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Abstract.  Chemoinformatics is the name given to a body of computer techniques that are 
used to process information pertaining to the two-dimensional (2D) and three-dimensional 
(3D) structures of chemical molecules.  This paper introduces some of these techniques, 
starting with those that are used to represent and search for biologically active molecules in 
the pharmaceutical and agrochemical industries.  These industries have created extensive 
databases of both 2D and 3D structures and a variety of data mining tools are routinely used 
to support the discovery of novel pharmaceuticals and agrochemicals.  Two types of tool are 
considered here: molecular diversity analysis methods, which ensure that a research 
programme will consider as wide a range of different types of structure as possible in the 
search for biological activity; and virtual screening methods, which can rank a database so 
that synthesis and biological testing can be restricted to those with high a priori probabilities 
of activity. 
 
Keywords: chemical databases; chemoinformatics; molecular diversity analysis; virtual 
screening 
______________________________________________________________________ 
 
©2005 by MDPI (http://www.mdpi.org).  Reproduction for non-commercial purposes 
permitted.  

 



1 Introduction 
 
Many different scientific disciplines (such as synthetic organic chemistry, structural biology, 
pharmacology and toxicology) are needed to discover the new drugs that are the lifeblood of 
the pharmaceutical industry.  The huge costs and extended timescales that characterise the 
industry mean that it is willing and able to make very substantial investments in any 
technology that can increase the speed with which drugs, i.e., novel chemical molecules with 
beneficial biological properties, are brought to the market place (and similar comments apply 
to the herbicides, insecticides and fungicides developed by the agrochemicals industry).  One 
such technology is what is increasingly referred to as chemoinformatics.  This term was 
introduced by Brown, who stated that “The use of information technology and management 
has become a crucial part of the drug discovery process.  Chemoinformatics is the mixing of 
those information resources to transform data into information and information into 
knowledge for the intended purpose of making better decisions faster in the area of drug lead 
identification and optimization” [1].  This is clearly a very broad definition, covering as it 
does all aspects of information technology and information management: here we focus on 
one of the most important areas of chemoinformatics, the techniques that are used to process 
information pertaining to the two-dimensional (2D) and three-dimensional (3D) structures of 
chemical molecules.   
 
It is only within the last few years that chemoinformatics has come to be recognised as a 
distinct topic of study [2-5], this prominence arising principally as a result of technological 
developments in chemistry and biology.  Specifically, the methods of combinatorial chemistry 
and high-throughput screening allow the synthesis and biological testing, respectively, of 
huge arrays of molecules in parallel.  Taken together, these developments have resulted in a 
data explosion that has spurred the development of sophisticated informatics and data analytic 
methods.  This paper provides an introduction to some of the techniques used in modern 
chemoinformatics systems, focusing on tools that are available for data mining in files of 2D 
and 3D chemical structures.   
 
2 Representation and searching of chemical structures 
 
The principal method of representation for a 2D chemical structure diagram is a labelled 
graph (called a connection table) in which the nodes and edges of a graph represent the atoms 
and bonds, respectively, of a molecule.  A chemical database can hence be represented by a 
large number of such graphs, with searching historically being carried out using two types of 
graph isomorphism algorithms.  Structure searching involves an exact-match search of a 
chemical database for a specific query structure: this is required, for example, to retrieve the 
biological assay results and the synthetic details associated with a particular molecule.  Such a 
search involves a graph isomorphism search, in which the graph describing the query 
molecule is checked for isomorphism (or structural equivalence) with the graphs of each of 
the database molecules.  Substructure searching involves a partial-match search of a chemical 
database to find all those molecules that contain a user-defined query substructure, 
irrespective of the environment in which that substructure occurs; for example, a user 
interested in antibiotics might wish to search a database to find all molecules that contain the 
characteristic penicillin ring nucleus.  A typical search output is illustrated in Figure 1.  
 

