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ABSTRACT 
 
 

MYStIX  (Massive  Young Star-Forming  Complex  Study  in Infrared  and  X- 

ray)  seeks to characterize  20 OB-dominated  young clusters  and  their  environs 

at distances  d ≤ 4 kpc using imaging detectors  on the Chandra X-ray Obser- 

vatory,  Spitzer Space Telescope, and the United  Kingdom InfraRed  Telescope. 

The  observational  goals are to construct  catalogs  of star-forming  complex stel- 

lar members with well-defined criteria,  and maps of nebular  gas (particularly of 
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hot X-ray emitting plasma)  and dust. A catalog of MYStIX Probable  Complex 

Members (MPCMs)  with several hundred  OB stars and > 30, 000 low mass pre- 

main sequence is assembled.  This sample and related data products will be used 

to seek new empirical constraints on theoretical models of cluster formation and 

dynamics, mass segregation, OB star formation, star formation triggering on the 

periphery  of HII  regions, the survivability  of protoplanetary disks in HII  regions. 

This paper  give an introduction  and overview of the project,  covering the data 

analysis  methodology  and  application  to two  star forming regions, NGC  2264 

and the Trifid Nebula. 
 

 

Subject headings:  infrared:  stars;  stars:  early-type;  open clusters  and  associa- 

tions:  general; planetary systems:  protoplanetary disks; stars:  formation; stars: 

pre-main sequence; X-rays:  stars 
 
 

 
1.  Introduction 

 

 

1.1.  Star Formation  in  Giant  Molecular Clouds 
 

 

Recent decades have witnessed considerable progress in characterizing and understand- 

ing star formation that occurs in small molecular clouds. Millimeter and infrared studies of 

the Taurus,  Perseus, Chamaeleon and similar nearby clouds give a detailed view of the phases 

of gravitational collapse, protostar formation, and early stellar evolution of stars in isolation 

or in small groups.  The census of young stars in these regions is traced from intermediate- 

mass stars to cool brown dwarfs.  Astrophysical  modeling of isolated star formation is also 

in a well-developed state. 
 

However, our understanding of star formation in massive star forming regions (MSFRs), 

particularly  the emergence of rich star clusters,  is more primitive  with  fundamental  issues 

unresolved.  Rich clusters are an important, perhaps the dominant, mode of star formation in 

the Galaxy (see reviews by Lada & Lada 2003; Allen et al. 2007; Kennicutt & Evans 2012). 

Questions of interest here include: 
 

 

1. What are the essential conditions for rich cluster formation and how do these conditions 

arise  in a molecular  cloud complex?   What are  the effects  of the new OB stars on 

cloud ionization and dispersal?  (Magneto)hydrodynamical calculations of massive star 

formation in turbulent clouds are underway,  but these are computationally expensive 

and are restricted to a narrow range of initial  conditions  (Peters et al. 2010; Moeckel 

& Bate 2010; Cunningham  et al. 2011). 
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2. Do all stars in a cluster form essentially  simultaneously  during  a single crossing time 

(Elmegreen 2000), or is star formation continuous active for millions of years (Tan  et 

al. 2006)? Is it mainly a global process, or do rich clusters develop from the merger of 

smaller groups (McMillan et al. 2007; Maschberger  et al. 2010)? Is the IMF constant 

during cluster formation both spatially and temporally (Krumholz et al. 2010)? Many 

clusters  show a spread  in apparent ages in the Hertzsprung-Russell  diagram,  but the 

interpretation of this effect is debated (Baraffe et al. 2009; Hosokawa et al. 2011; Jeffries 

et al. 2011). 
 

3. Is the triggering of star formation in cloud material by expanding HII  regions a major, 

or a minor, mode of star formation?  Observational support for the ‘radiatively driven 

implosion’ model of triggered star formation near HII  regions is growing (Ogura  et al. 

2007; Getman et al. 2009, 2012). 
 

