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Abstract5

Computer simulators of real world processes are often computationally expensive6

and require many inputs. The problem of the computational expense can be handled7

using emulation technology; however, highly-multidimensional input spaces may re-8

quire more simulator runs to train and validate the emulator. We aim to reduce the9

dimensionality of the problem by screening the simulator’s inputs for non-linear effects10

on the output rather than distinguishing between negligible and active effects. Our11

proposed method is built upon the elementary effects method for screening (Morris,12

1991) and utilises a threshold value to separate the inputs with linear and non-linear13

effects. The technique is simple to implement and acts in a sequential way in order to14

keep the number of simulator runs down to a minimum, whilst identifying the inputs15

that have non-linear effects. The algorithm is applied on a set of simulated examples16

and a rabies disease simulator where we observe run savings ranging between 28% and17

63% compared to the batch elementary effects method. Supplementary materials for18

this paper are available online.19

Keywords: Morris design, Sensitivity analysis, Variable selection.20
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1 Analysis of complex computer simulators22

Formal design and analysis of computer experiments stems from the seminal paper by Sacks23

et al. (1989). In recent years, computer experiments have been used to make climate pro-24

jections (Hargreaves et al., 2004), investigate biological processes (Wedge et al., 2009) and25

estimate national carbon balances (Kennedy et al., 2008). In many applications, emula-26

tors are constructed as efficient surrogate alternatives to expensive computer simulators27

(O’Hagan, 2006). Further analyses are then carried out on the emulator; for example, sen-28

sitivity analyses or prediction of response at new points. However, even when using the29

emulator technology, the analysis of complex simulators can be restricted by the number30

of input dimensions. In the present paper, we introduce a sequential screening procedure31

to identify inputs that have a non-linear effect on the output. Our proposal stems from32

the elementary effects (EE) method introduced in Morris (1991), and consists of sequential33

estimation coupled with a space-filling criterion. Estimation of model behaviour is a com-34

mon practice in sensitivity analysis (Morris, 1991) and use of space filling design ensures35

reasonable coverage of the input space (Campolongo and Braddock, 1999). There exist a36

wide range of methods in the literature to estimate functional effects. Screening methods37

allow for efficient estimation of effects using a minimal number of simulator evaluations.38

Variance-based sensitivity analyses methods (Saltelli et al., 2000) offer more precise results39

in terms of the percentage of variance explained by each input factor and their interactions.40

However, these methods require many more model runs and are employed at a later stage41

of simulator analysis than screening algorithms.42

Our aim in this paper is to develop a method that identifies inputs with non-linear43

effects on the output. Morris (1991) considers screening for factors with linear, non-linear44

or interacting effects, defined as active. Identification of inputs with active effects is the45

usual aim of screening, also known as variable selection. Our focus is to distinguish factors46

with non-linear or interaction effects from factors with linear or negligible effects. It is of47

interest to identify the latter since they can be dealt with more simply in subsequent stages48

of simulator analyses as discussed in Section 4. Screening methods are further discussed in49

Section 2. We review the EE method in Section 3 and introduce our sequential method and50

its properties in Section 4. We compare the method to other popular screening methods51
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through a simulated example in Section 5 and finish by demonstrating our method on a52

computer model of rabies disease spread in Section 6.53

2 Screening approaches54

In classical experimentation on physical processes, screening usually incorporates some of55

factorial designs, fractional factorial designs, nonregular orthogonal arrays, or optimal de-56

signs. However, without further model assumptions, sequential use of such designs is not57

straightforward and cannot be utilised to identify a nonlinear effect. When the number of58

inputs dimensions is very large, but it is expected a priori that only a small subset of them59

will have an effect on the output, the iterated fractional factorial design (IFFD) of Andres60

(1997) has been shown to be highly efficient in practice. The IFFD method is most effi-61

cient when there are very few highly influential factors (Saltelli et al., 2000). The IFFD62

is an example of a supersaturated design. These designs use fewer model runs than input63

dimensions, but typically make assumptions on the number of active inputs or the type of64

effects on the response (Saltelli et al., 2000, Section 4.8). Kleijnen (2009) proposes sequential65

bifurcation that can be effective, provided monotonicity of the model output with respect to66

the inputs is satisfied.67

If the simulator is computationally cheap, traditional sensitivity methods can be used such68

as the Fourier amplitude sensitivity test (Cukier et al., 1973) or the method of Sobol’ (Sobol,69

1993). These approaches utilise a simulator-based functional ANOVA. The robust applica-70

tion of such methods requires typically many more runs of the simulator than most screening71

methods.72

Response surface methods have been proposed for screening in high-dimensional problems73

where a surrogate model is utilised to approximate the simulator response. In Linkletter et al.74

(2006) and Savitsky et al. (2011), the surrogate is a Gaussian-process-based model and a75

prior encapsulates the assumptions of effect sparsity. Reich et al. (2009) proposes a functional76

ANOVA decomposition where a spline surrogate model is used to estimate each term. When77

using any approach that relies on a surrogate model, careful validation is needed to ensure78

the adequacy of the surrogate model for the purposes of screening.79

The elementary effects (EE) method (Morris, 1991) is a popular methodology for sensi-80