 



 
 
Figure 1.  Example of a 2D substructure search.  The search is for the diphenyl ether query 
substructure at the top of the figure, below which are shown five of the hits resulting from a 
search of the National Cancer Institute database of molecules that have been tested in the US 
government anti-cancer programme (see URL http://dtp.nci.nih.gov/).  This database is also 
used for the searches described in Figures 2 and 3.  
 
A substructure search involves checking the graph describing the query substructure for 
subgraph isomorphism (or structural inclusion) with the graphs of each of the database 
molecules [6].  However, subgraph isomorphism is known to belong to the class of NP-
complete computational problems, and thus substructure searching in databases of non-trivial 
size might be expected to be computationally infeasible.  It is made possible by the use of an 
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initial screen search, where a screen is a substructural feature, the presence of which is 
necessary, but not sufficient, for a molecule to contain the query substructure.  These features 
are typically small, atom-, bond- or ring-centred fragment substructures that are 
algorithmically generated from a connection table when a molecule is added to the database 
that is to be searched.  One common approach to screening involves listing the fragments that 
have been chosen for use as screens in a fragment coding dictionary, which will typically 
contain a few hundred or a few thousand carefully selected fragments.  Each of the database 
structures is analysed to identify those screens from the coding dictionary that are present, and 
the structure is then represented for search by a fixed-length bit-string in which the non-zero 
bits correspond to the screens that are present.  The query substructure is subjected to the 
same process and the screen search then involves checking the bit-strings representing each 
database structure for the presence of the screens that are encoded in the bit-string 
representing the query substructure.  Only a very small fraction of a database will normally 
contain all of the screens that have been assigned to a query substructure, and thus only these 
few molecules need to undergo the final, time-consuming graph-matching search.  This 
checks to see whether there is an exact subgraph isomorphism between the graph representing 
the query substructure and the graphs representing each of the database structures that have 
passed the screen search.  This simple, two-stage procedure (i.e., screen searching and 
subgraph searching) has formed the basis for most operational 2D substructure searching 
systems to date. 
 
Similar techniques are used for 3D substructure searching [7], where there is a need to 
identify molecules that contain a query pharmacophore.  A pharmacophore, or 
pharmacophoric pattern, is a set of atoms having some specific geometric relationship to each 
other (as illustrated by the anti-leukemic pharmacophore [8] shown in Figure 2).  Here, the 
nodes and edges of a chemical graph denote the atoms and the inter-atomic distances, and the 
fragments that are encoded in the bit-strings describe pairs or triplets of atoms and the 
associated inter-atomic distances.  Only simple modifications to the 2D methods described 
previously are required to enable searches for pharmacophores to be carried out, such as that 
shown in Figure 2.  However, significant complexities needed to be overcome before these 
representations and searching methods were extended to encompass the fact that most 
molecules are flexible, i.e., they adopt not just a single, fixed 3D shape but can exist in some, 
many, or very many different shapes, depending on the temperature and the external chemical 
environment.  This means that the separation between each pair of atoms is not necessarily 
fixed, but typically covers a range of possible distances.  This increases the complexity of the 
matching operations that are required; in particular, the screening and subgraph isomorphism 
searches need an additional, conformational search, which takes account of the precise 
geometries and energies of the various shapes that each potential hit molecule can adopt [9].  
 
Substructure searching, whether in 2D or in 3D, provides an invaluable tool for accessing 
databases of chemical structures when the searcher already knows the sorts of structures that 
are expected to be retrieved from the database.  This is clearly very difficult at the start of an 
investigation, when perhaps only one or two active structures have been identified and when it 
is not at all clear which particular feature(s) within them are responsible for the observed 
activity.  Similarity searching has been developed to address this problem, and as a 
complement to substructure searching [10].  Similarity searching requires the specification of 
an entire target structure (or reference structure), rather than the partial structure that is  
 

 



 
 
 

 
 
Figure 2.  Typical hit structures for the anti-leukemic pharmacophore shown at the top of the page, 
with the presence of the pharmacophore in the retrieved molecules shown by dotted lines. 
 

