invariant structure. On the other hand, for the non-symmetric
case (ǫz 6= ǫx), we show below that trajectories are not necessarily restricted to invariant
surfaces, thereby allowing for radial transport in the flow or, equivalently, transport across

invariant surfaces (not just within them).

Let us violate the conditions of [80, Theorem 3.2] by allowing ǫz 6= ǫx. Then, consider
a tracer initially located at the point (x0, y0, z0)

⊤ in the bulk with initial radius ri, i.e.,
x20 + y20 + z20 = r2i . During rotation about the z-axis, the trajectory is restricted to the plane
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z = z0 and along the curve given implicitly by

(3.1) ψb =
1

2
(x2 + y2) = const. =

1

2
(x20 + y20) =

1

2
(r2i − z20).

Thus, all points (x, y, z0)
⊤ on this streamline in the bulk verify x2 + y2 + z20 = r2i . A similar

argument holds for rotation about the x-axis. Therefore, under this model, a tracer particle
in the bulk at a distance ri from the origin remains a distance ri from the origin when the
axis of rotation is switched while the particle is still in the bulk.

Consider the same tracer particle as above, but for the case when it reaches the flowing
layer during the first rotation. The point at which the particle reaches the flowing layer,
(x1, y1, z1 = z0)

⊤, must lie on the intersection of the curves

r2i = x21 + y21 + z21 = x21 + y21 + z20 ,(3.2a)

y1 = −δz(x1, z0) = −ǫz
√

1− x21 − z20 .(3.2b)

The solution to these equations for x1 and y1, where we must take the solution with y1 < 0,
corresponds to the point where this trajectory enters the flowing layer:

(3.3) x1 = −
√
r2i − ǫ2z
1− ǫ2z

− z20 , y1 = −ǫz

√
1− r2i
1− ǫ2z

.

In the flowing layer, the tracer follows a fixed streamline as the tumbler continues to rotate
about the z-axis. Using Eqs. (3.3), this streamline can be found to be

(3.4) ψfl =
1

ǫ2z

[
δz(x, z)y +

1
2y

2
]
= const. =

1

ǫ2z

[
δz(x1, z0)y1 +

1
2y

2
1

]
=

r2i − 1

2(1− ǫ2z)
.

Now, suppose that rotation about the z-axis stops while the tracer is still in the flowing
layer at its final position (x2, y2, z2 = z0)

⊤, which is a function of ǫz and θz (the angle through
which the tumbler was rotated about the z-axis). Further, assume the depth of the flowing
layer corresponding to rotation about the x-axis is such that the tracer remains in the flowing
layer upon switching axes of rotation. Then, rotating about the x-axis, x = x2 remains fixed,
and the tracer’s motion is along the streamline in the flowing layer given by

(3.5) ψfl =
1

ǫ2x

[
δx(x, z)y +

1
2y

2
]
= const. =

1

ǫ2x

[
δx(x2, z0)y2 +

1
2y

2
2

]
=: κ.

Note that, at the moment at which the axes of rotation is switched, we must have both

1

ǫ2z

[
δz(x2, z0)y2 +

1
2y

2
2

]
=

r2i − 1

2(1− ǫ2z)
,(3.6a)

1

ǫ2x

[
δx(x2, z0)y2 +

1
2y

2
2

]
= κ.(3.6b)

Subtracting Eq. (3.6a) from Eq. (3.6b), we find that

(3.7) κ = κ(x2, y2, z0, ǫx, ǫz) =
r2i − 1

2(1 − ǫ2z)
+

(
1

ǫ2x
− 1

ǫ2z

)
1
2y

2
2 +

(
1

ǫx
− 1

ǫz

)
y2

√
1− x22 − z20 .
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Therefore, in the symmetric case when ǫz = ǫx (⇒ δz ≡ δx), we have κ = (r2i − 1)/[2(1− ǫ2z)].
In principle, one can find x2 and y2 exactly by tracing the flowing layer trajectory using the
solution given in Appendix A. Then, κ can be computed as well.

Now, suppose that the particle follows the streamline defined through Eq. (3.5) under
rotation about the x-axis until it reaches the boundary between the bulk and the flowing layer
at the point (x3 = x2, y3, z3)

⊤, where y3 and z3 are the solutions of

(3.8) y3 = −δx(x2, z3), κ =
1

ǫ2x

[
δx(x2, z3)y3 +

1
2y

2
3

]
.

Noting that z, y, κ < 0 when a particle is exiting the flowing layer, the system in Eq. (3.8) can
be solved to give:

(3.9) y3 = −
√
−2ǫ2xκ, z3 = −

√
1− x22 + 2κ.

Finally, we can compute the final radial distance from the origin at which the particle
exits the flowing layer. This is accomplished by using Eqs. (3.9):

(3.10) x23 + y23 + z23 = x22 − 2ǫ2xκ+ 1− x22 + 2κ = 1 + 2κ
(
1− ǫ2x

)
=: r2f .

Note that if we were in the symmetric case, then 2κ
(
1− ǫ2x

)
= r2i − 1 from the discussion

above, so that r2f ≡ r2i , i.e., trajectories always remain a constant radial distance from the
origin (as measured while in the bulk) in this (the symmetric) case.

Thus, a particle cannot change the radial distance from the origin that it maintains while
in the bulk (and, consequently, there is no inter -streamsurface transport) unless it has a
“switching point” (i.e., the point on its trajectory at the instant when the axis of rotation
is switched) that is in the flowing layer and ǫz 6= ǫx. Figure 3.1 illustrates this result for a
specific trajectory and parameter values. This argument provides an alternative proof of [80,
Theorem 3.2]. Furthermore, this result is related to the phenomenon of streamline jumping
[22] in the vanishingly thin flowing layer limit. Due to the horizontal and vertical motion of
the free surface in a non-circular quasi-2D container, particles can exit the flowing layer onto a
solid-body-rotation streamline that is a different distance from the center of rotation than the
one they were on prior to entering the flowing layer. However, while streamline jumping occurs
continuously in time and is different for all trajectories in a non-circular quasi-2D tumbler,
streamsurface switching occurs at discrete time points (when the axis of rotation is switched)
in the blinking 3D spherical tumbler. In §4.3, we explore the effect of such switching points
in the non-symmetric case on the structure of the dynamics.

4. Dynamical properties of the flow: period-one invariant structures. In action–action–
angle coordinates, the blinking spherical tumbler can be represented as a linked twist map [81]
by the composition of the maps

Pz(z, Iz ,Ωz,0) =
(
z, Iz,Ωz,0 +Ωz(Iz)θz

)
,(4.1a)

Px(x, Ix,Ωx,0) =
(
x, Ix,Ωx,0 +Ωx(Ix)θx

)
,(4.1b)

which describe rotation about the z-axis and rotation about the x-axis, respectively. These
are termed twist maps since the actions z and Iz (resp. x and Ix) are preserved by the map,
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Figure 3.1: Illustration of the necessary condition for radial transport. The trajectory of the
tracer seeded at (x, y, z)⊤ = (−0.25,−0.5,−0.1)⊤ is visualized in 3D (top row) and through its
distance from the origin (bottom row). In the 3D views, a mesh represents part of a hemisphere
of the same radius as the initial particle seed location (i.e., part of a streamsurface), which is
indicated by a large dot. This makes clear whether the particle remains at the same radius
after one iteration of the blinking spherical tumbler protocol with (θz, θx) = (5π/12, 5π/12)
in this case. Blue and red curves represent, respectively, the trajectory during the rotation
about the z and x axes. In the bottom row, r =

√
x2 + y2 + z2 is plotted against the total

angle of rotation θ (without distinguishing the current axis of rotation) in degrees. The shaded
regions correspond to the particle being in the flowing layer. Dashed horizontal lines denote
the initial value of r.

and only the angle, i.e., the third coordinate, changes. Further details of this transformation,
including explicit expressions for the actions Iz and Ix and the angles Ωz and Ωx, are given
elsewhere [21, Chapters 2 and 8]. To formally compose these maps we need a nonlinear
change-of-variables transformation V because the maps are defined in different coordinates
[80]. Thus, formally, the linked twist map Q describing the flow in the blinking spherical
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tumbler is given by

(4.2) Q = V−1 ◦ Pz ◦ V ◦ Px.

For the purposes of the discussion in the remainder of this work, it is not necessary to derive
the specific form of V as we will not use Eq. (4.2) explicitly. Though an initial assessment of
the structure of the map can be found in [80], many details were left for future study. In this
section, we present a continuation of the latter examination of the period-one structures of Q
that are also period-one structures of both Pz and Px. Other period-one structures such as
isolated periodic points of Q [59] are not considered here.

In general, period-one points are significant because they tend to give rise to the largest
islands, i.e., regions of material that do not mix with the surroundings. In this 3D setting
we see something quite different from the 2D setting; “islands” are now volumes (instead of
areas) whose “centers” are not elliptic periodic points but normally elliptic invariant curves.
These invariant curves are surrounded by “KAM-like tubes,” which are barriers to mixing. In
fact, the latter structures are distinct from the KAM tubes observed in ABC flows because
in our system all trajectories on the “KAM-like tubes” in the symmetric case are closed and,
hence, they cannot wind around the surface and densely fill it like certain trajectories in ABC
flows do [23]. The normally hyperbolic invariant curves have 2D stable and unstable manifolds
[86]. The nature of trajectories near these invariant curves can be visualized by considering
paths of nearby tracers [59, §6.4]. More background on the mathematical aspects of these
3D structure can be found elsewhere [61], though few examples of their effects on mixing and
transport in realistic flows are available [87].

4.1. Analytical expressions for period-one invariant curves. The first step in this anal-
ysis requires a general expression for the period of a trajectory starting at an arbitrary point
in the flowing layer. This is easily generalized from Eqs. (A.16) and (A.19) (based on the
coordinates shown in Fig. A.1 in Appendix A). To summarize, suppose without loss of gener-
ality that the trajectory starts in the flowing layer, y0 ∈

(
− δz(0, z), 0

)
for rotation about the

z-axis, at x0 = 0, where we recall that δz(x, z) = ǫz
√
L(z)2 − x2 and L(z) =

√
1− z2. Then,

it can be shown from the expressions in Appendix A [specifically Eqs. (A.19) and (A.16)] that
the period T of the trajectory starting in the bulk at (0, y0)

⊤ and the coordinates (x1, y1, z)
of its intersection with the flowing layer are given by

T (y0, z) = 2 tan−1

(
x1(y0, z)

y1(y0, z)

)
+ ǫzπ,(4.3a)

x1(y0, z) = −
√
L(z)2 +

2y0
ǫ2z

[
ǫzL(z) +

1
2y0
]
,(4.3b)

y1(y0, z) = −δz
(
x1(y0, z), z

)
= −

√
−2y0

[
ǫzL(z) +

1
2y0
]
,(4.3c)

Note that the square root in Eq. (4.3c) is real-valued because −δz(0, z) = −ǫzL(z) and y0 ∈(
− δz(0, z), 0

)
by assumption.

To find those points in the flowing layer that return to their initial location after the
rotation about the z-axis is complete, we set the period equal to the time of rotation about
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the current axis, i.e., T (y0, z) = θz and solve for y0 and z. To this end, setting ϕz :=
1
2(θz−ǫzπ),

we can re-arrange Eq. (4.3a) as follows:

(4.4)
L(z)2

ǫ−2
z + tan2 ϕz

= −2y0
[
ǫzL(z) +

1
2y0
]
.