3



tivity analysis of computer simulators. The EE method requires no simplifying assumptions81

to be made on the ratio of active to total number of factors or their effect on the response82

(Saltelli et al., 2000). Furthermore, the method is easy to implement and computationally83

efficient. In the next section, we describe the EE method in detail, and, in Section 4, we84

extend the EE method to a more efficient, sequential approach.85

3 The elementary effects method86

Consider a deterministic simulator Y (·) with k input variables and design region [0, 1]k.87

The simulator is assumed to be a smooth real valued function with a domain containing88

the design region. Computation of elementary effects starts from a point x from which a89

trajectory is constructed with k random moves of size ∆. One-at-a-time (OAT) moves are90

performed along each single coordinate axis in turn to end at point x + ∆(e1 + · · · + ek).91

The elementary effect for the i-th input variable for the trajectory starting at x ∈ [0, 1]k is92

EEi(x) =
Y

(

x +∆
∑i

j=1 ej

)

−Y
(

x+∆
∑i−1

j=0 ej

)

∆
, (1)

where ∆ > 0 is fixed. Here i = 1, . . . , k indexes input factors and ei is the unit vector in93

the direction of the i-th axis where e0 is defined as 0. A total of k + 1 evaluations of Y (·)94

are performed, ending with effects EE1(x), . . . , EEk(x). Each EEi(x) is a measure of the95

variation in the output with respect to a change in input i at point x.96

Consider R starting points xr, r = 1, . . . , R. From each point xr, we perform k OAT97

moves and compute elementary effects EEi(xr) for every input factor so that the total98

number of runs used in the EE method is (k + 1)× R. The following sample moments are99

computed for each input factor:100

µi =
1

R

R
∑

r=1

EEi(xr), µ∗

i =
1

R

R
∑

r=1

|EEi(xr)| and σi =

√

√

√

√

R
∑

r=1

(EEi(xr)− µi)2

R− 1
. (2)

The moment µi is an average effect measure, and high values suggest dominant contribution101

of the i-th input factor. The moment µ∗

i is a main effect measure, proposed in Campolongo102

et al. (2004) since µi may prove misleading due to cancellation of effects. An input with103
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a negligible or linear effect will have constant EEi values and the corresponding σi will be104

zero. Non-linear and interaction effects are identified with relatively large σi. An effects plot105

can be constructed by plotting µi or µ
∗

i against σi. This plot is a visual tool to detect and106

rank effects. Factor effects close to the origin on this plot are the least influential.107

There is interest in doing input screening with as few runs as possible and as the number108

of input factors k is fixed, the size of the experiment is controlled by R. Usually small values109

of R are used; for instance, Morris (1991) used R = 3 and R = 4 in his examples. A value110

of R between 10 and 50 is mentioned in recent literature (Campolongo et al., 2004, 2007).111

A larger value of R will improve the quality of the estimations, but at the price of extra112

simulator runs.113

The step size ∆ is selected in such a way that all the simulator runs lie in the input space114

and the elementary effects are computed within reasonable precision. The choice of ∆ in115

the literature is determined by the input space considered for experimentation, which is a k116

dimensional grid constructed with p uniformly spaced values for each input. The number p117

is recommended to be even and ∆ = p/(2(p− 1)), ensuring the elementary effects for each118

input have an equal probability of selection during the trajectory design generation (Morris,119

1991). To ensure that the trajectories remain in the design region, the implementation of the120

EE method will use −∆ as necessary in place of ∆. The step ∆ is usually kept at the same121

value for all the inputs, but the method can be generalised to instead use different values of122

∆ and p for every input. In the original proposal Morris (1991), the points x1, . . . ,xR were123

taken at random from the input space grid. Campolongo et al. (2007) proposed spreading124

runs over the design space by generating a large number of trajectory designs and selecting125

a subset by maximising the minimum distance between them.126

A potential drawback of OAT designs used in the EE method is that design points may127

fall on top of each other when projected into lower dimensions. This disadvantage becomes128

more apparent when the design runs are to be used in further modelling after discarding129

unimportant factors. An alternative is to screen with randomly rotated simplices located130

at points xr, see Pujol (2009). The computation of distribution moments µi, µ
∗

i , σi and131

further analysis is similar to the EE method, with the advantage that projections of the132

resulting design do not fall on top of existing points, and all observations can be reused in133

a later stage. A disadvantage of this approach is the loss of efficiency in the computation134
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of elementary effects; that is, computing effects from a rotated simplex is suboptimal when135

compared with (1) which is optimal for computing elementary effects, see Pujol (2009).136

4 Sequential elementary effects method137

We propose a sequential screening method that has the potential to reduce computation time138

significantly. The methodology aims to distinguish between factors with linear or no effect139

and factors with non-linear effect. In the EE method, all (k + 1) evaluations are performed140

for each trajectory irrespective of the type of factor effect. Whereas, in our sequential141

strategy, when effects are identified as non-linear, their corresponding one-step evaluations142

are removed from subsequent trajectories. This results in fewer model runs. The rationale143

is that if σi is small for a given factor, then we should investigate whether σi remains small144

when adding extra trajectories. At the end of experimentation, those input factors for which145