 



required for substructure searching.  The target molecule is characterised by a set of structural 
features, and this set is compared with the corresponding sets of features for each of the 
database structures.  Each such comparison enables the calculation of a measure of similarity 
between the target structure and a database structure, and the database is then sorted into order 
of decreasing similarity with the target.  The output from the search is a ranked list, where the 
structures that the system judges to be most similar to the target structure are located at the top 
of the list, and are hence the first to be presented to the searcher. 
 
An effective similarity searching system requires an appropriate way of quantifying the 
degree of structural resemblance between the target structure and each of the structures in the 
database that is to be searched [10-13].  There are many such similarity measures but by far 
the most common are those obtained by comparing the fragment bit-strings that are used for 
2D substructure searching, so that two molecules are judged as being similar if they have a 
large number of bits, and hence substructural fragments, in common.  A normalised 
association coefficient, typically the Tanimoto coefficient, is used to give a numeric value to 
the similarity between the target structure and each database structure.  If these structures 
have A and B bits set in their fragment bit-strings, with C of these in common, then the 
Tanimoto coefficient is defined to be  

C

A B C+ −
. 

The value of the Tanimoto Coefficient for bit-string similarities lies in the range of zero (no 
bits in common) to unity (all bits the same); a more complex version of the Coefficient is 
available for handling non-binary data [10].  An example of a 2D similarity search based on 
the Tanimoto Coefficient is shown in Figure 3.  While fragment-based measures such as the 
Tanimoto coefficient provide a simple (indeed simplistic) picture of the similarity 
relationships between pairs of molecules, they are both efficient (since they involve just the 
application of logical operations to pairs of bit-strings) and effective (since they have been 
shown to be capable of bringing together molecules that are judged by chemists to be 
structurally similar to each other) in operation.  The latter characteristic is most surprising, 
given that the fragments that are used for the calculation of the similarities were originally 
designed to maximise the efficiency of substructure searching, not the effectiveness of 
similarity searching.  Moreover, they describe only the 2D structures of molecules, and take 
only implicit account of the 3D structures, which are known to be of crucial importance in 
determining physical, chemical and biological properties.  It should be noted here that there is 
much current interest in measures of 3D similarity based on fingerprints that encode the 
geometric arrangement of atom triplets or atom quartets [14].  thus far, however, such 
approaches have not, been found to be as generally effective as the simpler 2D measures for 
database applications [15, 16].  Methods for the representation and searching of molecular 
surfaces and molecular fields are also under active investigation [12, 17-20].  
 
It will be seen from Figure 3 that there is a close family relationship between the target 
structure and its nearest neighbours.  This is of potential value in the search for novel 
bioactive molecules because of the Similar Property Principle [21], which states that 
molecules that have similar structures will have similar properties.  Hence, if the target 
structure has some interesting property, e.g., it lowers a person’s cholesterol level or alleviates 
the symptoms of a migraine attack, then molecules that are structurally similar to it are more 
likely to exhibit that property than are molecules that have been selected from a database at 
random.  The Principle is clearly only an approximation that does not hold in all cases [22], 
but it does provide a rational basis for similarity-based access to chemical databases. 
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Figure 3.  Example of a 2D similarity search, showing a query molecule and five of its 
nearest neighbours.  The similarity measure for the search is based on fragment bit-strings and 
the Tanimoto coefficient. 
 
 
Having described the basic searching methods available to access a database of 2D or 3D 
molecules to find those that have particular structural characteristics, we now discuss some of 
the other data mining techniques that can be applied to such databases.  Specifically, we 
discuss two techniques: molecular diversity analysis methods [23, 24], which ensure that a 
research programme will consider as wide a range of different types of structure as possible in 
the search for biological activity; and virtual screening methods [25-28], which can rank a 
database so that synthesis and biological testing can be restricted to those with high a priori 
probabilities of activity. 
 