4. What are the principal  mechanisms of massive OB star formation?  Proposals  include 

monolithic collapse, stellar mergers, rapid disk accretion, and ‘competitative accretion’ 

of ambient gas (Zinnecker & Yorke 2007). Some clear cases of disk accretion have been 

found (Cesaroni et al. 2007). 
 

5. What are the causes of mass segregation, the concentration of OB stars in dense cluster 

cores?  Does it arise from primordial star formation processes or rapid dynamical 

evolution (Allison et al. 2009)? Why is mass segregation absent in some young clusters 

(Wang  et al. 2008)?  Are many  OB stars subject  to dynamical  ejection  from cluster 

cores (Pflamm-Altenburg & Kroupa  2006)?  Why  are OB stars sometimes  found to 

form after the lower mass stars (Feigelson & Townsley 2008; Ojha et al. 2010)? 
 

6. Is the interstellar  space within  HII  regions around  rich clusters  principally  filled with 

photoionized gas at 104 K temperatures, as assumed for a classical Strömgren sphere, or 

with hotter plasma at 107  K from the shocked winds of OB stars?  Several convincing 

cases of X-ray  emitting  plasma  suffusing the interior  of large HII  regions have  been 

found (Townsley et al. 2011b). 
 

7. Are the conditions within rich star clusters hostile to the persistence of protoplanetary 

disks, suppressing planet formation?  Photoionization and ablation of disks are seen in 

Orion Nebula proplyds (Johnstone et al. 1998). 
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1.2.  Motivation  for  MYStIX 
 

 

We believe that, in large part, these  issues remain poorly understood  because the en- 

deavor is starved  of high-quality  data on stellar  populations  in MSFRs.  While rich young 

clusters in the nearby Galaxy have been known for decades or centuries, the census of their 

stellar  members  has been very incomplete.   Except  for the nearest  rich cluster,  the Orion 

Nebula Cluster where the full Initial  Mass Function (IMF)  is clearly identified (except per- 

haps for ejected massive stars; Pflamm-Altenburg & Kroupa 2006), the census of stellar 

members for most young clusters is typically restricted to the dense central regions. In many 

cases, only a handful of lightly obscured OB stars are catalogued. 
 

The weakness of the stellar membership  census in and around  massive clusters can be 

attributed to three difficulties encountered in optical and infrared surveys:  spatially variable 

nebular  line emission from heated gas and PAH emission from heated dust in the HII  region 

and photodissociation region; spatially variable obscuration from the molecular cloud hosting 

the cluster; and crowding and contamination from Galactic field stars unrelated to the MSFR. 

For MSFRs in the Galactic Plane at low Galactic longitudes, there may be a hundred  times 

more field stars than member stars in the magnitude  range of interest.  As a result,  optical 

and infrared samples are largely restricted to MSFR members with distinctive photometric 

colors: lightly obscured OB stars with blue colors, and young stars hosting protoplanetary 

disks with infrared excesses. These restrictions miss the population of disk-free, lower mass 

young stars that often dominate the populations of young clusters. 
 

These difficulties are significantly alleviated if sensitive, high-resolution X-ray images of 

the cluster and its environs are available.  NASA’s Chandra X-ray Observatory has proved 

to be a highly effective telescope for discriminating young stars in star forming regions up to 

distances of � 4 kpc, even through obscuration of AV  � tens of magnitudes  (Feigelson 2010). 

The  emission processes are magnetic  reconnection  flares for lower mass pre-main  sequence 

stars and shocked stellar  winds for O stars.  Contamination  by older Galactic field stars is 

much reduced  in X-ray images compared  to optical  or infrared  images, and contamination 

by extragalactic sources can be mostly removed as the infrared counterparts are fainter than 

the pre-main sequence stars. 
 