σi remained small are considered to have linear or no effect, and factors for which σi was146

bigger than a threshold have a non-linear effect on the output. A method of eliciting the147

choice of threshold is presented in Section 4.1.148

The justification of thresholding solely on the variance of the elementary effects σi is149

that independent linear effects of factors may be removed from the simulator output at a150

preprocessing stage or during the emulation phase. As an example of the latter approach,151

factors with linear effects may be incorporated in the mean function of a Gaussian Process152

(GP) emulator while omitted from the covariance specification. If we denote by A the153

subset of {1, . . . , k} that indexes factors with linear effects, the GP prior may be written154

as Y (x) = β +
∑k

i=1 aiXi + Z∗ where Z∗ is a stochastic process whose covariance structure155

depends only on the variables with non-linear effects; that is, the xi with i ∈ {1, . . . , k} \A.156

The residual process Z∗ is therefore placed in a lower dimensional space simplifying the157

design and inference tasks.158

For our algorithm to run, a space filling design with M points is created. This design159

provides the sequence of points at which the Morris OAT runs will be tested. Initially, we160

select a good space filling design, such as a maximin Latin hypercube (LH) (Morris and161

Mitchell, 1995). The generation of maximin designs is discussed further in (Ravi et al.,162

1994). The value of M is selected such that (k + 1)M is the maximum number of runs that163
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can be performed during the whole screening process.164

A preprocessing stage orders the design points according to the biggest distance between165

points. The first two points are those whose Euclidean distance is largest; then the third166

point maximises the minimum distance between itself and the first two points, then a fourth167

point is ordered in the same way, and so on. This procedure of ordering points mirrors168

nearest neighbour clustering, but acts in an opposite manner as points are ordered from169

those farthest apart to those that are closest.170

Example 1. For k = 5 input factors and M = 6 runs, consider a maximin LH design in171

[0, 1]5 with point coordinates x1 = (0, 4, 1, 4, 4)/5, x2 = (1, 5, 5, 1, 3)/5, x3 = (2, 1, 3, 0, 1)/5,172

x4 = (3, 0, 4, 5, 2)/5, x5 = (4, 3, 0, 3, 0)/5 and lastly x6 = (5, 2, 2, 2, 5)/5. The preprocessing173

stage first selects the points x2 and x5, which are furthest apart. The next point, x4,174

maximises the distance between those remaining points and the first two points chosen.175

The procedure continues by selecting x6, then x1 and finishes with x3. This preprocessing176

stage produces the ordered sequence of points x2,x5,x4,x6,x1,x3, which are relabelled as177

x(1), . . . ,x(6).178

The screening algorithm starts with the computation of elementary effects for all input179

factors at the first two design points of the ordered maximin LH design. OAT runs are180

created at those two points and elementary effects are computed. With this initial data,181

a first estimation of the moments µi, µ
∗

i and σi is available. If, for a given input factor,182

its sample moment σi is larger than a specified threshold σ0, then we say that the output183

is responding non-linearly to this input. This leads us to declare that input as active and184

remove it from the list of current input factors. The technique continues by adding OAT runs185

at the next point, only for factors suspected to be linear. Elementary effects are computed186

and moments are updated for each added point, removing a factor if the condition for σi is187

met. The methodology ends when all input factors have been removed or after computing188

elementary effects for all M points. On ending, the input factors are separated into two189

groups: those having non-linear effect and those with linear or no effect on the output.190

Algorithm 1 sets out the procedure in pseudo-code form.191

Example 2. To show how the proposed sequential algorithm works, consider Y (x1, x2, x3, x4, x5) =192

cos(x3/5)(x2+1/2)4/(x1+1/2)2+x5 on the design region [0, 1]5. Note that x4 has negligible193
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Algorithm 1 The procedure for completing our screening technique.

Screening algorithm

Input: Simulator Y (·) with k inputs; total number of one-at-a-time experi-
ments M ; step size ∆; threshold σ0.
Output: Moments µi, σi, µ

∗

i ; lists of factors with linear (C) and with non-
linear effect (A).

A. Preprocessing stage

1. Set design region to [0, 1]k and create space filling design with M points
x1, . . . ,xM .

2. Order the design points using maximum distance between points. Label the
ordered points as x(1), . . . ,x(M).

B. Calculating the elementary effects

1. Set R := 2 and the initial design to be D :=
{

x(1),x(2)

}

. Set list of current
factors to C := {1, . . . , k} and list of active effects A := ∅.

2. For every point in D, create one-at-a-time runs only for those input fac-
tors indexed by C. Run the simulator at those points. This totals |C| + 1
experiments for every point in D.

3. Using simulator runs from step B2 and (1), compute elementary effects
{EEi(x) : x ∈ D, i ∈ C}.

4. If R = 2, compute moments µi, µ
∗

i and σi using elementary effects for all
factors. If R > 2, only update moments for the current list of input factors,
indexed by C.