 
3 Molecular diversity analysis methods 
 
Molecular diversity analysis is the name given to a body of techniques that seek to enhance the 
cost-effectiveness of drug discovery by maximising the diversity of the molecules that are 
submitted for biological testing (rather than maximising the probability of activity, which is 
the main aim of the virtual screening techniques discussed in Section 4). We have noted above 
that structurally similar molecules are likely to give similar biological responses; thus, to 
maximise the structure-activity information that can be gained from a fixed number of 
molecules, one should try to ensure that the molecules submitted for testing should be as 
structurally diverse as possible.  This requirement may sound like a statement of the obvious, 
but the practical realisation of this has proved to be very difficult.   
 
The inherently subjective concept of diversity is normally quantified using similarity-based 
techniques that are a natural development of those discussed previously: thus, a diverse subset 
of the molecules in a database is selected by consideration of their inter-molecular structural 
similarities, typically as determined by use of fragment bit-strings and the Tanimoto 
coefficient.  There is a trivial algorithm available to identify the most diverse n-compound 
subset of an N-compound database (where, typically, n<<N).  This algorithm involves 
generating each of the  
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possible subsets and calculating their diversities using a diversity index (some function of the 
inter-molecular similarities in the chosen subset): the optimal subset is then that group of 
compounds that has the greatest value of the diversity index.  The problem is that the factorials 
in the expression above mean that there is an astronomical number of possible subsets that can 
be generated from a database of non-trivial size: it is hence infeasible to consider all of them 
so as to identify the most diverse subset.  There has thus been much interest in alternative 
approaches for selecting diverse sets of molecules that maximise the coverage of structural 
space, whilst minimising the numbers of molecules put forward for testing.  Here, we will 
exemplify this work by consideration of two of the approaches that have been used: clustering 
and dissimilarity-based compound selection (DBCS).   
 
Cluster analysis, or clustering, is the process of subdividing a group of objects (chemical 
molecules in the present context) into groups, or clusters, of objects that exhibit a high degree 
of both intra-cluster similarity and inter-cluster dissimilarity [29, 30].  It is thus possible to 
obtain an overview of the range of structural types present within a dataset by selecting one, or 
some small number, of the molecules from each of the clusters resulting from the application 
of an appropriate clustering method to that dataset.  The representative molecule (or 
molecules) for each cluster is either selected at random or selected as being the closest to the 
centre of that cluster, and this representation is then put forward for biological testing.  Very 
many different clustering methods have been described in the literature, and a considerable 
amount of effort has gone into comparing the effectiveness of the various methods for 
clustering chemical structures (see, e.g., [31]).  Clustering methods can produce overlapping 
clusters, in which each object may be in more than one cluster, or non-overlapping clusters, in 
which each object occurs in only one cluster.  Of these, the latter are far more widely used, and 
are of one of two types: hierarchical methods and non-hierarchical methods.  An hierarchical 
clustering method produces a classification in which small clusters of very similar molecules 
are nested within larger and larger clusters of less closely-related molecules.  The 
classification is normally generated by means of an agglomerative procedure: this generates a 
classification in a bottom-up manner, by a series of agglomerations (or fusions) in which small 
clusters, initially containing individual molecules, are fused together to form progressively 
larger clusters.   
 
There are many hierarchic agglomerative methods, all of which can be implemented by means 
of the basic algorithm shown in Figure 4, where a point is either a single molecule or a cluster 
of molecules.  This procedure is known as the stored matrix algorithm since it involves 
random access to the inter-molecular similarity matrix throughout the entire cluster-generation 
process.  Individual hierarchical agglomerative methods differ in the ways in which the most 
similar pair of points is defined and in which the merged pair is represented as a single point.  
Although simple in concept, the algorithm is demanding of both computer time and computer 
storage and more efficient algorithms are available for specific methods.  Thus, the well-
known Ward’s method can be implemented by what is known as the reciprocal nearest 
neighbour (RNN) algorithm.  In this, a path is traced through the similarity space until a pair 
of points is reached that are more similar to each other than they are to any other points, i.e., 
they are RNNs.  These RNN points are fused to form a single new point, and the search 
continues until the last unfused point is reached.  The basic RNN algorithm is thus as shown in 
Figure 5, where NN(X) denotes the nearest neighbour for the point X, and the final hierarchy is 
then created from the list of RNN fusions that has taken place.   