This is a quadratic equation in y0 that we can easily solve:

(4.5) y0,± = −ǫzL(z)
(
1±

√
ǫ2z tan

2 ϕz

1 + ǫ2z tan
2 ϕz

)
,

where the negative sign must be taken to ensure that y0 ∈
(
− δz(0, z), 0

)
, as assumed. This

result is analogous to [80, Eq. (C2)].
As discussed in §3 above, trajectories in the flowing layer during rotation about the z-axis

must satisfy the equation

(4.6)
1

ǫ2z
y
[
δz(x, z) +

1
2y
]
=

1

ǫ2z
y0
[
δz(0, z) +

1
2y0
]
.

Hence,

(4.7) y
(
ǫz
√
L(z)2 − x2 + 1

2y
)
= y0

[
ǫzL(z) +

1
2y0
]
,

where the right-hand side is known thanks to Eq. (4.5), and z is treated as a parameter. This
equation implicitly defines a 2D surface in the 3D Euclidean space R

3 representing the locus
of points initially in the flowing layer that return to their initial location after a rotation by θz.
Analogously, an implicitly defined surface of period-one points for rotation about the x-axis
can be found:

y
(
ǫx
√
L(x)2 − z2 + 1

2y
)
= ỹ0

[
ǫxL(x) +

1
2 ỹ0
]
,(4.8a)

ỹ0 = −ǫxL(x)
(
1−

√
ǫ2x tan

2 ϕx

1 + ǫ2x tan
2 ϕx

)
,(4.8b)

where ϕx := 1
2(θx − ǫxπ).

The intersection of the two surfaces implicitly defined in each of Eqs. (4.5), (4.7) and
Eqs. (4.8) gives rise to curves, which may be lines or hyperbolas when projected into the
(x, z)-plane, of period-one points in the flowing layer. Generically, these curves can have
different (linear) stability types, i.e., elliptic, hyperbolic or parabolic (see, e.g., [5, §22] or [64,
§5.3]).

The same procedure leads to expressions for the curves of period-one points in the bulk.
Gilchrist [31] was the first to study period-one structures in bulk of the granular flow in a
bi-axial spherical tumbler, showing that the points (starting in the bulk) that return to their
initial locations after a period of the flow are those that lie at the intersection of two “bowls”
(parts of prolate spheroids) of period-one points corresponding to each rotation. This approach
was further elaborated in [59] using a symmetry analysis applicable to more general container
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shapes. The equations for the bowls (derived in Appendices A and C in [80]) supplement the
derivation of the “caps” above. Together, the bowl and cap corresponding to the z- or x-axis
of rotation define the locus of period-one points in the bulk and the flowing layer, respectively.

Thus, we have shown that period-one points of the map Pz lie on the surface defined by
the “bowl” Σ1 and its “cap” Σ̂1. The bowl, which is a portion of a certain prolate spheroid
below the oblate spheroid that separates the flowing layer from the bulk, is given by

(4.9) Σ1 =
{
(x, y, z)⊤ ∈ R

3 | x2 + y2 + c1z
2 = c1, −1 ≤ y ≤ −δz(x, z)

}
,

where δz(x, z) is defined in Eq. (2.4) and c1 = c(ǫz , θz) is a constant with

(4.10) c(ǫ, θ) :=
ǫ2{1 + tan2[ϕ(ǫ, θ)]}
1 + ǫ2 tan2[ϕ(ǫ, θ)]

, ϕ(ǫ, θ) := 1
2(θ − ǫπ).

The latter corresponds to [80, Eqs. (C4) and (C5)]. The cap is implicitly defined as

(4.11) Σ̂1 =
{
(x, y, z)⊤ ∈ R

3 | yδz(x, z) + 1
2y

2 = δ2z(0, z)
(
1
2d

2
1 − d1

)
, −δz(x, z) < y ≤ 0

}
,

where d1 = d(ǫz , θz) is a constant and

(4.12) d(ǫ, θ) := 1−
√

ǫ2 tan2[ϕ(ǫ, θ)]

1 + ǫ2 tan2[ϕ(ǫ, θ)]
,

with ϕ(ǫ, θ) as given in Eq. (4.10).

Similarly, period-one points for the map Px lie on a surface consisting of a bowl Σ2 with
cap Σ̂2. Now, the bowl is the surface

(4.13) Σ2 =
{
(x, y, z)⊤ ∈ R

3 | c3x2 + y2 + z2 = c3, −1 ≤ y ≤ −δx(x, z)
}
,

where c3 = c(ǫx, θx).
1 Its cap is implicitly defined as

(4.14) Σ̂2 =
{
(x, y, z)⊤ ∈ R

3 | yδx(x, z) + 1
2y

2 = δ2x(x, 0)
(
1
2d

2
3 − d3

)
, −δx(x, z) < y ≤ 0

}
,

where δx(x, z) is given in Eq. (2.5) and d3 = d(ǫx, θx).

Schematics of the intersection of the prolate spheroids Σ1, Σ2 and their caps Σ̂1, Σ̂2

are shown separately (for clarity) in Fig. 4.1(a) for the symmetric case with identical rotation
angles of π about each axis and in Fig. 4.1(b) for the non-symmetric case with different rotation
angles (θz = 12π/11 and θx = π). Using the software package Mathematica (ver. 8.0.4), we
are able to plot implicitly defined 2D surfaces. However, it is difficult to properly resolve the
endpoints of the caps, which should be sharp cusps (to match with the bowls at their point of
intersection in the symmetric case, for which Σ1 ∪ Σ̂1 and Σ2 ∪ Σ̂2 form a single surface each)
instead of the flat, straight edges seen in Fig. 4.1 near the plots’ framing boxes. Nevertheless,
Fig. 4.1 represents the geometry of caps and bowls accurately enough for the purposes of
visualizing the shapes of these surfaces and their intersections. Note that in Fig. 4.1(b) the
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(a) θz = θx = π and ǫz = ǫx = 0.15

(b) θz = 12π/11 and ǫz = 0.2, while θx = π and ǫx = 0.1

Figure 4.1: The intersections of the “bowls” Σ1, Σ2 (left panels) and the “caps” Σ̂1, Σ̂2 (right
panels) of period-one points of the twist maps Pz (dark gray surfaces) and Px (light gray
surfaces), give rise to curves of period-one points for the linked twist map Q.
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union of the bowls Σ1,2 and the caps Σ̂1,2 do not have to form a single surface each, i.e., there
can be a “gap” between them, as shown more clearly in Fig. 4.2(b) below.

Period-one points of the linked twist map Q are thus given by Υ(x, y, z) = (Σ1 ∩ Σ2) ∪
(Σ̂1 ∩ Σ̂2). In fact, the period-one points comprising Υ lie on curves, since Υ is defined by the
pairwise intersections of surfaces. The stability of these period-one points can be determined
by a symmetry argument [80, Appendix E], showing that, in the bulk, Υ(xz > 0) is a curve2

of unstable (hyperbolic) points (i.e., a normally hyperbolic invariant curve), while Υ(xz < 0)
is a curve of stable (elliptic) points (i.e., a normally elliptic invariant curve). It is evident that
this argument applies equally well to the period-one curves in the flowing layer, though a proof
is beyond the scope of the present discussion. Furthermore, the point(s) Υ(xz = 0) at which
the period-one curves change type from normally hyperbolic to normally elliptic is a (are)
parabolic (degenerate) point(s). Also, note that we refer to the period-one invariant curves
as normally-elliptic and normally-hyperbolic because the elliptic and hyperbolic behavior
occurs in planes normal to the period-one curves. Meanwhile, in the third direction (along
the period-one curve), there is no notion of hyperbolicity or ellipticity that applies. This
reflects the quasi-2D nature of these period-one curves. Here, the distinction from isolated
periodic points, which can possess hyperbolic behavior in all three coordinate directions, is
made explicit.

Figure 4.2 shows three examples of the shape of the resulting period-one invariant curves,
i.e., Υ(x, y, z), for particular example choices of the rotation angles θz, θx and flowing layer
thicknesses ǫz, ǫx. Their structure can be quite complicated and depends strongly on the
system parameters θz, θx, ǫz and ǫx. If θz = θx, then c1 = c3, and there is a further symmetry
that leads to Υ consisting of two pairs of curves Υ(xz > 0) and Υ(xz < 0) that intersect at
x = z = 0, once with y = −√

c1 and again with y = −d1ǫz. In the former case, we must
discard the positive root because it is outside the filled portion of the tumbler (y ≤ 0). In
the latter case, we must discard the root y = (d1 − 2)ǫz because d1 ∈ [0, 1], which means that
(d1 − 2)ǫz < −ǫz is not in the flowing layer. Meanwhile, y = −d1ǫz is always in the flowing
layer or on its boundary [−ǫz ≡ −δz(0, 0) ≤ y ≤ 0]. This is easily seen in Fig. 4.2(a), which
depicts the period-one curves that arise from the intersections of the bowls and caps shown in
Fig. 4.1(a). The curved lower portions of the period-one curves originate from the intersection
Σ1 ∩ Σ2 of the bowls shown in the left panel of Fig. 4.1(a), while the nearly straight upper
portions of the period-one curves originate from the intersection Σ̂1 ∩ Σ̂2 of the caps shown
in the right panel of Fig. 4.1(a). The curved lower portions of the period-one curves have
been shown for the symmetric case [59], but the nearly straight upper portions, as well as
the period-one curves for the non-symmetric case (discussed next), have not been previously
described.

Figure 4.2(b), like Fig. 4.2(a), corresponds to the symmetric case but with different an-
gles of rotation about each axis. Now, the period one curves separate (i.e., they are not
interlinked) because there is no longer a common intersection point at x = z = 0 (recall the

1We use the notation c1, c3 and d1, d3 for consistency with the notation in [80], where dimensional variables
were used leading to the necessity of introducing c2, c4 as well. In the present work, c2 ≡ c1 and c4 ≡ c3.

2The short-hand notation “Υ(xz > 0)” means those parts of the curve Υ(x, y, z) that correspond to (x, y, z)⊤

such that the product xz > 0.
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(a) θz = θx = π and ǫz = ǫx = 0.15 (b) θz = 12π/11 and ǫz = 0.15; θx = π
and ǫx = 0.15

(c) θz = 12π/11 and ǫz = 0.2; θx = π and
ǫx = 0.1

Figure 4.2: Plots of the period-one invariant curves Υ(x, y, z) of the blinking spherical tumbler
flow for various choices of the system parameters. Green represents the normally hyperbolic
invariant curves, while blue represents the normally elliptic ones. In the symmetric case with
(a) equal angles of rotation θz = θx, the curves are interlinked, while for (b) θz 6= θx, they
separate. In the non-symmetric case (c), there is a gap between the period-one curves in the
flowing layer and the bulk. The gray hemisphere represents the outer wall of the spherical
tumbler.

earlier discussion). Figure 4.2(c) shows an example of the non-symmetric case arising from
different flowing layer thicknesses (due to unequal rotation rates) about the z and x axes. The
parameters chosen correspond to the period-one curves at the intersections of the bowls and
caps shown in Fig. 4.1(b). Once again, since θz 6= θx, the period-one curves have separated.