5. For i ∈ C, if σi > σ0 then update C := C \ {i} and A := A∪ {i}.

6. If C = ∅, then all the inputs were identified non-linear. Algorithm ends.

7. If R = M , then all the design points available are exhausted. Algorithm
ends.

C. Producing the next design point

1. Update R:=R+1; set D = {x(R)}.

2. Goto B2.
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effect here. The function Y is treated as a simulator, from which the only information we194

require are its values at design points. We use the same pre-ordered LH design of Example195

1; set p = 10 for step size ∆ = 5/9 and threshold σ0 = 0.15. See 4.1 for details on the con-196

struction of the threshold σ0. Random trajectories are constructed with the first two ordered197

points, giving the following moment estimates (µ1, µ2, µ3, µ4, µ5) = (−7.87, 4.66,−0.047, 0, 1)198

and (σ1, σ2, σ3, σ4, σ5) = (6.62, 0.27, 0.06, 0, 0). Note that the method yields exact zeroes for199

the fourth variable. The estimates σ1, σ2 are greater than the threshold σ0 and thus x1200

and x2 are separated as having non-linear effects. As all σ3, σ4 and σ5 are smaller than201

σ0, further investigation is required for x3, x4 and x5. At the third design point, OAT ex-202

perimentation only for those factors produces updated moments (µ3, µ4, µ5) = (−0.06, 0, 1)203

and (σ3, σ4, σ5) = (0.05, 0, 0), i.e. the factors remain under investigation. The sequential204

methodology continues for all of them until finishing with all the design points. At this final205

step, updated moments are (µ3, µ4, µ5) = (−0.039, 0, 1) and (σ3, σ4, σ5) = (0.04, 0, 0), where206

again for the fourth factor the results are exactly zero. We conclude that linearity of the207

response in terms of x3, x4 and x5 over the design region could not be rejected. Near zero208

variances for x4 and x5 suggest strong conclusions for those factors.209

The total experimental effort was 28 runs, from which the first 12 runs involved tra-210

jectories for all factors, while further 16 runs were required for the linear factors under211

investigation. This is a 22% reduction from the (5 + 1) ∗ 6 = 36 runs needed to perform the212

batch EE method. The moment estimates obtained for the non-linear factors are only rough213

approximations of the true moment values, and the moment estimates for the linear factor214

were computed with more information. This asymmetry is apparent when comparing with215

exact analytic sensitivity results µ = (−5.34, 6.62,−0.04, 0, 1) and σ = (8.88, 7.42, 0.06, 0, 0),216

where we use µi =
∫

[0,1]5
∂
∂xi

Y (x)dx and σ2
i =

∫

[0,1]5

(

µi − ∂
∂xi

Y (x)
)2

dx.217

4.1 Heuristic selection of variance threshold218

In Algorithm 1, the elementary effect variance threshold σ0 is an input. In this section, we219

present a heuristic to choose σ0 indirectly by eliciting the expected divergence from linearity220

of the factor effect as the variance of an auxiliary random variable. A linear (or near-linear)221
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effect of the variable xi is represented by an additive noise model:222

Y (xi) = axi + b+ εi , (3)

where εi is an independent and identically distributed normal random variable with zero223

mean and known variance γ, and a, b are constants. In other words, the marginal effect due224

to the factor xi is modelled with a simple regression line. The auxiliary random variable εi225

captures interaction with other factors and non-linearities.226

In practice, the variance γ has to be elicited prior to the screening experiment and there227

are two alternatives that we have considered in the examples in the present paper.228

1. We might believe that the factor xi has a linear effect, but the simulator runs contain a229

numerical error. In this case, we expect γ to be set to a small value, such as a multiple230

of machine precision.231

2. If we believe that small non-linear effects will not have an appreciable impact on the232

model output, then γ should be chosen to reflect the level of variation from a straight233

line to be tolerated.234

The elicitation of the variance parameter is in contrast to Kadane et al. (1980) and235

Garthwaite and Dickey (1988), where full probability distributions are elicited that reflect236

beliefs about the parameters of the linear model. In the present application, we do not wish237

to prejudge the behaviour of the model: we want a number specifying how far we can tolerate238

from being linear.239

Given the variance γ, the sampling distribution of the variance of the elementary effects240

can be calculated according to the following lemma, whose proof is given in Appendix A.241

For simplicity we omit the subscript i from the quantities σ2, σΦ, γ and ∆, all of which could242

potentially take different values for each input. In practice we choose a common γ and ∆243

for all inputs.244

Lemma 1. Let x1, . . . , xR be univariate design points, at each of which trajectories are245

constructed. Assume that observations taken at design points and trajectories follow the246

model given in (3). Let elementary effects and moments be defined as in (1) and (2) and let247
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σ2
Φ = 2γ

∆2 . Then248

σ2 ∼ σ2
Φ

R− 1
χ2
R−1. (4)

where χ2
R−1 denotes a chi-square random variable with R− 1 degrees of freedom.249