 



 
1. Calculate the inter-molecular similarity matrix. 
2. Find the most similar pair of points in the matrix and fuse them into a cluster to 

form a new single point. 
3. Calculate the similarity between the new point and all remaining points. 
4. Repeat Steps 2 and 3 until only a single point remains, i.e., until all of the 

molecules have been fused into one cluster. 
 
Figure 4.  Stored matrix algorithm for hierarchic agglomerative clustering methods. 
 
 

1. Mark all molecules, I, as unfused. 
2. Starting at an unfused I, trace a path of unfused nearest neighbours (NN) until a 

pair of RNNs is encountered, i.e., trace a path of the form J := NN(I), K := NN(J), 
L := NN(K)..... until a pair is reached for which Q = NN(P) and P = NN(Q). 

3. Add the RNNs P and Q to the list of RNNs along with the distance between them, 
mark Q as fused and replace the centroid of P with the combined centroid of P and 
Q. 

4. Continue the NN-chain from the point in the path prior to P, or choose another 
unfused starting point if P was a starting point. 

5. Repeat Steps 2-4 until only one unfused point remains. 
 
Figure 5.  Reciprocal nearest neighbours algorithm for hierarchic agglomerative clustering 
methods. 
 
 

1. Identify the top-K nearest neighbours for each of the N molecules in the dataset. 
2. Create an N-element array, Label, that contains a cluster label for each of the N  

 molecules in the dataset.  Initialise Label by setting each element to its array 
position, thus assigning each molecule to its own initial cluster; 

3. For each pair of molecules, I and J (I < J) 
 of their top-K nearest neighbours in common    If they have at least Kmin

  and each is in the top-K nearest-neighbour list of the other 
  then replace all occurrences of the Label entry for J with the Label entry for I. 
4. The members of each cluster then all have the same entry in the final Label.  

 
Figure 6.  Algorithm for the Jarvis-Patrick clustering method. 
 
 
Once the cluster hierarchy has been produced, some means is required to identify a set of 
clusters from which molecules can be selected.  This is normally achieved by applying a 
threshold similarity to the hierarchy and identifying the clusters present in the resulting 
partition (i.e., a set of non-overlapping groups having no hierarchical relationships between 
them) of the dataset.   
 
A non-hierarchical method, conversely, generates a partition of a dataset directly.  There is a 
combinatorial number of possible partitions, making a systematic evaluation of them totally 
infeasible, and many different heuristics have thus been described to allow the identification of 
good, but possibly sub-optimal, partitions [29-31].  An example is the Jarvis-Patrick nearest-

 



neighbour method, which is much less demanding of computational resources than the 
hierarchical methods and which has been extensively used for clustering chemical databases. 
 
The Jarvis-Patrick method, which is detailed in Figure 6, involves the use of a list of the top K 
nearest neighbours for each molecule in a dataset, i.e., the K molecules that are most similar to 
it.  Once these lists have been produced for each molecule in the dataset that is to be 
processed, two molecules are clustered together if they are nearest neighbours of each other 
and if they additionally have some minimal number of nearest neighbours, Kmin, in common.   
The user has to specify the value of Kmin, and it is generally necessary to experiment with a 
range of Kmin values until roughly the required number of clusters is obtained.  Many variants 
of this basic approach have been described in the literature.   
 
Dissimilarity-based methods seek to identify a subset comprising the n most diverse molecules 
in a dataset containing N molecules (where, typically, n << N ).  However, as noted above, the 
astronomical number of such subsets means that heuristic, and sub-optimal, approaches need 
to be considered.  Thus far, two major classes of algorithm have been described: maximum-
dissimilarity algorithms and sphere-exclusion algorithms [32]. 
 