We describe here the Massive Young Star-Forming Complex Study in Infrared and X-ray 

(MYStIX)  that combines the virtues  of multiwavelength  selection  of young stellar  popula- 

tions − optical band for OB stars, infrared bands for young stars with protoplanetary disks, 

and the X-ray band for OB stars and pre-main sequence flaring stars.  Uniform analysis 

procedures  are applied  wherever possible to the targeted  MSFRs.  Effort  is exerted  to ob- 

tain high-sensitivity  catalogs from the X-ray and infrared images using advanced algorithms 

designed to treat the nebular  and  crowding problems.   Probabilistic  catalog  matching  and 
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source classification  algorithms  give objective  selection  of cluster  members;  incompleteness 

and selection biases are still present but are reduced to acceptable levels for many purposes. 

Once cleaned of unresolved sources, the X-ray images then reveal the diffuse 107  K plasma 

from shocked OB stellar winds or supernova remnants that fill some HII  regions. Many of the 

analysis procedures  are based on our earlier multiwavelength  survey of the Carina  Nebula 

complex (Townsley et al. 2011a). 
 

The MYStIX project is principally based on analysis of archival X-ray data from NASA’s 

Chandra  X-ray Observatory,  near-infrared  (NIR)  from the United  Kingdom InfraRed  Tele- 

scope (UKIRT)  and the 2MASS survey, and mid-infrared  (MIR) observations from NASA’s 

Spitzer Space Telescope.  Many of the UKIRT observations were obtained by the United 

Kingdom Infrared Deep Sky Survey Galactic Plane Survey (UKIDSS;  Lawrence et al. 2007). 
 

An important aspect of the MYStIX  project is to compare properties of different  star 

forming regions and young clusters.  While past studies have investigated individual MSFRs, 

they  are  based  on diverse  methodologies  and  datasets that hinder  intercomparisons.   Al- 

though MYStIX clusters do not constitute a well-defined sample, they do represent a range 

of properties.  Some are dominated by only one late-O star with M "' 30 M0 while others 

have dozens of O stars with masses up to M "' 100 − 150 M0. Some are embedded  deep in 
cloud material while other lie at the edges of clouds or have entirely dissipated nearby cloud 
material.  Some are relatively isolated structures on � 1 − 5 pc scales while others are part of 
multi-cluster star formation complexes on � 20 − 50 pc scales. Some have very high central 

star densities  while others  are more diffuse.  Some have high protoplanetary  disk fractions 

and others have low fractions or spatial gradients in disk fraction. 
 

With  31,550 identified ‘MYStIX Probable  Complex Members’ (MPCMs)  in the 20 tar- 

geted  MSFRs (Broos et al. 2013), the MYStIX  project  gives the largest  samples of stellar 

populations of rich star forming regions obtained to date. Together with images of nebular 

emission, they  provide a strong  new empirical  basis for addressing  the astrophysical  ques- 

tions outlined in §1.1. This empirical foundation allows us to address questions concerning 

the structure and early evolution of clusters, the IMF and total stellar populations, total OB 

population (including obscured members),  spatial gradients in stellar mass and protoplane- 

tary disk distributions, protostellar populations embedded in cloud material around clusters, 

and relationships between hot, warm and cold gases in and around  HII  regions1 . 
 

 
1 In addition to their importance to Galactic star formation studies, our local Sun and Solar System likely 

formed in or near an OB-dominated cluster (Adams  2010; Dauphas  & Chaussidon  2011). A recent analysis 

of the astrophysical origins of the short-lived radionuclides  in Solar System meteorites suggests that the Sun 

formed with  a few hundred  stars  in a molecular  cloud several parsecs from an OB-dominated cluster  with 

� 1200 stars (Gounelle  & Meynet 2012). 