We propose to use the 99% quantile of the cumulative distribution function of the chi-

square distribution to derive the EE variance threshold σ0. We have found this choice

of quantile sufficiently conservative for the examples we have investigated. The following

equation

P
(

σ2 ≤ σ2
0

)

= P

(

σ2
Φ

R− 1
χ2
R−1 ≤ σ2

0

)

= 0.99,

when inverted yields the threshold250

σ0 =
√

χ2
0.99,R−1σ

2
Φ/(R− 1), (5)

where χ2
0.99,R−1 is the 99% quantile of a chi-squared distribution with R−1 degrees of freedom.251

In other words, σ0 defines a threshold over which the effect is considered non-linear; that is, if252

σi < σ0, then the input variable xi is retained for further testing. Note that Lemma 1 applies253

directly in a multivariate setting; in which case, the comparison is performed separately for254

each input variable.255

In Example 2, we used a single threshold σ0 for all variables. In order to obtain σ0 = 0.385256

using the method described in this section, the values R = 6, ∆ = 5/9,
√
γ = 8.7×10−2 and257

quantile χ2
0.99,5 = 15.08 could be used.258

To simplify the algorithm, the threshold σ0 may be kept fixed for all computations rather259

than adapting σ0 to the actual number of trajectories involved. The main difference is in260

the degrees of freedom for the scaled chi-square distribution in (5). The adaptive approach,261

which was utilised in the simulation experiments presented, involves recomputing σ0 with262

updated degrees of freedom prior to step B5 in Algorithm 1. In the simplified approach using263

a single value σ0, the method is more conservative than when varying degrees of freedom;264

i.e. the rejection rate is higher with fixed threshold than otherwise.265

The detection of nonlinearity under the heuristics in this section is further explored in266

Appendix B. The robustness of the proposed selection of σ0 in our sequential algorithm is267

explored under different departures from linear model (3).268
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5 Simulated high dimensional example269

We illustrate the sequential screening method on the synthetic test function introduced in270

Morris (1991). The function is defined on 20 inputs x ∈ [0, 1]20 as follows:271

y = β0 +

20
∑

i=1

βiwi +

20
∑

i<j

βijwiwj +

20
∑

i<j<l

βijlwiwjwl +

20
∑

i<j<l<s

βijlswiwjwlws, (6)

where wi = 2(xi − 1
2
) except for i = 3, 5, 7 where wi = 2

(

1.1xi/(xi + 0.1)− 1
2

)

. The coef-272

ficients are set to βi = 20 for i = 1, . . . , 10, βij = −15 for i, j = 1, . . . , 6, βijl = −10 for273

i, j, l = 1, . . . , 5 and βijls = 5 for i, j, l, s = 1, . . . , 4. The remaining first and second order274

coefficients are generated independently from a zero mean unit variance normal distribution275

and the remaining third and fourth order coefficients are set to zero. Factors x1, . . . , x7 have276

a non-linear effect on the function output while factors x8, x9, x10 have a linear effect and277

factors x11, . . . , x20 have negligible effect (Morris, 1991; Pujol, 2009).278

First, we compare the performance of the batch and sequential EE methods in terms of279

required model runs. The screening experiment was performed under the configuration used280

in Pujol (2009) for 100 realisations. As in Pujol (2009) the discretisation level has been set281

to p = 20 so ∆ = 0.5263 and the number of trajectories to R = 10. For the sequential282

procedure, a threshold value of γ = 2.6 was used. This corresponds to around 0.005% of the283

range of the response y in (6), which varies between −225 and 139.284

A total of 210 function evaluations are required for the batch EE procedure. For the285

sequential EE procedure on average 150 function evaluations are required with a standard286

deviation of 13, that is an average savings of 28% compared to the batch approach. Factors287

x1, . . . , x7 are correctly identified as having non-linear effect in 99% of the realisations because288

the corresponding σi is larger than the threshold σ0. Factors x8, . . . , x10 are found to have289

linear effects in 92% of the realisations because µi is large and σi is small. Factors x11, . . . , x20290

are found to have negligible in all realisations due to small σi values. The full batch EE291

screening results and the first iteration of one realisation of the sequential algorithm are292

shown in Figure 1. This first iteration is equivalent to running the algorithm up to step B.4293

in Algorithm 1. We note that six of the seven factors with non-linear effects are identified294

at this early stage.295
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(b) Average batch results.

Figure 1: Applying the batch and sequential EE screening method on the 20 input factor
Morris test function. Horizontal dashed line denotes the σ0 threshold value for the given
iteration.

Finally, we illustrate the efficiency of the EE method by contrasting it to a traditional296

sensitivity analysis method. Applying the Sobol’ sensitivity analysis method (Sobol, 1993) to297

compute first-order and total indices using a random design of 220 runs, results in large 95%298

confidence intervals indicating that more model runs are required before any conclusions can299

be drawn from the examination of the indices (Figure 2). We also show how the uncertainties300

dramatically reduce when a larger design is used. These results were obtained by using the301

sensitivity R package (Pujol et al., 2013). This illustration confirms our expectation that302

screening methods such as the EE method, can be utilised prior to a more detailed sensitivity303

analysis in order to minimise the number of model runs.304

We conclude that the sequential approach results in significant computational savings305

compared to the batch EE method as factors with clear non-linear effects can be eliminated306

in the early screening stages with high confidence. Furthermore, we have demonstrated the307

efficiency of the EE screening methods compared to classical sensitivity analysis as illustrated308

by the number of runs required to effectively calculate the Sobol’s first-order and total indices309

for this example.310
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Figure 2: Applying Sobol’s sensitivity analysis method on data generated using (6). Random
designs of 220 and 4378 have been used. The error bars indicate 95% confidence intervals
for the first-order and total effect indices.