The basic maximum-dissimilarity algorithm for selecting a size-n Subset from a size-N 
Dataset is shown in Figure 7.  This algorithm permits many variants depending upon the 
precise implementation of Steps 1 and 3.  Possible mechanisms for the choice of the initial 
compound in Step 1 include: choosing a compound at random; choosing that compound that is 
most dissimilar to the other compounds in Dataset; or choosing that compound that is nearest 
to the centre (in some sense) of Dataset, inter alia.  Step 3 in the figure requires a quantitative 
definition of the dissimilarity between a single compound in Dataset and the group of 
compounds that comprise Subset, so that the most dissimilar molecule can be identified in 
each iteration of the algorithm.  There are several ways in which “most dissimilar” can be 
defined, with each definition resulting in a different version of the algorithm and hence in the 
selection of a different subset (much as different hierarchic agglomerative clustering methods 
result from the use of different similarity criteria in the stored-matrix algorithm of Figure 4).   
 
The alternative sphere-exclusion approach involves the specification of a threshold 
dissimilarity t, which can be thought of as the radius of a hypersphere in multi-dimensional 
chemistry space.  A compound is selected, either at random or using some rational basis, for 
inclusion in Subset and the algorithm then excludes from further consideration all those other 
compounds within the sphere centred on that selected compound, as shown in Figure 8.  Many 
variants are again possible, depending upon the manner in which Stage 2 is implemented.  
Thus, one can choose that molecule that is most dissimilar to the existing Subset, in which 
case different results will be obtained (as with the maximum dissimilarity algorithms) 
depending upon the dissimilarity definition that is adopted.   
 
Cluster-based and dissimilarity-based algorithms of the sort discussed here are now widely 
used to select structurally heterogeneous sets of compounds for input to biological screening 
programmes.  Increasingly, the compounds are selected not just on the basis of chemical 
diversity but also on the basis of other characteristics (such as cost, pharmacokinetic 
properties, and ease of synthesis) that are necessary if a molecule is to be considered seriously 
as a potential drug.   

 



 
1. Initialise Subset by transferring a compound from Dataset. 
2. Calculate the dissimilarity between each remaining compound in Dataset and the 

compounds in Subset. 
3. Transfer to Subset that compound from Dataset that is most dissimilar to Subset. 
4. Return to Step 2 if there are less than n compounds in Subset. 
 

Figure 7.  Dissimilarity-based compound selection using a maximum-dissimilarity algorithm.  
 
 
1. Define a threshold dissimilarity, t. 
2. Transfer a compound, J, from Dataset to Subset. 
3. Remove from Dataset all compounds that have a dissimilarity with J of less than t. 
4. Return to Step 2 if there are compounds remaining in Dataset. 
 

Figure 8.  Dissimilarity-based compound selection using a sphere-exclusion algorithm.  
 
 

1. Execute a similarity search of a chemical database for some particular target 
structure using two, or more, different measures of inter-molecular similarity.   

2. Note the rank position, ri, or the similarity score, si, of each individual database 
structure in the ranking resulting from use of the i-th similarity measure. 

3. Combine the various rankings using a fusion rule to give a new combined score for 
each database structure 

4. Rank the resulting combined scores, and then use this ranking to calculate a 
quantitative measure of the effectiveness of the search for the chosen target 
structure. 

 
Figure 9. Combination of similarity rankings using data fusion. 
 
 

1. For each bit-position j identify the training-set actives and training-set inactives 
that have the j-th position set and not set; use this information to calculate the 
weight for bit-position j using the chosen weighting scheme. 

2. For each molecule I sum the weights for all of those bit-positions for which the bit 
is set. 

3. Rank the molecules in the database in decreasing order of the sums-of-weights 
computed in Step 2. 

 
Figure 10. Ranking compounds by means of substructural analysis 
 
 
4 Virtual screening methods 
 
The principal aim of discovery research programmes is the identification of a lead, a 
compound that has the desired biological activity (e.g., lowers a person’s blood pressure, or 
reduces the size of a tumour), that has appropriate pharmacokinetic characteristics (e.g., it is 
soluble and does not metabolise too rapidly) and that does not have any obvious side-effects.  
Over the years, pharmaceutical companies have built up corporate databases containing 

 



hundreds of thousands (or millions) of drug-like compounds, and many millions of similar 
compounds are now available from commercial suppliers.  These repositories provide the 
obvious starting place in the search for new leads: given the vast numbers of compounds that 
need to be considered there is much interest in the use of techniques that can rapidly focus-in 
on that relatively small fraction that has a high a priori probability of activity.  The 
identification of such candidate compounds is normally referred to as virtual screening. 
 