– 6 –  

 

 

1.3.  Outline  of this paper 
 

 

This paper provides an overview of the motivation, data sources, analysis methodology, 

and data products for the MYStIX project.  It is published  simultaneously  with six papers 

that give detailed information and electronic data products for several steps in the project’s 

progress.  These  papers  present:  single-wavelength  analysis  of Chandra X-ray data for 10 

MYStIX  fields (Kuhn  et al. 2013a), UKIRT  near-infrared  (King et al. 2013), and  Spitzer 

(Kuhn et al. 2013b) mid-infrared data; matching between X-ray and infrared sources (Naylor 

et al. 2013); identification of the ‘MYStIX Infrared  Excess Star’ sample (MIRES; Povich et 

al. 2013); classification of X-ray sources and construction of the MYStIX Probable  Complex 

Member sample (MPCM;   Broos et al. 2013).  Additional  Chandra data are presented  by 

Townsley et al. (2013).  Several scientific studies will quickly emerge concerning:  spatial 

clustering of MPCM stars (Kuhn et al., in preparation); a new stellar age estimator and star 

formation histories in MYStIX regions (Getman et al., in preparation); and candidate new 

OB stars in MYStIX  regions (Busk  et al.,  in preparation).   A range  of additional  studies 

addressing the astrophysical issues outlined above are underway  or planned. 
 
 

 
2.  The MYStIX Star-Forming  Complex Sample 

 
2.1.  Sample selection 

 

 

The Chandra X-ray Observatory mission has imaged about three dozen Galactic young 

rich stellar  clusters  and  their  vicinities.   We have  selected  20 of these  with  the following 

criteria:  observed during the first decade of the mission, have nearby distances (d ≤ 4 kpc), 

have young estimated ages (t≤ 5 Myr), and exhibit  rich populations dominated by at least 

one O star.  We further  restrict  the sample to those  with  Chandra exposures of sufficient 

duration to give X-ray limiting sensitivity  log Lx  ≤ 30.0 erg s−1  in the hard 2 − 8 keV band 

at the center of the Chandra field. 
 

Note  that we do not set  a criterion  based  on obscuration  or close association  with  a 

molecular cloud.  Some of our targets are in the Lada & Lada (2003) catalog of nearby 

embedded clusters while others are in the Kharchenko  et al. (2005) catalog of visible OB as- 

sociations.  An obscuration criterion is omitted because the X-ray emission of many (although 

not all) young stars is often hard enough to penetrate through considerable interstellar ma- 

terials,  NH   � 1022  cm−2  hydrogen  column density  equivalent  to tens  of visual magnitudes 

assuming standard gas-to-dust ratio.  NIR and MIR emission from protoplanetary disks can 

also be detected through very high column densities. 
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The MYStIX MSFRs are listed in Table 1 with a number  of basic properties:  common 

names, equatorial and Galactic coordinates, estimated or measured  distance from the Sun, 

and earliest  known spectral  type.  They  are listed  in order of increasing distance  from the 

Sun.  There  is no consistent  nomenclature  for MSFRs;  common names sometimes  refer to 

the star cluster  and sometimes  to the associated  gas as either  a radio HII  region or an Hα 

emission nebula.   We will use the names  given in the first  column of Table  1 in MYStIX 

studies, recognizing that more precise identifiers of cluster and cloud components will often 

be needed.  The final column in Table  1 lists  the major reviews on these  clusters  from the 

Handbook of Star  Forming Regions (HSFR, Reipurth & Schneider 2008). Appendix A gives 

brief summaries  of the MYStIX MSFRs, emphasizing studies published  after these reviews 

were written. 

The distance criterion d ≤ 4 kpc is needed to give sufficient sensitivity  and resolution in 

the X-ray to resolve large numbers of individual stars in each cluster.  This criterion eliminates 

the MSFRs associated with the starburst around the Galactic Center, and also removes the 

most luminous young ‘super star clusters’ in the Galaxy such as Westerlund 1 and NGC 3603 

(see review by Turner  2009).  However, by including mosaics of contiguous Chandra fields 

(each  Chandra exposure  subtends  171  × 171  or "' 10 pc at  d "' 2 kpc),  the sample  does 

include some star forming complexes tens of parsecs across comparable to ‘giant extragalactic 

HII   regions’  seen in nearby  spiral  galaxies.   These  include  the large survey  of the Carina 

Nebula  Complex described  by Townsley et al. (2011a, and  associated  papers),  portions  of 

the W3/W4/W5 complex, and the less well-studied NGC 6334/NGC 6357 complex. 
 