THREE-DIMENSIONAL CHAOS IN GRANULAR FLOW 17

Furthermore, the period-one curves in the flowing layer and in the bulk are not connected be-
cause the flowing layers corresponding to each rotation do not coincide in the non-symmetric
case. Understanding the structure of these period-one curves will become important below as
we consider barriers to mixing and 3D generalizations of elliptic islands.

4.2. Period-one points on the bulk portion of invariant surfaces in the symmetric case.

As shown in §3, when ǫz = ǫx trajectories are restricted to 2D invariant surfaces determined
by the initial conditions. Those invariant surfaces that intersect the period-one invariant
curves constructed above can have isolated hyperbolic, elliptic or parabolic fixed points on
them. Clearly, it would be useful to know more about the dynamics on the invariant surfaces,
specifically surfaces on which period-one points (due to the intersection of the surface with
the curves of period-one points constructed in §4.1 above) are present, their stability type,
and their location. In this subsection, we answer some of these questions analytically.

From the results in §3, it follows that trajectories in the symmetric case remain a con-
stant distance from the origin while in the bulk. Therefore, the invariant surface on which
they remain restricted has the shape of a portion of a hemispherical “shell” in the bulk.
Consequently, since the invariant surfaces are nested and cannot intersect each other, we can
uniquely parametrize all of them by the radius, R̄ ∈ [ǫz, 1] (keeping in mind that only symmet-
ric cases, ǫz = ǫx, are considered in this section), of their hemispherical portions in the bulk.
However, fixing ǫz = ǫx does not specify the rotation angles, since θz and θx are independent
parameters. Thus, we consider two cases: θz = θx and θz 6= θx.

4.2.1. Case 1: θz = θx. Here, we assume not only the symmetric case (ǫz = ǫx) but also
equal angles of rotation about the two axes. From the result in the previous subsection, it
immediately follows that c1 = c3. Therefore, a period-one point (x, y, z)⊤ on the invariant
surface with radius R̄ in the bulk would have to be a solution of the simultaneous equations

x2 + y2 + c1z
2 = c1,(4.15a)

c1x
2 + y2 + z2 = c1,(4.15b)

x2 + y2 + z2 = R̄2,(4.15c)

where c1 and R̄ are known, but x, y and z are unknown. Note that the first two equations
come from the definition of Σ1 and Σ2 [i.e., Eqs. (4.9) and (4.13)] specialized to the case
θz = θx. From Eq. (4.15a), y2 = c1 − c1z

2 − x2, which we substitute into Eq. (4.15b) to find
that (c1 − 1)x2 + (1− c1)z

2 = 0. Then, Eq. (4.15c) becomes

(4.16) c1 + (1− c1)z
2 = R̄2.

The possible solutions are

(4.17) x∗± = ±

√
R̄2 − c1

1− c1
, y∗ = −

√
c1 −

1 + c1

1− c1
(R̄2 − c1), z∗± = ±

√
R̄2 − c1

1− c1
.

Thus, there are four period-one points in the bulk portion (shell) of this invariant surface:

(4.18) (x1, y1, z1)
⊤ =

(
x∗+, y

∗, z∗+
)⊤
, (x2, y2, z2)

⊤ =
(
x∗+, y

∗, z∗−
)⊤
,

(x3, y3, z3)
⊤ =

(
x∗−, y

∗, z∗+
)⊤
, (x4, y4, z4)

⊤ =
(
x∗−, y

∗, z∗−
)⊤
.
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Note that the radius of the shell in the bulk must be greater than the depth of the prolate
spheroids corresponding to the flowing layer boundary for there to be any of these period-one
points on the shell, i.e., R̄ >

√
c1. This guarantees that x∗± and z∗± in Eq. (4.17) are real-

valued. In addition, we must require that R̄ <
√

2c1/(1 + c1) for y∗ to be real. (It can be
shown that this inequality is always satisfied once the more restrictive condition, in Eq. (4.21)
below, is enforced.) As discussed above, the period-one point is hyperbolic if xz > 0 and
elliptic if xz < 0, hence (x1, y1, z1)

⊤ and (x4, y4, z4)
⊤ are hyperbolic period-one points, while

(x2, y2, z2)
⊤ and (x3, y3, z3)

⊤ are elliptic period-one points.
Furthermore, we cannot ignore the constraint that y < −maxx,z

{
δz(x, z), δx(x, z)

}
for all

(x, y, z)⊤ on the curve because, by construction, the period-one points in Eq. (4.18) only exist
in the bulk. Hence, letting ǫz = ǫx = ǫ, we must verify that

(4.19) −
√

c1 −
1 + c1

1− c1
(R̄2 − c1) < −ǫ

√

1− R̄2 − c1

1− c1
− R̄2 − c1

1− c1
.

After some algebra, the latter inequality can be shown to be equivalent to

(4.20) 2c1 − (1 + c1)R̄
2 > ǫ2

(
1 + c1 − 2R̄2

)
.

Recalling the restriction that R̄2 > c1 noted after Eq. (4.18), we arrive at the following result:
period-one points exist on the bulk shell of radius R̄ only if

(4.21) c1 < R̄2 <
ǫ2(1 + c1)− 2c1
2ǫ2 − (1 + c1)

,

where we note again that this holds only for θz = θx and any allowed ǫ(= ǫz = ǫx). The left
inequality states that for period-one points of this type to exist on bulk portion of the 2D
invariant surface, then the surface’s radius in the bulk must be larger than the depth of the
period-one invariant curves. The right inequality, meanwhile, indicates that beyond a certain
critical value of R̄, the bulk portion of the invariant surface fully envelops the period-one
curves and, hence, does not intersect them. This, again, leads to no period-one points of this
type on the bulk portion of said surface.

Here, it is important to note that Eq. (4.21) holds only if 2ǫ2 − (1 + c1) < 0. One way
to justify this is to recall that, physically, the model does not make sense if the flowing layer
is thicker than (about) half the tumbler’s radius, i.e., ǫ . 0.5 or 2ǫ2 . 0.5. Meanwhile,
c1 ≥ 0 ⇒ 1 + c1 ≥ 1 ⇒ 2ǫ2 − (1 + c1) < 0.

Additionally, it remains to consider the degenerate case of R̄ =
√
c1, i.e., the 2D invariant

surface on which trajectories are restricted is tangent to (rather than intersects with) the
period-one invariant curves. Then, Eq. (4.17) becomes

(4.22) x∗± = 0, y∗ = −√
c1, z∗± = 0.

From [80, Appendix E], we know this must be a parabolic periodic point. Therefore, picking
a shell with radius R̄ =

√
c1 guarantees that there is only one period-one point (of the type

constructed in §4.1 above) on the surface in the bulk, and it is the parabolic one. This
is the case if R̄ is chosen so that the invariant surface is tangent to the bottom of the bulk
portion of the period-one invariant curves from Fig. 4.2(a), rather than being pierced by them.
[Figure 4.6(c) below shows such a Poincaré section.]
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4.2.2. Case 2: θz 6= θx. For the symmetric case in which the angles of rotation about the
axes differ, c1 6= c3, Eqs. (4.15) are replaced by

x2 + y2 + c1z
2 = c1,(4.23a)

c3x
2 + y2 + z2 = c3,(4.23b)

x2 + y2 + z2 = R̄2,(4.23c)

where c1, c3 and R̄ are known but x, y and z are (again) to be determined. Again, as made
explicit by Eq. (4.23c), the portion of the invariant surface in the bulk is a hemispherical
shell. From Eq. (4.23a), y2 = c1 − c1z

2 − x2. Plugging this into Eq. (4.23b), we find that
(c3 − 1)x2 + (1− c1)z

2 = c3 − c1. Then, Eq. (4.23c) becomes

(4.24) c1 + (1− c1)z
2 = R̄2.

Therefore, possible solutions are

(4.25) x∗± = ±

√
R̄2 − c3

1− c3
, y∗ = −

√

c1 − c1
R̄2 − c1

1− c1
− R̄2 − c3

1− c3
, z∗± = ±

√
R̄2 − c1

1− c1
.

It follows that there are four period-one points in the bulk of this shell:

(4.26) (x1, y1, z1)
⊤ =

(
x∗+, y

∗, z∗+
)⊤
, (x2, y2, z2)

⊤ =
(
x∗+, y

∗, z∗−
)⊤
,

(x3, y3, z3)
⊤ =

(
x∗−, y

∗, z∗+
)⊤
, (x4, y4, z4)

⊤ =
(
x∗−, y

∗, z∗−
)⊤
,

where, again, (x1, y1, z1)
⊤ and (x4, y4, z4)

⊤ are hyperbolic, while (x2, y2, z2)
⊤ and (x3, y3, z3)

⊤

are elliptic. The resulting dynamics on an invariant surface that contains all four of these fixed
points are qualitatively the same as for the case θz = θx discussed in the previous subsection.
If R̄ is such that the invariant surface intersects the bulk portions of all the period-one curves
in Fig. 4.2(b), there will be four period-one points on its bulk portion with θz 6= θx.

To guarantee the square roots in Eq. (4.25) are real-valued we would need either R̄ >
√
c1

or R̄ >
√
c3 depending on the relative size of c1 and c3, which depends on the relative size of

θz, θx, ǫz and ǫx in a non-trivial manner. Though it has been suggested that θz > θx ⇒ c1 > c3

[80, Appendix D], this is not necessarily true as shown in Appendix B.
Now, once again, we have to make sure the constraint y < −maxx,z{δz(x, z), δx(x, z)} is

satisfied. We are considering the symmetric case, ǫz = ǫx = ǫ, so this constraint becomes

(4.27) −

√

c1 − c1
R̄2 − c1

1− c1
− R̄2 − c3

1− c3
< −ǫ

√

1− R̄2 − c3

1− c3
− R̄2 − c1

1− c1
.

The latter can be manipulated into

(4.28)
{
(ǫ2 − c1)(1− c3) + (ǫ2 − 1)(1 − c1)

}
R̄2 > (ǫ2 − c1)(1 − c3) + (ǫ2 − 1)(1 − c1)c3.

Now, recalling the restriction R̄2 > max{c1, c3} and noting that (ǫ2 − c1)(1 − c3) + (ǫ2 −
1)(1 − c1) < 0 because ǫ < 1 by assumption while ǫ2 < ǫ ≤ c1, c3 ≤ 1 by definition (see
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also Appendix B), we can take the last set of inequalities as strict without loss of generality.
Applying these to Eq. (4.28), we find that period-one points (of the type constructed in §4.1
above) exist on this shell of radius R̄ only if

(4.29) max{c1, c3} < R̄2 <
(ǫ2 − c1)(1 − c3) + (ǫ2 − 1)(1 − c1)c3
(ǫ2 − c1)(1− c3) + (ǫ2 − 1)(1 − c1)

.

Unlike the result in §4.2.1, this one holds for θz 6= θx and any allowed ǫ. Also, note that when
c1 = c3 (i.e., θz = θx), Eq. (4.29) reduces to Eq. (4.21), as required.

Finally, it remains to consider the degenerate case of equality for the first part of Eq. (4.29).
First, let R̄ =

√
c1. Then, Eq. (4.25) becomes

(4.30) x∗± = ±
√

c1 − c3

1− c3
, y∗ = −

√
c1 −

c1 − c3

1− c3
, z∗± = 0.