6 Rabies Model311

In this section, we discuss the application of the Morris sequential screening method described312

in Section 4 on a stochastic model provided by the Food and Environment Research Agency313

(FERA) (Singer et al., 2008, 2009). An overview of the stochastic simulator is given in314

Section 6.1, followed by a description of the screening methodology in Section 6.2) and a315

discussion of the results in Section 6.3.316

6.1 Model Description317

Although rabies in wild animal populations has been eradicated from large parts of Europe,318

there is a remaining risk of disease re-introduction. The situation is aggravated by an319

invasive species, the raccoon dog (Nyctereutes procyonoides) that can act as a second rabies320

vector in addition to the red fox (Vulpes vulpes). The purpose of the rabies model is to321

analyse the risk of rabies spread in this new type of vector community (Singer et al., 2008).322

The individual-based, non-spatial, discrete-time model incorporates population and disease323
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dynamical processes such as host reproduction and mortality as well as disease transmission.324

The model includes two vector species: raccoon dogs and foxes. The model is non-spatial325

and disease propagation is calculated solely with respect to population dynamics.326

Description min max

1 Number of replications 200 300

2 Fox population winter density (ind./km2) 0.1 0.5

3 Raccoon dog population winter density (ind./km2) 0.1 1

4 Shape parameter for the probability distribution 0.39 0.47
of raccoon dog infection

5 Dummy variable with no influence 0.9 1.1

6 Fox population mortality 0.9 1.1

7 Raccoon dog population mortality 0.9 1.1

8 Winter hunting proportion 0.9 1.1

9 Fox population birth rate 0.9 1.1

10 Raccoon dog population birth rate 0.9 1.1

11 Fox population infection rate 0.9 1.1

12 Fox population rabies incubation rate 0.95 1.05

13 Raccoon dog rabies incubation rate 0.95 1.05

Table 1: Input parameters for the rabies model and their ranges.

The model has 13 free parameters, shown in Table 1. In addition, three simulator config-327

uration parameters were kept fixed: the maximum number of time steps was set to 400; the328

cross infection input was 0.002 and the environment area size was kept fixed at 5400 km2.329

The response used is the probability that the rabies disease becomes extinct in both330

species within 5 years. This output is scaled to lie in the range [0, 100] and is important331

in deciding on the response to a potential rabies outbreak since it indicates the risk of long332

term rabies disease persistence (Singer et al., 2008, 2009).333

6.2 Screening Methodology334

For screening, we utilise a Morris design with the number of trajectories set to R = 20335

resulting in (k + 1) × R = 14 × 20 = 280 simulator evaluations, where k = 13. The mean336

µ∗ of the absolute values of the Elementary Effects is used to rank the input factors. We set337

the number of levels to p = 6 and ∆ = p/(2(p− 1)) = 0.6.338

The sequential Morris method discussed in Section 4 allows the specification of a variance339

γ from which the threshold on the Elementary Effect deviation σ0 is derived. We set γ = 3.5,340
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which reflects a prior belief that individual factor effects on the output are considered near-341

linear if the effect on the output is within three standard deviations of purely linear, i.e.342

±3
√
γ = 5.6. Since the output is bounded in the range [0, 100] a factor has near-linear effect343

if the output varies no more than 5.6% from linear. This variability encapsulates both the344

internal variability of the stochastic model and our prior definition of a near-linear effect.345

6.3 Screening Results346

Singer and Kennedy (2008) performed sensitivity analysis on this model using the standard347

Morris method with the same setup as here as well as the Sobol’ method. They noted the348

most important parameters are species winter densities (inputs (2) and (3)) and mortalities349

(inputs (6) and (7)). They also noted the least influential factors are the dummy variable (5)350

that has by definition no influence on the model output and parameter 4, a shape parameter351

for the probability distribution of raccoon dog infection. It is also noted that the Sobol’352

method is prohibitively expensive and offers low accuracy with a sample size of 300. They353

suggested increasing the sample size and reducing the dimensionality of the problem by354

fixing some of the factors to their nominal values. For expensive simulators this motivates355

the usage of the Morris method.356

The standard Morris method variable ranking with R = 20 trajectories is presented in357

Figure 3(a) where the four dominant factors were found to be the winter densities for both358

species (2,3) and the associated mortality rates (6,7). Singer and Kennedy (2008) have noted359

that the dominant factors have strong non-linear and interaction effects which is reflected in360

the high σ value observed in the Morris method.361

The sequential Morris method is initialised with R = 2 trajectories on all 13 factors362

requiring (k + 1)R = 28 simulator runs. The same step size ∆ and the computed threshold363