This MYStIX  sample of massive star forming regions is  not formally com- 

plete  in  any way. The sample is spatially restricted to only a few percent of the Galactic 

disk.   But it  is also restricted  by the haphazard process of different  scientists  proposing, 

and different telescope allocation committees approving,  targets to be observed with the 

Chandra X-ray Observatory during the first decade of the mission.  This sample incom- 

pleteness restricts the nature of the scientific inferences we can make.  Relationships between 

cluster properties (e.g., mass segregation vs. cluster central density, disk fraction vs. OB 

population) and classifications (e.g., clouds around  clusters with and without triggered star 

formation, HII  regions with and without hot plasma) can be studied.  But the sample cannot 

be used to count  how many  Galactic  clusters  have high or low values of a given property 

or how many star forming regions fall into a given class.  We can compare the stellar IMF 

within clusters, but we do not learn reliable information about the cluster mass function of 

the Galaxy. 
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2.2.  Star Forming Region Distances  and Ages 
 

 

The distances to rich young clusters and their associated star forming regions have 

historically been difficult measure accurately.  Recently, multi-epoch VLBI astrometric mea- 

surements  of maser  spots  associated  with  high-mass  protostars  (or  for the Orion  Nebula 

region, VLBI measurements  of low-mass non-thermal radio stars) give direct trigonometric 

parallax  distances  for some star forming regions.  In the MYStIX  sample,  accurate  VLBI 

parallactic distances are available for the Orion Nebula, DR 21, M 17, and W 3 (references 

in Table 1).  We assume that the associated star forming complex has the same distance as 

the measured  embedded  star.  We further  assume  that the Flame  Nebula  in the Orion  B 

molecular  cloud lies at the same distance  as the Orion Nebula  in the Orion A cloud, and 

that W 4 lies at the same distance as its adjacent W 3 cloud. 
 

For the other clusters, distances are estimated by a variety of techniques:  fitting of the 

high-mass  main  sequence on the Hertzsprung-Russell  diagram  (HRD),  extinction  maps  of 

background stars, constraints from the X-ray luminosity function, or kinematic fitting of 

molecular cloud radial  velocities.  These estimates  are often subject  to considerable  uncer- 

tainties.  For example, fitting the ZAMS to OB stars may require determination of binarity 

and differential absorption for individual stars.  Cluster stellar memberships are mainly main 

sequence OB stars where the locus in the HRD is nearly vertical so distance is poorly con- 

strained.  For low mass pre-main  sequence stars,  stellar age and distance  are degenerate in 

the HRD. Systematic uncertainties can be larger than internal uncertainties for each distance 

estimation  method.  Tothill  et al. (2008), for example,  describe over a dozen estimates  for 

the Lagoon Nebula with most in the range 1.3 − 1.8 kpc. Cases where the distance appears 

to be obtained with greater accuracy (such as 1.48 kpc for NGC 2362) may simply represent 

fewer efforts to estimate the distance. 
 

MYStIX science results are based on the distances listed in Table 1. Some findings will 

be vulnerable  to distance errors.  Comparisons  of cluster sizes in units  of pc, stellar surface 

densities  in stars pc−2,  X-ray  luminosities  in erg s−1 ,  and  IMFs  could  be systematically 

biased if the estimated distances are incorrect. 
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!

!

Table 1.  MYStIX Young Star-Forming Complexes 
!

!
!

Name 
!

Alt name 
!

Location ! !
!

Distance !
!

Earliest 
!

SFR Handbook 

! ! (α, δ) (l, b) ! kpc Ref. Sp.  Ty. !

(1) (2) (3) (4) ! (5) (6) (7) (8) 

!

Orion Nebula 
!

M 42, NGC 1976 0535.3−05.4 209.0−19.4 !
!

0.414±0.007 
!

1 
!

O7 
!