There are now two parabolic period-one points on the shell of radius R̄ =
√
c1, instead of

the single parabolic point present in the θz = θx case. Second, if c1 > c3, then let R̄ =
√
c3,

whence

(4.31) x∗± = 0, y∗ = −
√

c1 − c1
c3 − c1

1− c1
, z∗± = ±

√
c3 − c1

1− c1
.

Again, it is clear that we have two parabolic period-one points on the shell, and their locations
are mirror images about the x-axis. This can occur, for example, if R̄ is chosen such that the
invariant surface on which trajectories are restricted is precisely tangent to the bulk portions
of the period-one curves in Fig. 4.2(b). Note that this tangency would take place at the two
“lowest” points (i.e., the y coordinate is at a minimum) along the curves.

Finally, it should be noted that, in the above discussion, we neglected the structure of
the corresponding period-one points on the cap, which resides in the flowing layer. Since the
period-one curves in the flowing layer are given as the intersection of two implicitly defined
surfaces, it is unclear whether a tractable parametrization of the analytical expressions, such
as Eqs. (4.17) and (4.25) above, can be derived for the location of the period-one points in
the flowing layer portion of a given 2D invariant surface.

4.3. Period-one structures on the invariant surfaces and their persistence in the weakly

non-symmetric case. In the preceding subsection, we showed that there can be four, two, one
or zero period-one points (depending upon the value of R̄) of the type constructed in §4.1 on
the bulk part of the invariant surfaces that exists in the symmetric case. In this subsection,
we illustrate these results further, and we also address the question of what happens to these
surfaces and the period-one structures on them when the flow is perturbed into the non-
symmetric case, which allows for radial transport as described in §3.

To this end, Fig. 4.3 shows nine combinations of R̄ and (ǫz, ǫx). The symmetric case
corresponds to column (i). Tracers are seeded in the bulk at a distance R̄ from the center of
the tumbler, then tracked over 500 periods of the flow. The plots shown are Poincaré sections,
i.e., the particle locations are only plotted once per flow period.3 Clearly, in the symmetric
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Figure 4.3: 500-period Poincaré sections of tracers (initially uniformly distributed along the
transect z = −x in the bulk) showing the persistence of invariant surfaces in the weakly
non-symmetric case as the flowing layer depth about the x-axis is perturbed to be (ii) 101%
and (iii) 110% of the flowing layer depth about the z-axis. This allows for fully 3D transport,
though for weak perturbations (ii), trajectories remain close to the invariant surfaces from
the symmetric case (i). For the case of larger perturbation (iii), trajectories no longer remain
close to the formerly invariant surfaces. In all plots, the angles through which the tumbler is
rotated are θz = θx = π. For clarity, the period-one curves in the flowing layer are not shown.

case [Fig. 4.3(i)], the dynamics are restricted to invariant surfaces and the dynamics on these
surfaces are essentially those of a one-and-a-half-degree-of-freedom dynamical system.

Figure 4.3(a)(i) shows the symmetric case and an invariant surface that is not pierced
by the curves of period-one points. Thus, there are no features indicative of elliptic periodic
points on this invariant surface and, as a result, there are also no visible KAM islands; however,
hyperbolic period-one points not of the type constructed in §4.1 may still exist. Now, when
the system is perturbed slightly into the non-symmetric case, as shown in Fig. 4.3(a)(ii),
trajectories leave the invariant surface on which they were constrained in the symmetric case,
but they still remain “close” to it. This can be thought of as an adiabatic change in the system

3Particle tracking is performed using the straightforward extension of the analytical solution in Appendix A.
This allows for fast and efficient simulations without accumulating error from the numerical integration of the
equations of motion, i.e., Eqs. (2.2) and the corresponding ones for rotation about the x-axis. In all Poincaré
sections, different colors correspond to different initial conditions of the tracer particles.
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(from the symmetric case to a weakly non-symmetric one), which then allows the application
of the averaging principle [6], at least formally. The latter motivates mathematically the
question of why coherent structures such as invariant surfaces should form, and suggests that
a weak perturbation cannot destroy them but can make them “leaky” [75]. Thus, we observe
the persistence of the invariant structures from the symmetric case, albeit in a “fuzzier” form.
However, as the fuzzier version of the invariant surface still does not intersect the curves
of period-one points, there are no visible KAM islands in the Poincaré section. Then, in
Fig. 4.3(a)(iii), the flow is perturbed well into the non-symmetric case with ǫx being 110% of
ǫz. Now, some trajectories travel as far as the outer container walls.

Figure 4.3(b), on the other hand, presents a progression of Poincaré sections involving
an invariant surface that is pierced by the period-one curves, showing the presence of KAM
islands (evident as red closed curves at five and seven o’clock) at precisely the intersection
points with the normally elliptic period-one curve [Fig. 4.3(b)(i)]. Perturbing this surface
into the non-symmetric case, it is evident that the KAM islands persist [Fig. 4.3(b)(ii,iii)].
This is an important observation because the lack of KAM theory for the blinking spherical
tumbler flow makes it impossible to guarantee the persistence of the KAM islands in the non-
symmetric case a priori. Since unmixed regions due to elliptic periodic points are present in
both the symmetric and non-symmetric cases, they are not a feature unique to the essentially
2D dynamics in the symmetric case. Hence, KAM regions are generic barriers to mixing in
this flow even when trajectories depart from invariant surfaces due to non-symmetric rotation
rates. Meanwhile, the effect of the hyperbolic period-one points on a given invariant surface
is to create a chaotic region through the portion of the surface that is not a KAM island [see
also the bottom view shown in Fig. 4.6(a) below]. This is more difficult to visualize in the
non-symmetric case [Fig. 4.3(b)(ii,iii)] because the trajectories can leave the remnants of the
invariant surface.

Figure 4.3(c) shows the same progression for an invariant surface that fully encloses the
period-one curves. Again we observe the invariant surface becoming “fuzzier” as we perturb
the flow into the non-symmetric case. Now, however, the changes in the nature of the Poincaré
section are less dramatic as its size is already quite large (its radius in the bulk is 90% of the
container’s). Trajectories leaving the surface are thus more likely to traverse the volume it
encloses, which is more difficult to visualize. For the symmetric case in Fig. 4.3(a), there
are no period-one points on the shell because it is not pierced by the curves of period-one
points. No KAM regions are evident in the non-symmetric cases [Fig. 4.3(c)(ii,iii)], though it
is possible for some trajectories to travel towards the center of the filled region, potentially
“spending a long time” in or around an elliptic region. However, for the same reason that a
particle away from the “remnants” of a KAM tube from the symmetric case can get there and
spend a lot of time in this region, the possibility of 3D transport in the non-symmetric case
allows for escape as well.

Finally, to clarify the escape from the invariant surfaces under non-symmetric pertur-
bations, Fig. 4.4 shows the radius in the bulk of a number of representative trajectories as
a function of iteration count (periods of the flow). For brevity, we consider only the case
of R̄ = 0.9, which corresponds to the bottom row in Fig. 4.3. For the symmetric case in
Fig. 4.4(i), the radius in the bulk of each trajectory remains constant. Meanwhile, for a
weak perturbation from the symmetric case in Fig. 4.4(ii), the radii in the bulk of trajectories
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Figure 4.4: Radius, r =
√
x2 + y2 + z2, in the bulk as a function of protocol iterations (flow

periods) n for 20 trajectories initially uniformly distributed along the transect z = −x in
the bulk. Different plot shapes/colors correspond to different initial conditions placed on a
portion of a hemispherical shell with R̄ = 0.9 in the bulk [as in Fig. 4.3(c)]. As in Fig. 4.3,
we observe that in the symmetric case (i) trajectories cannot change their radii in the bulk,
while under non-symmetric perturbations (ii,iii) they can. On average, the rate of escape from
the initial surface is clearly proportional to the strength of the perturbation as evidenced by
the widening distributions of slopes. As in Fig. 4.3, the angles through which the tumbler
is rotated are θz = θx = π. The thick dashed line near the bottom of each plot denotes
rmin = max{ǫx, ǫz}, the minimum radial position a trajectory could have while still being in
the bulk.

change (either increase or decrease) with the number of iterations. Finally, for a stronger
perturbation in Fig. 4.4(iii) the radii are now quite complicated functions of the number of
iterations of the protocol, showing that the 3D trajectories of tracers in the non-symmetric
case explore nontrivial portions of the tumbler volume. Note that the growth of the radii is
typically not smooth, often exhibiting a “staircase-like” pattern. As discussed in §3, even in
the nonsymmetric case, tracer particles cannot change their distance from the origin (or switch
the streamsurface they are on) unless they have a switching point in the flowing layer. Thus,
on average, a trajectory might wander an invariant (stream)surface for a number of flow
periods before it encounters such a switching point and moves to another (stream)surface,
thereby changing its radial position. Furthermore, note that the typical scale for the slopes
in Fig. 4.4(iii) is 10−3, which corresponds to a 1% radial change per 10 protocol iterations.
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Assuming this rate is sustained over the course of a trajectory, it takes on the order of 100
flow periods for a tracer particle to explore all radial positions. This is a significant gain for
the modest 10% increase in ǫx, which corresponds to a 21% increase in ωx versus ωz (for a
fixed shear rate γ̇x = γ̇z).

4.4. Geometry of KAM tubes in the symmetric case. In the previous subsection, we
showed that KAM regions in the flow are persistent barriers to mixing. However, the Poincaré
sections only revealed the local structure of KAM regions near an invariant surface, which
we recall consists (in the symmetric case) of a portion of a hemisphere of radius R̄ in the
bulk with a cap through the flowing layer. In this subsection, we focus on obtaining a better
understanding of the global nature of KAM tubes, specifically their shape.

Since the blinking spherical tumbler flow has curves of normally elliptic period-one points,
it is expected that KAM islands should have a 3D character. In the symmetric case, motion is
restricted to 2D invariant surfaces as shown in §3. Therefore, on each such surface there exists
a KAM island. By computing the boundaries of the KAM island on each invariant surface
and “stacking” these into a 3D volume, we can produce a 3D KAM tube. This idea was first
proposed in [31, §2.3.2] and the existence of such a 3D object was verified by numerical particle
tracking using the continuum model [59]. Again, it is important to note that the KAM theory
developed for maps in action-angle-angle variables [61] has not been extended to linked twist
maps such as the one describing the blinking spherical tumbler flow. Therefore, it may be
more precise to call these objects “KAM-like tubes”; we leave this point understood in the
discussion.

Figure 4.5 shows the result of the proposed construction. A point cloud is generated
from Poincaré sections on a number of invariant surfaces parametrized by R̄ (the radius of
the hemispherical-shell portion of these surfaces). On each surface points are seeded until
their average radial distance (over 200 flow periods) from the elliptic period-one point on the
surface diverges. This gives an acceptable estimate of the outer edge of the KAM region on
the invariant surface. A few such islands are shown in Fig. 4.5, where a cyan dot indicates
the starting point for a tracer particle placed on the outer edge of the KAM region, and
black dots indicate the location of this tracer after several periods of the flow. Then, the
resulting point cloud of all islands’ outer boundaries is triangulated [55] into the magenta
surface. The resulting KAM tube tightly adheres to the normally elliptic period-one curve
and thus has curvature. This is exacerbated as the KAM tube enters the flowing layer and
must make a sharp turn with the normally elliptic period-one curve, making the tube difficult
to mesh in this region. At the lower end of the tube, as is already evident in Fig. 4.5, the
tube quickly closes up near the parabolic point at the intersection of the normally elliptic
and normally hyperbolic period-one curves. This is also difficult to mesh. Therefore, only a
portion of the KAM tube in the bulk is shown. This suffices for the purpose of illustrating
the KAM tube’s intricate geometry, which is quite distinct from the KAM tori observed in
fluid mixing experiments [28, 7] for which the dynamics closely resemble those of a perturbed
(non-integrable) Hamiltonian system.