In principle, any technique that can rank a database in order of decreasing probability of 
activity can be used for virtual screening; in practice, the methods available are determined 
largely by the amounts of structural and biological information that are available.  At the heart 
of most virtual screening methods is the Similar Property Principle that has been mentioned 
previously: if some molecule or molecules are known to exhibit the biological activity of 
interest then a sensible virtual screening strategy is to find other molecules that are 
structurally similar to the known active(s).  The most obvious approach is hence to use 
similarity searching of a database, using as the target structure any one molecule that is 
already known to be active; this could either be a hit from initial biological screening or a 
compound from the published literature, e.g., one specified in a competitor’s patent.  As 
exemplified in Figure 3, the nearest-neighbours retrieved by the search will contain many 
substructural features in common with the target structure, and are hence obvious candidates 
for biological testing [10, 15, 33].  We are currently studying the use of data fusion to 
increase the performance of similarity-based virtual screening [34].  Here, we combine 
rankings resulting from several different measures of structural similarity to give a single, 
combined ranking as the output of the search, as shown in Figure 9.  For example, one could 
carry out similarity searches using different types of 2D fingerprint, or different types of 
similarity coefficient; we have found that such combined searches often result in a level of 
search effectiveness that is better than that resulting from a conventional similarity search 
using just a single similarity measure.  
 
As more and more actives are identified in this way, it may become possible to delineate the 
precise substructural characteristics that are necessary for activity.  With this information, it is 
then possible to define a substructural query, either in 2D or in 3D, that can be used as the 
basis for a substructure search.  This alternative, and more precise, form of virtual screening is 
normally carried out in an iterative manner, with molecules retrieved in the initial search 
being tested for activity, and the results (both positive and negative) of these biological tests 
being used to refine the query for the second and subsequent substructure searches. 
 
Once the (in)activities of a fair number of molecules have been established, it becomes 
possible to use techniques from the area of computer science known as machine learning.  
These techniques assume the availability of a training-set, i.e., sets of both known active and 
known inactive molecules that can be used to develop a tool that can be applied to molecules 
of unknown activity, the test-set, and predict their (in)activities with a fair degree of 
confidence.  The best-established approach is called substructural analysis [35], which is 
based on the assumption that a given substructural feature makes some fixed contribution to 
the overall activity of a molecule, irrespective of the other substructures that are present in 
that molecule.  This is likely to be a very drastic assumption but one that, if accepted, enables 
the calculation of weights that relate the presence of a molecular feature to the probability that 
a molecule containing it is biologically active.  A (very simple) example of such a weight 
might be as follows: assume that the j-th fragment in a 2D fragment bit-string occurs in Aj 
active and Ij inactive molecules; then a plausible weight would be 
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There are many such schemes that have been described in the literature, differing in the 
precise ways that they use the fragment-occurrence data for the training-set molecules [36].  
Whichever weighting scheme is used, the weights are calculated for each of the fragments 
present in a set of molecules.  These fragments are often those encoded in the bit-strings that 
are used for 2D substructure and/or similarity searching, in which case the weights are 
obtained by analysis of the fingerprints for the training-set molecules.  The resulting weights 
are then used to select new compounds for biological testing: specifically, the sum is 
calculated of the weights for the fragment-substructures that are present in a molecule, and the 
compounds are sorted into decreasing order of the sums-of-weights (see Figure 10).  The top-
ranked molecules in the resulting sorted list are those that have the greatest likelihood of 
activity (if it is assumed that the structural characteristics of the test-set are not too different 
from those of the training-set).  Substructural analysis provides a simple but surprisingly 
effective way of rationalising large volumes of structural and activity information so as to 
produce meaningful rankings of the as yet untested compounds in a database.  Many new 
methods for machine learning are now becoming available, and some of these methods are 
starting to be applied to the virtual screening problem, e.g., recent work on support vector 
machines and kernel discrimination methods [37, 38].  
 