Muench et al. (2008) 

Flame  Nebula NGC 2024, W 12 0541.7−01.9 206.5−16.4 ! 0.414 · · ·  O8: Meyer et al. (2008) 

W 40 RCW  174, Sh 64 1831.5−02.1 28.8+03.5 ! 0.5 2 late-O Rodney  & Reipurth (2008) 

RCW  36 VMR C 0859.0−43.7 265.1+01.4 ! 0.7±0.2 3 O8 Pettersson (2008) 

NGC 2264 Cone, Fox Fur 0642.0+09.9 203.0+02.2 ! 0.913±0.1 4 O7 Dahm  (2008a) 

Rosette Nebula NGC 2244, W 16 0631.7+05.0 206.3−02.1 ! 1.33±0.05 5 O4 Román-Zúñiga & Lada (2008) 

Lagoon Nebula M 8, NGC 6530 1803.6−24.4 6.0−01.2 ! 1.3+0.5
 6 O4 Tothill et al. (2008) 

NGC 2362 OCl 633 0718.7−24.9 238.2−05.6 ! 1.48 7 O9 I Dahm  (2008b) 

DR 21 W 75 2039.0+42.3 81.7+00.5 ! 1.50±0.08 8 · · ·  Rygl et al. (2012) 

RCW  38 G268.0-01.0 0859.8−47.5 268.0−01.0 ! 1.7±0.9 9 O5 Wolk et al. (2008) 

NGC 6334 Cat’s Paw 1720.0−36.0 351.1+00.7 ! 1.7 10 O8: Persi & Tapia  (2008) 

NGC 6357 Pis 24, W 22 1724.5−34.2 353.0+00.9 ! 1.7 11 O3.5 Persi & Tapia  (2008) 

Eagle Nebula M 16, NGC 6611 1818.8−13.8 17.0+00.8 ! 1.75 12 O9.5 Oliveira (2008) 

M 17 NGC 6618, W 38 1820.8−16.2 15.1−00.7 ! 2.0±0.1 13 O4 Chini & Hoffmeister (2008) 

W 3  IC 1795 0227.0+61.9 133.9+01.1 ! 2.04±0.07 14 O5 Megeath et al. (2008) 

W 4  IC 1805 0232.7+61.5 134.7+00.9 ! 2.04 · · ·  O4 Megeath et al. (2008) 

Carina  Nebula Tr 14/15/16 1044.3−59.9 287.6−00.9 ! 2.3 15 O2, LBV Smith  & Brooks (2008) 

Trifid Nebula M 20, NGC 6514 1802.7−23.0 7.0−00.3 ! 2.7±0.5 16 O7.5 Rho et al. (2008) 

NGC 3576 RCW  57 1111.8−61.3 291.3−00.7 ! 2.8 17 O3-6? · · ·  

NGC 1893 IC 410 0522.8+33.4 173.6−01.7 ! 3.6±0.2 18 O5 · · ·  

!

!

!

Note.  — Distance references:  1. Menten et al. (2007) 2. Shuping et al. (2012) 3. Baba et al. (2004) 4. Baxter et al. (2009) 5. Lombardi 

et al. (2011) 6.  Tothill et al. (2008) 7.  Moitinho  et al. (2001) 8.  Rygl et al. (2012) 9.  Schneider  et al. (2010) 10.  Russeil et al. (2010) 

11. Wang  et al. (2012) 12. Guarcello  et al. (2007) 13. Xu et al. (2011) 14. Hachisuka  et al. (2006) 15. Smith  (2006) 16. Cambrésy et al. 
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!

!

(2011) 17. Figuerêdo et al. (2002) 18. Prisinzano et al. (2011) 
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The situation is even more uncertain when the ages of MSFRs, or their constituent star 

clusters, are considered.  For example, to estimate an age of 1.5 Myr for NGC 2264, Baxter et 

al. (2009) combine fitting pre-main sequence isochrones on the HRD with a revised distance. 

In W 4, Wolff et al. (2011) estimate  an age of 1 − 3 Myr from the HRD of massive stars. 