The significance of the KAM tube is that, analogous to a KAM island in a quasi-2D
tumbler (see, e.g., [38, 58, 22]), little mixing can occur within it. This is due to the fact that
particle trajectories either cannot leave the KAM tube or spend a long time near it. Outside
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Figure 4.5: A portion of a KAM tube in the symmetric case with θz = θx = π and ǫz =
ǫx = 0.15. Sample locations of tracers along the (approximate) outer boundary of several
KAM islands on invariant surfaces parametrized by R̄ are shown as black and cyan dots.
The period-one normally elliptic (blue) and normally hyperbolic (green) invariant curves are
shown, with the KAM tube clearly encircling the normally elliptic one. A second KAM tube
exists but it is simply the mirror image across the plane x = z of the one shown.

of the KAM tube, it is expected that the flow is chaotic thanks to the tangle of manifolds of
the hyperbolic period-one points as will be described in §5. Therefore, material away from
the KAM tube can be effectively mixed, while material in or near the KAM tube cannot.

It is worthwhile exploring the behavior of the KAM tube near the parabolic point further
because it appears that such behavior has not been considered previously. Figure 4.6 shows
Poincaré sections of the blinking spherical tumbler (in the symmetric case) on different invari-
ant surfaces parameterized once again by R̄, as R̄→ √

c1
+. Recalling the results for §4.2.1, if

R̄ =
√
c1, the invariant surface has a single period-one point in the bulk, and it is parabolic.

From Fig. 4.6(a) and (b) it is easy to see that the outer boundary of KAM island on these
surfaces shrinks as R̄→ √

c1
+, eventually becoming too small to easily identify in Fig. 4.6(c).

This illustrates the “pinch-off” behavior of the KAM tube as it approaches the parabolic
period-one point. It is also worthwhile pointing out that these Poincaré sections show a dou-
ble saddle-node bifurcation [50, 35] as R̄→ √

c1
+. That is to say, two elliptic period-one points
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z

Figure 4.6: 500-period Poincaré sections, as seen from below, on invariant surfaces in the
symmetric case (with θz = θx = π and ǫz = ǫx = 0.15) as R̄ gets progressively closer to
the critical value

√
c1(= 0.5449 . . . for these parameters) from above. For R̄ =

√
c1, there

is only a single parabolic period-one point on the surface. This progression illustrates the
double saddle-node bifurcation occurring on the bulk portion of the invariant surfaces. The
normally hyperbolic and normally elliptic period-one invariant curves are shown in green and
blue, respectively.

(nodes) coalesce with two hyperbolic period-one points (saddles) in a symmetric manner as a
system parameter, R̄, approaches a critical value,

√
c1.

4.5. Minimizing the spatial extent of period-one barriers to mixing. The previous two
subsections have shown that KAM tubes in the blinking spherical tumbler flow are generic
and potentially significant barriers to mixing. Therefore, it is of interest to determine whether
there are parameters such that period-one islands can be eliminated, thereby promoting more
complete mixing. In this subsection, we show that it is possible to analytically determine such
“optimal” parameters that minimize the extent of the period-one islands using the results
from §4.1 and 4.2.

From Eqs. (4.21) and (4.29), it is clear that the upper bound on the “depth,” min(x,y,z)∈Υ y,
of the curves of period-one points of the type constructed in §4.1 is max{√c1,

√
c3}. Of course,

from Eq. (4.10), c1 and c3 are only functions of ǫz, θz and ǫx, θx, respectively. To minimize the
effect of the KAM tubes that surround the curves of normally elliptic period-one curves, one
approach would be to make the bowls Σ1 and Σ2 as shallow as possible, thereby minimizing
the volume in the bulk of the spherical tumbler that falls inside the KAM tubes and, hence,
the volume that would remain unmixed.

Without loss of generality, let us restrict the discussion to the rotation about the axis
that gives the deeper bowl of period-one points, noting that the bowls have unequal depths
when θz 6= θx. Then, supposing that the flowing layer’s depth is known, we seek to find the
“optimal” choice of θ in the sense described above. Therefore, we seek to minimize c(ǫ, θ) as a
pure function of θ, assuming that the flowing layer’s depth ǫ is prescribed. From Appendix B,
we immediately find that the result of setting ∂c/∂θ = 0 and solving for θ as a function of ǫ is
that θn = (2n+ ǫ)π minimizes c, while θm = (2m+ 1 + ǫ)π maximizes c, where m,n ∈ Z. Of
course, we may take n = m = 0 without loss of generality. Then, using Eq. (4.10), c(ǫ, θm) = 1
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Figure 4.7: Contour plots of the depth of a period-one bowl as a function of ǫ and θ: (a)
square of the depth, c(ǫ, θ), with dark and light dashed lines showing the local minima and
maxima, respectively; (b) depth,

√
c(ǫ, θ)− ǫ, that the bowl extends below the flowing layer,

showing that the period-one curves extend into the flowing layer only for a range of θ values.

is the maximum, and c(ǫ, θn) = ǫ2 is the minimum. This leads to the following result: To
make the extent of the period-one curves into the bulk minimal for given ǫz and ǫx, choose
angles of rotation θz = ǫzπ and θx = ǫxπ about each of the two axes, respectively.

Figure 4.7(a) shows a contour plot of the function c(ǫ, θ) from Eq. (4.10). Clearly, the
curves defined by θ = ǫπ and θ = (1+ǫ)π in the (ǫ, θ)-plane are the local minima and maxima,
respectively, of c. The “full” 2D optimization problem is simple since ǫ is constrained to be
less than the tumbler radius, which is 1 in dimensionless units. Meanwhile, the dependence of
c on θ is periodic with period 2π. Therefore, knowing the curves of local minima and maxima
in the (ǫ, θ)-plane and the boundaries of the compact set on which the smooth function c

is defined, say [0, 2π] × [0, 1], we readily know its global maximum and minimum. From a
practical standpoint, the periodicity in θ simply reflects the fact that, under the assumption of
no transport in the direction transverse to the flow, there is no improvement in the transport
(or mixing) properties of the flow for rotation angles greater than 2π radians. In addition, in
Fig. 4.7(b), the depth of the bowls below the flowing layer [i.e.,

√
c(ǫ, θ)− ǫ] is plotted as well.

This shows that there is only a limited range of θ values for any given ǫ for which the bowls
(and consequently curves) of period-one points extend significantly into the bulk.

To summarize: if we assume a priori that period-one structures of the type constructed in
§4.1 (such as KAM tubes) are the worst barriers to mixing, then the results of this section give
the optimal angles for mixing protocols to minimize such KAM tubes in the bulk. Thus, as long
as ǫ and θ are chosen so that their values fall within the white region in Fig. 4.7(b), the curves
of period-one points (specifically, the normally elliptic ones) do not extend significantly into
the bulk and do not adversely affect the quality of mixing. Furthermore, due to the periodicity
in θ, there is no added value (with respect to mixing) in rotating by a large angle (beyond
2π) in the absence of diffusion and/or an axial flow.
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(a) streamlines, elliptic (green) and hyper-
bolic (red) period-one points, and separa-
trices (blue) of a steady cellular flow

(b) heteroclinic tangle of stable (black)
and unstable (red) manifolds formed by
the break-up of a separatrix (blue) under
a weak perturbation

Figure 5.1: Forcing a time-periodic translation of the hyperbolic points in spatially periodic
convection rolls (a), which represent a double saddle-node Hamiltonian dynamical system,
leads to the break up of separatrices and the formation of a tangle of transversely intersecting
manifolds (b). Lobe dynamics (mapping of area between stable and unstable manifold inter-
sections) allows for transport in and out of each vortex (entrainment and detrainment). All
vertical separatrices delineating adjacent vortices break up into tangles under perturbation.

5. Structures associated with hyperbolic period-one points in the symmetric case. In
this section, we present selected numerical results on the structure of manifolds of hyperbolic
period-one points in the symmetric case of the model. While in the previous section we
considered the most significant barriers to mixing, i.e., KAM tubes, the structure of manifolds
also provides insight into transport in the blinking spherical tumbler flow. We show that the
paradigm of the invariant manifold template for chaotic transport [11] applies. More strikingly,
however, we show that not all manifolds form chaotic tangles, leaving some further barriers
to mixing in the forms of separatrices. Details of the computational method used are given in
Appendix C.

5.1. Geometry of manifolds of hyperbolic period-one points. As elaborated in §4.4 and
illustrated in Fig. 4.6, the bulk portion of each invariant surface, to which trajectories are
restricted in the symmetric case, can have at most two hyperbolic and two elliptic period-one
points of the type constructed in §4.1. The resulting Poincaré sections show dynamics (on
the invariant surface) that are similar to a perturbed (non-integrable) double saddle-node
Hamiltonian system. Therefore, as a stepping stone to understanding the chaotic dynamics
of the LTM corresponding to the blinking spherical tumbler flow, it is helpful to consider
two classical examples of a non-integrable perturbation to an integrable Hamiltonian double
saddle-node system: a simple model of 2D cellular Rayleigh–Bénard convection [70] and the
flow generated by an oscillating pair of planar vortices [68].

When an incompressible thermally conducting fluid between two plates is heated from
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(a) streamlines, elliptic (green) and hyper-
bolic (red) period-one points, and separa-
trices (blue) of a steadily translating vor-
tex pair

(b) transverse intersection of stable
(black) and unstable (red) manifolds of hy-
perbolic periodic points in the perturbed
vortical flow

Figure 5.2: Subjecting a steadily translating vortex pair (a), which is a double saddle-node
Hamiltonian dynamical system, using a time-periodic strain-rate field leads to the break up
of separatrices and the formation of a manifold tangle (b). Lobes dynamics (mapping of
area between stable and unstable manifold intersections) allows for transport in and out of
the vortex (entrainment and detrainment). The horizontal separatrix connecting the two
hyperbolic points persists under perturbation, preventing transport between the upper and
lower half-planes.

below, a horizontally periodic array of counter-rotating vortices, known as Rayleigh–Bénard
convection rolls, two cells of which are illustrated in Fig. 5.1(a), forms [70]. A heteroclinic
trajectory connecting the hyperbolic fixed points on the top and bottom walls acts as a sep-
aratrix, preventing transport between the two convection cells. (Two additional heteroclinic
trajectories form the top and bottom boundaries of each convection cell.) Each convection
cell has an elliptic fixed point at its center. Beyond a critical temperature difference be-
tween the top and bottom plates, an instability causes the flow to become time-dependent
but the velocity field remains essentially a perturbation of the steady one. In particular, the
time-dependent perturbation causes the convection cells to oscillate horizontally (breaking
the left-right reflection symmetry), the separatrix through the middle of Fig. 5.1(a) breaks
up into a tangle of stable and unstable manifolds, as shown in Fig. 5.1(b), which exhibits the
typical lobe dynamics transport behavior [16]. The two separatrices on the top and bottom
of each convection cell (and coinciding with the top and bottom walls) remain, bounding the
dynamics in the vertical direction.