Substructural analysis requires information about the 2D (or 3D) structures of known active 
and known inactive molecules.  The final virtual screening approach to be discussed here, 
docking, additionally requires information about one of the biological pathways that is 
associated with the illness for which a therapy is required.  Specifically, docking assumes that 
a 3D structure has been obtained, typically by X-ray crystallography, of the biological 
receptor that is involved in the pathway, such as the active site of an enzyme.  The “lock-and-
key” theory of drug action assumes that a drug fits into a biological receptor in much the same 
way as a key fits a lock; thus, if the shape of the lock is known, one can identify potential 
drugs by scanning a 3D database to find those molecules that have shapes that are 
complementary to the shape of the receptor.   
 
Shape matching is a computationally demanding task for which many algorithmic approaches 
have been suggested [39]. The original description of docking, by Kuntz et al. [40], 
considered the fitting of just a single molecule into a protein active site; however, it was soon 
realised that if this fitting operation was repeated for all of the molecules in a database then 
docking could provide a highly sophisticated approach to virtual screening.  In fact, two types 
of computational procedure are required for docking: a search algorithm that can explore the 
space of possible protein-ligand geometries; and a scoring function that is used to evaluate the 
likelihood of each possible geometry, so as to identify the most probable geometries, and 
hence (hopefully) the true binding mode.  The same scoring function can also be used to rank 
geometries from different potential ligands, so that a database can be ranked in order of 
decreasing goodness of fit with the active site, and hence in decreasing likelihood of activity. 
 
Modern docking systems involve not just matching the geometric characteristics, such as 
inter-atomic distances, of the database molecules and the target protein, but also chemical 
considerations such as the extent to which atoms of one type in the drug are compatible with 
the atoms that they are mapped to in the receptor site.  This brings added complexity, in terms 
of both mechanistic knowledge and the computational power that is required.  The 
computational requirements are increased still further when, as is increasingly the case, 

 



account is taken of the fact that molecules and proteins can adopt different shapes; thus, 
adopting the lock-and-key metaphor, rather than trying to fit a metallic key into metallic lock, 
one is actually trying to fit together two non-rigid objects.  Current systems for virtual 
screening enable the docking of databases of flexible molecules into a rigid receptor; efficient 
and effective processing of both types of flexibility is still probably some years away.   
 
It will be realised that the various data mining tools that are used for virtual screening vary 
considerably in their sophistication and in the associated information and computational 
requirements.  It is thus common for the approaches to be used in sequence: similarity 
searching is used initially to identify a few actives; these actives are then analysed to generate 
a pharmacophore model for 3D searching; once a fair amount of testing has been carried out, 
it is possible to build a training-set for machine learning; and then docking can be used once a 
3D structure is available for the biological target.  It is also common to use an initial filtering 
step to eliminate from further consideration any molecules whose physicochemical properties 
are such as to render them unlikely to be able to act as a drug [41, 42].  Examples of such 
drug-likeness or drugability filters include substructure searches to eliminate molecules 
containing reactive or toxic substructures and analyses of the values of simple properties 
(such as molecular weight, the octanol-water partition coefficient and the numbers of rotatable 
bonds, hydrogen-bond donors and acceptors) in known drug molecules. 
 
 
5. Conclusions 
 
Public and private databases contain the machine-readable structure representations (normally 
in 2D but increasingly also in 3D) of many millions of chemical molecules.   
 
Chemoinformatics provides a range of tools that can be used for data mining in these files, so 
as to assist directly in the discovery of novel bioactive molecules.  With the increasing costs 
of drug discovery, it is likely that more use will be made of such tools, with the availability of 
more powerful software and hardware enabling more accurate predictions of activity, and thus 
enhancing the cost-effectiveness of research. 
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