σ0 is the same for all factors. The Morris plot with the associated threshold value is shown364

in Figure 3(b). The elementary effect variance is over the threshold for four factors, the365

raccoon dog winter density (3), raccoon dog rabies incubation probability (13), number of366

replicated runs (1) and raccoon dog population birth rate (10) are eliminated from further367

consideration since they have strong non-linear effects on the simulator output.368

Another trajectory design for the remaining 9 factors is evaluated and requires 10 further369

simulator evaluations (Figure 3(c)). The parameters fox winter density (2) and mortality370
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(6) factors are found to have non-linear effects and are removed from further consideration.371

As evidenced by the Morris plot, the σ value for parameter 2 changed significantly from the372

previous iteration where the effect was considerably below the threshold and very close to373

linear.374

For the third iteration, the seven factor trajectory requires 8 more simulator evaluations375

(Figure 3(d)). Three further parameters are eliminated, the raccoon dog (7) mortality rate,376

the fox birth rate (9) and the fox population rabies incubation probability (12) where large377

changes in the moments of the elementary effects are again observed due to the increased378

accuracy from the increased Morris design size. No more factors are eliminated until iteration379

7 requiring a further (4 + 1)× 4 = 20 simulator evaluations (Figure 3 (e)-(h)). At iteration380

7, the winter hunting proportion (8) and fox population infection rate (11) parameters are381

removed from further consideration.382

The remaining two factors, the shape parameter for the probability distribution (4) and383

the dummy variable (5), are found to be below the σ threshold for all subsequent twelve384

iterations requiring (2 + 1)12 = 36 simulator evaluations. The total number of simulator385

evaluations for the sequential procedure is 102 compared to the 280 evaluations required by386

the standard batch Morris method with R = 20 trajectories, yielding a 27% reduction in387

required code runs.388

We have also performed the threshold calculation on the full Morris set with R = 20389

trajectories and the same factors as with the sequential version are identified as near-linear.390

In summary, the sequential Morris method for the rabies model has been successfully used391

to identify factors with no or near-linear effects on the simulator response at a significant392

saving to the standard Morris method.393

7 Discussion394

We have presented a novel sequential screening method that extends the batch elementary ef-395

fects method originally proposed by Morris (1991). The method aims to identify inputs with396

non-linear effects with a minimum number of trajectories. We have empirically demonstrated397

the computational savings achieved compared to the batch approach on both synthetic data398

and a real-world simulator. A critical aspect of the method is the specification of the thresh-399
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Figure 3: Batch and Sequential EE screening on the rabies simulator. Solid line denotes
path from previous value of (µ∗, σ) for each factor. Horizontal dashed line denotes the σ0

threshold value for the given iteration.
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old σ0 which is used to determine whether an input has a non-linear effect. The elicitation400

of this value directly can be challenging and we have presented an indirect approach which401

utilises an easily interpetable variance value γ specified on the simulator output space.402

In order to apply the screening method of the present paper, the analyst must make a403

number of choices. To create the ordered design of OAT-experiment start-points, M must be404

specified. We recommend that M is chosen with respect to the computational effort needed405

to run the simulator; at worst, the simulator will run (k+1)M times. The threshold value σ0406

can be set to zero so that only true linear- and no-effect inputs are investigated. We suggest407

to use a threshold σ0 > 0 as in practice some small non-linearities might be tolerated and408

replaced instead by a linear function.409

In cases where direct elicitation of the EE variance threshold σ0 is not feasible or straight-410

forward, elicitation of the variance γ may be preferable. The variance γ may be interpreted411

as the expected divergence of a factor from strict linearity under which the factor effect may412

still be considered linear for modelling purposes. In the case of stochastic simulators, this413

parameter includes the internal simulator variability whereas for deterministic simulators414

near-linear definitions only include errors due to machine precision and degree of departure415

from truly linear effects on the output. In the future, alternative elicitation methods may be416

constructed to allow for other non-Gaussian deviations from linear effect. An area of future417

interest is double classification of factors using the joint distribution of moments µ∗

i and σi.418

This not only would classify a factor as linear or non-linear, but would discriminate between419

active and non-active factors. A starting point for this would be the t test for µ in Morris420

(1991).421

A variation of our algorithm is to select OAT runs to improve space filling properties of422

the whole design. The simplest approach is to use random OAT runs. However, OAT runs423

can be selected to maximise distance between them, as in Campolongo et al. (2007). An424

adaptation of the OAT runs suggested in Pujol (2009) can also be used where we create a425

simplex in the current set of input factors. Another criterion is to select OAT runs to improve426

uniformity of unidimensional projections of the design thus minimising the unidimensional427

discrepancy of the whole design, conditioned on the initial hypercube. The use of discrepancy428

to measure uniformity stems from quasi-Monte-Carlo methods (Niederreiter, 1992). We429

have used Sobol’s low discrepancy space filling sequence (Niederreiter, 1992). The only430
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change required in the pseudo-code of Algorithm 1 is to remove step A2. Sampling from low431