Another, topologically equivalent, double saddle-node Hamiltonian system is a pair of
steadily translating vortices in an inviscid incompressible fluid, a 2D version of Hill’s spherical
vortex [39]. The resulting dynamical system’s phase portrait is illustrated in Fig. 5.2(a). Sim-
ilarly to the previous example, one separatrix prevents transport between the two vortices,
while two other separatrices prevent transport from each vortex into the ambient fluid. Upon
introducing a time-periodic strain-rate field that causes the vortices to oscillate, the separa-
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trices demarcating the vortices from the uniform outer flow break up into chaotic tangles [68]
as shown Fig. 5.2(b). However, unlike the previous example, the separatrix the middle that
prevents transport between the vortices persists (the system maintains its up-down reflection
symmetry), so that transport is only possible between the ambient (unbounded) fluid and
each vortex.

Now, we have two possible perturbed-integrable-Hamiltonian-system templates against
which to compare the manifold structure of the blinking spherical tumbler flow. A first clue
about the structure of the manifold tangles in the blinking spherical tumbler is the lack of
a chaotic region between the KAM islands on invariant surfaces with R̄ close to 0.54 . . . in
Fig. 4.6(a). It appears that a separatrix persists, connecting the two hyperbolic points in the
bulk. Indeed, similarly to the pair of 2D vortices in Fig. 5.2(a), the blinking spherical tumbler
with θz = θx possesses a symmetry of its invariant curves and, hence, its nodes (resp. saddles)
about x = z (resp. x = −z). In contrast, Poincaré sections on the invariant surfaces on which
the period-one points are farther apart [Fig. 4.3(b)(i)] appear to have a chaotic region between
the KAM islands.

To reconcile these observations, Fig. 5.3 shows traces of the stable and unstable manifolds
of the four hyperbolic period-one points on the invariant surface (in the symmetric case)
that we studied through Poincaré sections in Fig. 4.3(b)(i). In Fig. 5.3(a,b), for the two
hyperbolic period-one points in the flowing layer, we see the typical meshwork of infinitely
nested intersections of stable and unstable manifolds. What is surprising, however, is that
this meshwork extends well into the bulk portion of the invariant surface. This suggests that
if there is a “chaotic transport channel” between the KAM islands, then it is created by a
lobe dynamics transport mechanism mediated by the hyperbolic points in the flowing layer.
Furthermore, as Fig. 5.3(c,d) shows, the structure of the manifolds of the hyperbolic period-one
points in the bulk is markedly different from that in the flowing layer [note the orientation
of the z-axis is reversed between panels (a,b) and (c,d)]. For example, the meshwork of
intersections does not extend through the bottom of the bulk part of the surface, rather it
remains localized near the tumbler walls close to the flowing layer. Here it is important
to emphasize that the tangles of manifolds will eventually fill the entire invariant surface if
we trace them over enough periods because the manifolds themselves have infinite length.
However, studying a finite length of manifold is enlightening because it gives an organizing
framework [11] for the observed chaotic dynamics for trajectories passing near the hyperbolic
points.

Thus, while the chaotic tangle produced by the manifolds of the hyperbolic period-one
points in the flowing layer is similar to the perturbed-integrable-Hamiltonian-system template
of 2D cellular Rayleigh–Bénard convection [Fig. 5.2(a)], the tangle produced by the manifolds
of the hyperbolic period-one points in the bulk retains a symmetry (for θz = θx) that makes
it more similar to the one of the oscillating vortices [Fig. 5.2(b)]. Though both the bulk and
the flowing layer contain a double saddle-node structure, the dynamics is distinct. This also
serves to highlight the linked twist map (LTM) structure, which is not a simple perturbation
of an integrable Hamiltonian system, of the blinking spherical tumbler flow. (Here, we should
stress that the dynamics on invariant surfaces in the symmetric case is still those of a volume-

preserving map.) The important point is that the separation of dynamics between the bulk
and the flowing layer, with those in the bulk being simply solid body rotation, leads to a
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(a) manifolds of forward (x, z > 0)
hyperbolic point in the flowing layer

(b) manifolds of rear (x, z < 0)
hyperbolic point in the flowing layer

(c) manifolds of forward (x, z > 0)
hyperbolic point in the bulk

(d) manifolds of rear (x, z < 0)
hyperbolic point in the bulk

Figure 5.3: Stable (black) and unstable (red) manifolds of a pair of mirror hyperbolic periodic
points in (a,b) the flowing layer and (c,d) the bulk for the invariant surface with R̄ = 0.62.
For all panels, θz = θx = π, ǫz = ǫx = 0.15. The manifolds are traced out over 27 periods
(a,b) or 40 periods (c,d) of the flow. Note the apparent coincidence between a branch of the
stable manifold of the forward hyperbolic point in the bulk (c) and a branch of the unstable
manifold of the rear hyperbolic point in the bulk (d), indicated by arrows.

transport mechanism mediated primarily by the tangle of manifolds of hyperbolic points in
the flowing layer.

5.2. Heteroclinic and homoclinic connections in the partially chaotic flow. The ap-
parent coincidence of a branch of the stable manifold of the forward hyperbolic fixed point
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Figure 5.4: Heteroclinic and homoclinic trajectories (a few shown starting from the hyperbolic
points denoted by ×s) persist in the bulk of the chaotic blinking spherical tumbler flow, while
those in the flowing layer breakup into a tangle of manifolds. The extent of the period-one
curves in the flowing layer is not shown in panel (b) out of convenience. In all panels, we are
under the conditions for the symmetric case of the model with ǫz = ǫx = 0.15.

in the bulk from Fig. 5.3(c) with the branch of the unstable manifold of the rear hyperbolic
fixed point from Fig. 5.3(d) (both indicated by arrows) suggests the persistence of a hetero-
clinic connection in the chaotic blinking spherical tumbler. To elucidate this observation, in
Fig. 5.4(a), we trace the stable manifold of the forward hyperbolic fixed (in the Poincaré map)
point in the bulk until it is within some prescribed distance from the rear hyperbolic fixed
point. This allows us to confirm, up to numerical precision, the existence of the heteroclinic
connection. Indeed, since we can “stack” trajectories across invariant surfaces in this (the
symmetric) case, the heteroclinic trajectories form a 2D structure. Note, however, that the
heteroclinic trajectories do not lie in the x = z plane of symmetry to which the normally
hyperbolic period-one curves are restricted [59, Appendix A]. From Fig. 5.4(a), it is evident
that the shape of the resulting 2D structure is not flat. Rather, it looks more like a “scoop”
as can be seen from the further forward protrusion of each consecutively lower black curve.
Since manifolds are invariant surfaces that material cannot cross, there cannot be trajectories
in the Poincaré section that pass through these 1D barrier to mixing across the 2D invariant
surfaces. Hence, the only way for an orbit of the Poincaré map to switch between the two
hemispheres of the invariant surface (as divided by a heteroclinic connection) is by passing
through the flowing layer.

In §4.1 (specifically, Fig. 4.2), it was shown that when θz 6= θx, the period-one curves
separate, no longer crossing at some point with x = z = 0. To see the effect of such change
in the period-one curves’ topology, Fig. 5.4(b) shows some example traces of stable manifolds
for θz 6= θx. The heteroclinic connections from Fig. 5.4(a) are now homoclinic connections.
That is, the stable manifold does not connect across the tumbler to the opposite hyperbolic
fixed point on the invariant surface. Rather, it loops back to the original hyperbolic point,
which is denoted by an ‘×.’ This creates local barriers to mixing (separatrices) that are not as
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pronounced as the hemisphere-delineating ones in Fig. 5.4(a). Furthermore, these homoclinic
connections do not exist for all period-one points along the normally hyperbolic invariant
curve. At some critical point along the curve, this separatrix ceases to exist, and the stable
manifold appears to become part of a homoclinic tangle, as is the case for the trace from
the leftmost ‘×’ in Fig. 5.4(b). It would be of interest to develop theoretical results on the
location of the critical point (at which the homoclinic trajectory ceases to exist) as a function
of the system parameters, specifically the angles of rotation θz and θx.

6. Conclusions and outlook. Canonical examples of 3D chaotic dynamical systems are
few, with the more realistic ones being analytically intractable. In this respect, the blinking
spherical tumbler offers an interesting duality: it is simple enough to be analytically tractable,
yet it retains enough of the kinematics of granular flows to be able to reproduce laboratory
experiments [31, 32, 59].

In the present work, an important finding is the necessary condition, formulated in terms
of the system’s parameters, for radial (i.e., fully 3D) transport in the tumbler. This allows
for the identification of a “symmetric” versus a “non-symmetric” mode of operation of the
mixer. Similarly, the derivation of analytical expressions for a class of period-one invariant
curves, allows us to understand their structure and dependence on the parameters, which is
difficult to do when the periodic points must be found by an extensive numerical search of the
domain (as in, e.g., [2, 73, 67]). Furthermore, since the blinking spherical tumbler is a linked
twist map (specifically, a composition of two action-action-angle maps), its mathematical
structure is not precisely that of a perturbed integrable Hamiltonian system such as the
ABC flows first considered as prototypical 3D chaotic systems. Moreover, the computational
analysis of the structure of the manifolds of hyperbolic period-one points (in the symmetric
case) further highlights the separation of dynamics between the flowing layer and the bulk,
each being loosely analogous to a different perturbed-integrable-Hamiltonian-system template.
Nevertheless, the analogy to non-integrable Hamiltonian dynamics is helpful in understanding
the bifurcations of period-one structures on the invariant surfaces (in the symmetric case) of
the flow.

In the future, it would also be interesting to extend the results from §5, specifically to
visualize the 2D surfaces of stable and unstable manifolds of the normally hyperbolic invariant
curves. When the dynamics are restricted to planes in R

3, the “stacking up” and meshing
procedure that we used to construct a piece of a KAM tube can be applied to short pieces
of the 2D stable and unstable manifolds [13]. The extension of this approach to the blinking
spherical flow does not appear straightforward at this time as the dynamics are restricted to
curved surfaces, making the meshing step difficult. However, if the latter complication could
be overcome, studying the shape and structure of lobes (volumes enclosed by the intersections
of the 2D stable and unstable manifolds) would also be of interest, as this could provide new
ideas about 3D lobe dynamics of volume preserving maps [54, 62].

Another avenue of future theoretical work could be to study resonant periodic trajectories.
That is, since we are able to compute analytically trajectories in the blinking spherical tumbler,
the results in [80, §2.3] could be extended to the 3D context to find the radial position and
angular extent of islands of a given period. Then, it may be possible to arrive at analytical
results of how these change with the system’s parameters.
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Additionally, the issue of granular segregation has not been addressed here, but it is
natural to ask whether some of the dynamics that have been observed affect segregation of
particles of different sizes (or densities) in any way, leading to connections such as those made
for quasi-2D non-circular tumblers [58]. For example, in the cases where the choice of protocol
parameters leads to pathological behaviors, do these exceptional mixing cases correspond to
exceptional segregation cases (e.g., possibly no segregation or reverse segregation)? Since
KAM regions correlate with lobes in segregation patterns, what are the implications of the
results in §4.4 for “minimizing” segregation?

Finally, the more practical aspects of this problem should also be investigated. For exam-
ple, does changing the fill fraction to less-than-half or more-than-half full affect the dynamics
of the flow in a nontrivial way? It is already evident that changing the shape of the con-
tainer leads to significantly different transport properties, as initial experimental [31] and
combined theoretical–experimental [59] studies of blinking cubical tumbler flows have shown.
Such cubical tumblers present the intriguing possibility of a system exhibiting two types of
vanishing-flowing-layer dynamics known as streamline jumping [22] due to the non-circular
cross-sections of the tumbler and cutting and shuffling [80, 45, 44] due to the changing axis of
rotation.

Appendix A. Exact particle trajectory solutions for rotation about a single axis. For
rotation about a single axis, the ordinary differential equations that define the pathlines of
granular flow in a spherical tumbler are an integrable dynamical system [80, 81]. Thus, it
is expected that the equations can be (formally or directly) integrated to give a closed-form
solution for tracer trajectories. Here, we assume the rotation is about the z-axis; the case of
rotation about the x-axis can be obtained by formally exchanging z and x in all expressions.
It suffices to consider a cross-section for an arbitrary fixed z, as shown in Fig. A.1, and
determine x(t) and y(t) (with the z-dependence suppressed but understood). Since z is fixed,
let δ(x) := δz(x, z) = ǫ

√
L2 − x2 for simplicity of notation.

We show that the trajectory in the bulk of the material rotating as a solid body [Eqs. (A.5)
& (A.6) below] and the trajectory in the flowing layer [Eqs. (A.12) & (A.14) below] can be
pieced together into a global trajectory in an arbitrary cross-section of the spherical tumbler
rotating about a single axis. Composing the latter with the analogous rotation about the
x-axis is straightforward. Thus, these cross-sectional solutions allow for exact tracking of a
3D particle trajectory in the blinking spherical tumbler.

A pathline that starts at an arbitrary point (x0, y0)
⊤ in the filled portion of a z = const.

tumbler cross-section, D = {(x, y)⊤ |x2 + y2 < L2, y < 0}, is defined as a solution to
Eqs. (2.2a) and (2.2b). Since the right-hand sides of the latter are defined differently depending
on whether (x, y)⊤ is in the bulk, Db = {(x, y)⊤ |x2 + y2 < L2, y < −δ(x)}, or in the flowing
layer, Dfl = {(x, y)⊤ |x2 + y2 < L2, −δ(x) < y}, we consider each case separately.

A.1. Case 1: initial condition in the bulk. Assume that y0 < −δ(x0), i.e., the trajectory
is seeded in the bulk. When it reaches the flowing layer’s boundary, the point of intersection
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Figure A.1: Diagram of a z = const. cross-section of a 50% full spherical tumbler rotating
about the z-axis (out of the page) that has been rotated backwards by the dynamic angle of
repose so the surface of the flowing layer is horizontal, showing the coordinate system and
notation. The initial condition of a sample pathline is shown in the bulk (as in §A.1) and
denoted by (x0, y0)

⊤; its intersection with the flowing layer is denoted by (x1, y1)
⊤.

being (x1, y1)
⊤, it must satisfy the two simultaneous equations:

x21 + y21 = x20 + y20,(A.1a)

y1 = −δ(x1) = ǫ
√
L2 − x21,(A.1b)

Equation (A.1a) follows from the fact that the value of the streamfunction ψb = 1
2 (x

2 + y2)
[second case of Eq. (2.3)] is constant along a trajectory in the bulk (and thus expresses the
fact that trajectories under solid body rotation are circular arcs), while Eq. (A.1b) states that
the point (x1, y1)

⊤ is on the flowing layer interface. Solving Eqs. (A.1) for x1, we obtain

(A.2) x1 = −

√(
x20 + y20

)
− ǫ2L2

1− ǫ2
,

where the negative square root is taken because we seek the point of entry into the flowing
layer, which must be at x1 < 0 by virtue of the fact that we have assumed clockwise rotation
of the tumbler.

Next, we construct the portion of this trajectory in the bulk by finding an expression for
y as a function of x using the constancy of ψb and the initial condition:

(A.3)
1

2

[
x2 + y(x)2

]
=

1

2

(
x20 + y20

)
⇒ y(x) = −

√
x20 + y20 − x2,
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where we took the negative square root because y < 0 by construction. Separating variables
in the second case (corresponding to motion in the bulk) of Eq. (2.2a), we have dt = dx/y(x),
which can be integrated for t(x) to yield

(A.4) tb(x) = − sin−1

(
x√

x20 + y20

)
+ sin−1

(
x0√
x20 + y20

)
.

Obviously |x| ≤
√
x2 + y2 =

√
x20 + y20 while in the bulk, so the sin−1 above is real. Inverting

Eq. (A.4), we obtain

(A.5) x(t) =
√
x20 + y20 sin

[
−t+ sin−1

(
x0√
x20 + y20

)]
.

Then, from the second relation in Eq. (A.3) and the identity 1− sin2 ζ = cos2 ζ, we have

(A.6) y(t) = −
√
x20 + y20 cos

[
−t+ sin−1

(
x0√
x20 + y20

)]
.

Unsurprisingly, Eqs. (A.5) and (A.6) simply describe solid body rotation.

A.2. Case 2a: initial condition on the flowing layer interface. Now, assume that y0 =
−δ(x0), i.e., the trajectory is seeded on the interface between the flowing layer and the bulk.
In this case, we first find y(x) using the constancy of ψfl from the first case (corresponding to
motion in the flowing layer) of Eq. (2.3). The latter can be rewritten as a quadratic equation
in y:

(A.7) y2 + 2δ(x)y − 2
[
δ(x0)y0 +

1
2y

2
0

]
= 0,

which has two solutions:

(A.8) y±(x) = −δ(x)±
√
δ2(x) + 2

[
δ(x0)y0 +

1
2y

2
0

]
.

We have assumed that (x0, y0)
⊤ ∈ Dfl, so y(x) ≥ −δ(x) ∀x as long as the trajectory

remains in the flowing layer. Therefore, y+ is the root we seek. Additionally, we must check
that the expression under the square root in Eq. (A.8) is always positive. This follows from
the fact that the quadratic function of y0 given by ζ(y0) := 2

[
δ(x0)y0 +

1
2y

2
0

]
has an extremum

at y0 = −δ(x0), which is a minimum because ζ ′′(y0) = 2 > 0 ∀y0. Also, ζ(y0) ≤ 0 because
y0 ≥ −δ(x0) by assumption. Therefore, the least that the quantity under the square root in
Eq. (A.8) can be is δ2(x) − δ2(x0) at y0 = −δ(x0). For instance, if take (x0, y0)

⊤ to lie on
the curve y0 = −δ(x0), by symmetry of the flowing layer and the trajectory therein, we have
|x| ≤ |x0| and δ(x) > δ(x0) ∀x along the pathline, and y+ is always real. Thus, the expression
for y+, as written, is always well-defined for pathlines starting at the interface between the
flowing layer and the bulk. We return to the case when (x0, y0)

⊤ does not lie on the flowing
layer boundary [i.e., y0 > −δ(x0)] in §A.3.
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For convenience, let us define the constant

(A.9) κ = κ(x0, y0) :=
2

ǫ2
[
δ(x0)y0 +

1
2y

2
0

]
,

which is a function of only ǫ and the initial condition, hence it is fixed for each pathline. Then,
we eliminate y [using y+ from Eq. (A.8)] from the first case (corresponding to motion in the
flowing layer) of Eq. (2.2a) to obtain, after separating variables and simplifying,

(A.10) dt =
dx

ǫ−2
[
δ(x) − δ(x) +

√
δ2(x) + ǫ2κ

] =
dx

ǫ−1
√
L2 + κ − x2

.

This is easily integrated for t(x), as in §A.1 above, arriving at

(A.11) tfl(x) = ǫ sin−1

(
x√

L2 + κ

)
− ǫ sin−1

(
x0√
L2 + κ

)
,

for a trajectory starting at the flowing layer interface. Based on the discussion regarding y±,
κ ≥ −ǫ−2δ2(x0) ⇒

√
L2 + κ ≥

√
L2 − ǫ−2δ2(x0) = |x0|, thus

√
L2 + κ is always real. Also,

since |x| ≤ |x0| ≤
√
L2 + κ in the flowing layer, the sin−1 above is also real-valued. Inverting

Eq. (A.11), we obtain

(A.12) x(t) =
√
L2 + κ sin

[
t

ǫ
+ sin−1

(
x0√
L2 + κ

)]
.

Finally, we find y(t) using the y+ from Eq. (A.8):

(A.13) y(t) = −ǫ
√
L2 − x(t)2 +

√
ǫ2 [L2 − x(t)2] + ǫ2κ,

where the second square root is real provided y0 = −δ(x0). Substituting the expressing for
x(t) from Eq. (A.12) and using the identity 1− sin2 ζ = cos2 ζ, Eq. (A.13) becomes

(A.14) y(t) = −ǫ
√
L2 − (L2 + κ) sin2

[
t

ǫ
+ sin−1

(
x0√
L2 + κ

)]

+ ǫ
√
L2 + κ cos

[
t

ǫ
+ sin−1

(
x0√
L2 + κ

)]
.

A.3. Case 2b: initial condition in the flowing layer. Now, assume that y0 > −δ(x0), i.e.,
the trajectory is seeded in the flowing layer. Using the constancy of ψfl [from the first case
of Eq. (2.3)] along a pathline in the flowing layer and y1 ≡ −δ(x1) [from the definition that
(x1, y1)

⊤ is the point at which the trajectory enters the flowing layer from the bulk] yields

(A.15)
1

ǫ2
[
δ(x0)y0 +

1
2y

2
0

]
=

1

ǫ2
[
−δ2(x1) + 1

2δ
2(x1)

]
=

1

2

(
x21 − L2

)
.

Thus, we find what x1 should be for this trajectory:

(A.16) x1 = −
√
L2 +

2

ǫ2
[
δ(x0)y0 +

1
2y

2
0

]
,
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where the negative root is taken because our convention is that x1 < 0. Using the solution
in §A.2, we can “trace” the trajectory from the (x1, y1)

⊤, as computed from Eq. (A.16), but
time “starts” at the given x0 (|x0| < |x1|). Therefore, we need to find by how much we should
advance (in time) the evaluation of the solution. To this end, we use Eq. (A.11) with (x1, y1)

⊤

in place of (x0, y0)
⊤ and (x0, y0)

⊤ as the final point (x, y)⊤:

(A.17) tfl so far = ǫ

[
sin−1

(
x0√

L2 + κ(x1, y1)

)
− sin−1

(
x1√

L2 + κ(x1, y1)

)]
.

Equation (A.9) gives κ(x1, y1) = 2ǫ−2
[
−δ2(x1) + 1

2δ
2(x1)

]
= x21 − L2, whence

(A.18) tfl so far = ǫ

[
sin−1

(
x0
|x1|

)
+
π

2

]
.

The minus sign in front of π/2 is gone because x1/
√
x21 = −1, i.e., we must take the negative

branch of the square root because x1 < 0 by definition. Therefore, if our trajectory starts in
the flowing layer, we find the point (x1, y1)

⊤ at which it would have entered into the flowing
layer, and then we use the solution given in §A.2 evaluated at t + tfl so far to account for the
fact that we start at a later point along this trajectory.