discrepancy sequences has the advantage of sequential generation of points. However, for432

small sample sizes the spread of points of a low discrepancy sequence may not be as good as433

that of a maximin space filling design with fixed size.434

In this paper, we have not addressed the question of how multiple simulator outputs could435

be handled in our method. The simplest approach, of generating separate OAT designs for436

each output, is inefficient. In a sequential setting, the initial design could be shared for all437

outputs. In our approach, factors are excluded from subsequent screening stages when non-438

linear effects are detected. Therefore, subsequent stages need only include factors that are439

under the EE variance threshold across all outputs. As the number of outputs grows, it is440

more likely that a factor will have a non-linear effect on at least one of the outputs. Therefore441

fewer simulator runs will be required for screening but it is also more likely fewer factors with442

only linear or no effects across all outputs are detected. An alternative approach would be to443

use a functional summary of all simulator outputs as the response for the screening analysis.444

However the EE variance threshold will need to be elicited for the functional summary rather445

than for each individual simulator output.446
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A Proof of Lemma 1.452

Proof. All computations in this lemma are defined for a single factor. The elementary effect453

at point xi follows a normal distribution EE(xi) ∼ N(a, 2γ
∆2 ). Independence of elementary454

effects EE(x1), . . . , EE(xR) follows from independence of observations of model.455

The mean of R elementary effects is distributed µ ∼ N(a, 2γ
R∆2 ). To find the distribution456
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of σ2 = 1
R−1

∑R
i=1(EE(xi)− µ)2, the following sum of squares is used457

R
∑

i=1





EE(xi)− a
√

2γ
∆2





2

= (R− 1)
σ2

2γ
∆2

+R
(µ− a)2

2γ
∆2

.

The left hand side above is a sum of squared independent standard normal variables and458

thus it has a chi-squared distribution with R degrees of freedom. By independence of µ459

and σ2, the first summand on the right has a chi-squared distribution with R− 1 degrees of460

freedom and the second summand has a chi-squared distribution with one degree of freedom.461

Therefore σ2 ∼ 2γ
(R−1)∆2χ

2
R−1.462

B Power computations463

The input xi is declared non-linear the first time that σi satisfies σi > σ0 in step B5 of the464

algorithm. If the total number of experiments satisfies M > 2, then detection of nonlinearity465

for a given input can occur before the total number of allowed experiments M is reached.466

Power computations are possible for different departures from the linear model used to467

determine σ0, here we explore two.468

The first departure we consider is a change in variance, with variance γ being multiplied469

by a factor δ2 to become γ′ = δ2γ. The factor δ quantifies change in variance from the original470

model. The probability of detecting the change at the step R is Pr
(

X2
R−1 > χ2

0.99,R−1/δ
2
)

.471

A geometric walk argument with probabilities changing as more data is included yields the472

power: 1−∏M
R=2

(

1− Pr
(

X2
R−1 > χ2

0.99,R−1/δ
2
))

.473

A different departure from linear model is when data follows474

Y (xi) = cx2
i + axi + b+ εi . (7)

Here εi still satisfies the same assumptions as for the linear model and a, b and c are constants.475

The following scenarios were used for power computations through simulations under the476

(wrong) model (7): M = 2, 3, 4, 5, a = 1
10
, 1
5
, 1
2
, 1; and the quadratic coefficient depended477

on the slope through the following relation c = δa with δ ranging from 10−2 to 103. Here478

the quantity δ is used to quantify departures from the original model through an increasing479
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Figure 4: Simulation results: (a) power and (b) ARL against scaling factor δ.

quadratic coefficient. The errors in the models simulated were standard normal, i.e. γ = 1480

and in each scenario used a uniform design of M points over [0, 1]. The results of power481

against different values of M with a = 1
10

are shown in Figure 4 (a). As would be expected,482

the test reacts quickly to increasing quadratic trend through δ, but also as M increases and483

even for very small changes there is already a higher rejection rate. For instance, when484

M = 5 the rate is already larger than 10%.485

In each simulation experiment, the run length was recorded. Recall that run length is the486

number of steps required for a factor to be declared nonlinear and it only takes integer values.487

A number of 12, 000 simulations were carried out and run lengths obtined were averaged to488

produce the average run length (ARL). This computation was performed for M = 5 and489

same scenarios for parameters a and c as above. The graph of ARL against δ is shown in490

Figure 4 (b), where the top curve (a = 1
10
) required more exploration and produced higher491

ARL than the rest of the cases for a, with the lowest ARL in the simulations achieved for492

a = 1 (bottom curve), where the departure from linear is highest and the method detects it493

very quickly. Simulations for both Figures 4 (a) and (b) used the same range of δ but in the494

right figure the results are plotted only for M = 5.495

Supplementary Materials496

Technical Report: Supplementary information on the scalability of the sequential elemen-497

tary effects method. (pdf)498
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Matlab code for the sequential screening method: Matlab code that demonstrates the499

sequential screening method on a synthetic dataset. The example can be started by500

running seqMorrisExample.m. (GNU zipped tar file)501
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