A.4. Period of a trajectory starting at an arbitrary point in D. We begin by finding
the point of intersection of the trajectory and the flowing layer, i.e., (x1, y1)

⊤, from either
Eq. (A.2) or Eq. (A.16). This now works for trajectories starting at an arbitrary point both in
either the bulk Db or the flowing layer Dfl. The period T is the time it takes to go around any
closed streamline (in the clockwise direction), hence it is equal to the sum of the time spent
in the bulk [Eq. (A.4) with (−x1, y1)⊤ as starting point and (x1, y1)

⊤ as the endpoint] and
the time spent in the flowing layer [Eq. (A.11) with (x1, y1)

⊤ as starting point and (−x1, y1)⊤
as the endpoint], which gives

(A.19) T = −2 sin−1

(
x1√
x21 + y21

)
+ ǫπ = −2 sin−1

(
x1√

(1− ǫ2)x21 + ǫ2L2

)
+ ǫπ,

where x1 is given by either Eq. (A.2) [for (x0, y0)
⊤ ∈ Db] or Eq. (A.16) [for (x0, y0)

⊤ ∈ Dfl].

Using the identity sin−1
(
x1

/√
x21 + y21

)
= − tan−1 (x1/y1) for x1, y1 < 0 in the first term of

Eq. (A.19) makes this expression similar to the special case of x0 = 0 in [80, Appendix A].
Notice that the time spent in the flowing layer is ǫπ for all streamlines, in agreement with
experiments [89].

Appendix B. Dependence of the bowl depths c1, c3 on the rotation angles θz, θx.
Here, the goal is to determine conditions on the parameters θz, θx, ǫz and ǫx that guarantee

c1 < c3. The latter inequality is relevant to the results on the existence of period-one points
in the bulk of invariant surfaces in the symmetric case (§4.2.2). To this end, we wish to verify
the inequality

(B.1) c1 < c3 ⇔ ǫ2z(1 + tan2 ϕz)

1 + ǫ2z tan
2 ϕz

<
ǫ2x(1 + tan2 ϕx)

1 + ǫ2x tan
2 ϕx

,
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where we recall that c and ϕ are defined in Eq. (4.10). To make any claims about the latter
inequality we must know something about the extrema of the function involved. First, note
that we are considering the symmetric case so that ǫz = ǫx = ǫ is given and fixed and also
suppose that θz = θx = θ (⇒ ϕz = ϕx = ϕ). Then, to extremize the function in the inequality
in Eq. (B.1) we take its derivative and set it equal to zero:

(B.2)
∂

∂θ

(
ǫ2{1 + tan2[(θ − ǫπ)/2]}
1 + ǫ2 tan2[(θ − ǫπ)/2]

)
=
ǫ2 tan[(θ − ǫπ)/2] sec2[(θ − ǫπ)/2]

1 + ǫ2 tan2[(θ − ǫπ)/2]

− ǫ4{1 + tan2[(θ − ǫπ)/2]} tan[(θ − ǫπ)/2] sec2[(θ − ǫπ)/2]

{1 + ǫ2 tan2[(θ − ǫπ)/2]}2 = 0.

First, the easy case is that of the numerator vanishing:

(B.3) ǫ2 tan[(θ − ǫπ)/2] sec2[(θ − ǫπ)/2]{1 + ǫ2 tan2[(θ − ǫπ)/2]}
− ǫ4{1 + tan2[(θ − ǫπ)/2]} tan[(θ − ǫπ)/2] sec2[(θ − ǫπ)/2] = 0.

This results in two possibilities, either

(B.4) tan[(θ − ǫπ)/2] = 0 ⇒ (θ − ǫπ)/2 = nπ, n ∈ Z,

or

(B.5) {1 + ǫ2 tan2[(θ − ǫπ)/2]} − ǫ2{1 + tan2[(θ − ǫπ)/2]} = 0 ⇒ ǫ = ±1.

Since ǫ ≥ 0, and under the above-mentioned physical restriction ǫ ≤ 0.5, it follows that ǫ = ±1
are extraneous (unphysical) solutions. Second, we must not neglect the case when the quantity
in Eq. (B.2) goes to zero due to the denominator going to ∞, i.e., when

(B.6) tan[(θ − ǫπ)/2] → ∞ ⇒ (θ − ǫπ)/2 →
(
m+ 1

2

)
π, m ∈ Z.

Since all quantities are periodic in θ we can consider just the case n = m = 0 without loss
of generality. Then, the expression on each side of the inequality in Eq. (B.1) above attains its
minimum at ϕ = 0 and its maximum at ϕ = π/2. We can restate these conditions in terms of
θ as: minimum at θ = ǫπ and maximum at θ = (1 + ǫ)π. It follows that the minimum values
are c1 = c3 = ǫ2 (at θ = ǫπ) and the maximum values are c1 = c3 = 1 (at θ = (1 + ǫ)π).

We have shown that the quantity c(θ, ǫ) in the inequality c(θz, ǫz) ≡ c1 < c3 ≡ c(θx, ǫx)
that we seek to establish is decreasing for θ ∈

[
0, ǫπ

)
, increasing for θ ∈

(
ǫπ, (1 + ǫ)π

)
and

decreasing again for θ ∈
(
(1 + ǫ)π, 2π

]
. Hence, the desired inequality is easy to verify in the

following special cases:

(B.7) c1 ≤ c3 for





0 ≤ θx ≤ θz ≤ ǫπ,

ǫπ ≤ θz ≤ θx ≤ (1 + ǫ)π,

(1 + ǫ)π ≤ θx ≤ θz ≤ 2π,

and

(B.8) c1 > c3 for





0 ≤ θz < θx ≤ ǫπ,

ǫπ ≤ θx < θz ≤ (1 + ǫ)π,

(1 + ǫ)π ≤ θz < θx ≤ 2π.
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When θz and θx “straddle” the extrema, the values of c1 and c3 will have to be found and
compared to each other in order to establish an inequality. Also, it would appear we cannot
say much about the inequality in the non-symmetric case when ǫz 6= ǫx.

Appendix C. Computing manifolds by iterating a fundamental domain.

To begin, we denote by Φ the Poincaré map4 of the blinking spherical tumbler flow, i.e.,
x = Φ(X) is the location of a material point X (from the filled portion of the tumbler) after
a rotation about each of the two axes is complete (one iteration of linked twist map).

The fixed points {X∗} of Φ are the period-one points discussed in detail in §4.1 and
4.2. In the symmetric case, when motion is restricted to 2D surfaces in R

3, the normally
hyperbolic points have 1D stable and unstable manifolds on said 2D surfaces. We can construct
approximations to finite-length segments of these manifolds by iterating an infinitesimal piece
of manifold, termed a fundamental domain, through repeated applications of the map Φ (for
the case of the unstable manifold) or the map Φ

−1 (for the case of the stable manifold) [65,
Chapter 6].

To construct a fundamental domain suppose we know the Jacobian DΦ of the Poincaré
map and its eigenvalues {λ1, λ2, λ2} and eigenvectors {E1,E2,E3} at the fixed point, then
the line segment connecting X∗ to X is a fundamental domain of the manifold whenever X
is a small perturbation of X∗ in one of the eigendirections:

(C.1) X = X∗ + αEi.

Here, α is chosen to ensure that the manifold’s curvature over the given distance from the
fixed point is sufficiently small so that the line segment connecting X∗ and X is indeed close
to the true manifold.

We approximate the linear eigenspace of Φ at X∗ using finite differences by constructing a
uniform Cartesian grid {Xi,j,k} with {xi,j,k} being its image after Φ is applied. The Jacobian
of Φ at X∗ can be approximated from this grid via DΦ = DΦh +O(h) (see, e.g, [52]), where

(C.2) DΦh =
1

2h



xi+1,j,k − xi−1,j,k xi,j+1,k − xi,j−1,k xi,j,k+1 − xi,j,k−1

yi+1,j,k − yi−1,j,k yi,j+1,k − yi,j−1,k yi,j,k+1 − yi,j,k−1

zi+1,j,k − zi−1,j,k zi,j+1,k − zi,j−1,k zi,j,k+1 − zi,j,k−1




for the case of a grid constructed by uniform displacements from X∗: i.e., Xi±1,j,k = X∗±hı̂,
Xi,j±1,k = X∗±ĥ andXi,j,k±1 = X∗±hk̂ with h≪ 1 (h = 10−6 was used in our calculations).

A check on the accuracy of the numerical calculation of DΦh is to verify that its eigenvalues
satisfy λ1λ2λ3 ≈ 1 as required by the fact that the flow is divergence-free and thus the Poincaré
map is volume preserving. In addition, we must also have λ1 = 1 with the eigenvector E1 being
the unit tangent vector to the invariant curve of period-one (fixed) points. For those points
along the normally hyperbolic invariant curve, λ2,3 are both real and such that λ2 = 1/λ3.
Along the normally elliptic invariant curve, λ2,3 are complex conjugates of unit magnitude.

An attempt was also made to implement an adaptive algorithm for computing a finite-
length portion of manifolds [65, Chapter 6], however, the algorithm failed at the interface
between the flowing layer and the bulk, where the manifolds are continuous but not differen-
tiable.

4Sometimes referred to as the Liouvillian map for such 3D flows [17].
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[23] T. Dombre, U. Frisch, J. M. Greene, M. Hénon, A. Mehr, and A. M. Soward, Chaotic streamlines
in the ABC flows, J. Fluid Mech., 167 (1986), pp. 353–391.

[24] J. Doucet, F. Betrand, and J. Chaouki, Experimental characterization of the chaotic dynamics of
cohesionless particles: application to a V-blender, Granular Matter, 10 (2008), pp. 133–138.

[25] R. W. Easton, J. D. Meiss, and S. Carver, Exit times and transport for symplectic twist maps, Chaos,
3 (1993), pp. 154–165.

[26] M. Feingold, L. P. Kadanoff, and O. Piro, Passive scalars, three-dimensional volume-preserving
maps, and chaos, J. Stat. Phys., 50 (1988), pp. 529–565.

[27] G. Félix, V. Falk, and U. D’Ortona, Granular flows in a rotating drum: the scaling law between
velocity and thickness of the flow, Eur. Phys. J. E, 22 (2007), pp. 25–31.
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[54] H. E. Lomeĺı and J. D. Meiss, Resonance zones and lobe volumes for exact volume-preserving maps,

Nonlinearity, 22 (2009), pp. 1761–1789.
[55] G. Luigi, MyCrustOpen: Surface reconstruction from scattered points cloud. MATLAB File Exchange,

2009.
[56] R. S. MacKay, Transport in 3D volume-preserving flows, J. Nonlinear Sci., 1 (1994), pp. 329–354.
[57] V. S. Malyuga, V. V. Meleshko, M. F. M. Speetjens, H. J. H. Clercx, and G. J. F. van Heijst,

Mixing in the Stokes flow in a cylindrical container, Proc. R. Soc. Lond. A, 458 (2002), pp. 1867–1885.
[58] S. W. Meier, S. E. Cisar, R. M. Lueptow, and J. M. Ottino, Capturing patterns and symmetries

in chaotic granular flow, Phys. Rev. E, 74 (2006), p. 031310.
[59] S. W. Meier, R. M. Lueptow, and J. M. Ottino, A dynamical systems approach to mixing and

segregation of granular materials in tumblers, Adv. Phys., 56 (2007), pp. 757–827.
[60] G. Metcalfe, M. Rudman, A. Brydon, L. J. W. Graham, and R. Hamilton, Composing chaos:

An experimental and numerical study of an open duct mixing flow, AIChE J., 52 (2006), pp. 9–28.
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