In cases where spectroscopy  of individual  stars is not available,  cluster ages are sometimes 

estimated  from isochrone fitting to color magnitude  diagrams  (e.g., Prisinzano  et al. 2011, 

for NGC 1893).  However, this  method  can systematically  underestimate  true cluster  ages 

(Naylor 2009). 
!

Nearly all HRD and color-magnitude diagrams of young clusters show an age spread, but 

it is difficult to interpret whether it represents a true range in birth times or a combination of 

other causes such as observational uncertainties, stellar variability,  unresolved binaries, and 

different accretional histories (Baraffe et al. 2009; Reggiani et al. 2011; Jeffries et al. 2011; 

Littlefair et al. 2011).  Even in the Orion Nebula Cluster, which has the best-characterized 

stellar  population  and  distance  of any rich young stellar  cluster,  this  debate  has not been 

resolved, and the problem is worse when comparing other clusters with uncertain distances. 

Finally, some MSFRs are studied nearly exclusively at long wavelengths for very young 

protostars, so that older populations can be missed.  This problem can be alleviated by X- 

ray surveys because the magnetic flaring of pre-main sequence stars is elevated for hundreds 

of millions of years.  For example, an X-ray study revealed populous older clusters lying in 

front  of the NGC  6334 cloud complex that is primarily  known for its  massive protostars 

(Feigelson  et al. 2009), and  Chandra has  revealed  a significant  older,  widely distributed 

older stellar population in the Carina  Complex (Townsley et al. 2011a). 
!

Given these difficulties, until individual stellar components of the MSFRs are studied in 

detail, we do not assign specific ages to each MYStIX star forming region. Many have active 

star formation today  associated  with ages < 0.1 Myr; some have massive supergiants  or a 

truncated upper main sequence indicating ages ≥ 5 − 10 Myr.  Typical ages for most cluster 

members are usually around  1 − 3 Myr.  Three of the MYStIX clusters − NGC 2362, Tr 15 

in Carina,  and the northern cluster of NGC 3576 − are arguably  older with ages ≥ 5 Myr, 

as they  have no associated  molecular  material  and  are missing the more massive O stars, 

likely due to supernova  explosions (Moitinho  et al. 2001; Wang et al. 2011). 
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Table 2.  MYSTIX Datasets 

!
!

Name 
!

Chandra !
!

Near-IR ! !
!

Mid-IR !

! Pointings Publs. ! ! SST ! Publs. 

(1) (2) (3) (4) ! (5) ! (6) 

!

Oriona
 

!

1 (838) 
!

· · ·   a 

!

· · ·   a 
!
!

· · ·   a 

!

38, 39 

Flame 1 (80) 1, 2 2MASS ! archive 38 

W 40b
 1 (40) 3 · · ·   b ! archive 40, 41 

RCW  36 1 (75) · · ·  2MASS ! archive · · ·  

NGC 2264 3 (100+50+60) 4, 5, 6, 7 UKIRT ! archive 42, 43, 44, 45, 46 

Rosette 5 (100+4x20) 8, 9, 10, 11 UKIDSS ! archive 47, 48 

Lagoon 2 (61+180) 12, 13 UKIDSS ! GLIMPSE 49 

NGC 2362 1 (100) 14, 15, 16 UKIRT ! archive 50, 51 

DR 21 1 (100) · · ·  UKIDSS ! archive 52, 53, 54 

RCW  38 1 (100) 17, 18, 19 2MASS ! Vela-Carina 19 

NGC 6334 2 (40+40) 20, 21 UKIRT ! GLIMPSE 55 

NGC 6357 3 (40+40+40) 22 UKIRT ! GLiMPSE 56 

Eagle 3 (80+80+80) 23, 24, 25, 26 UKIDSS ! GLIMPSE 25, 57, 58 

M 17 2 (340+100) 8, 27, 28 UKIDSS ! GLIMPSE 59, 60 

W 3 4 (3x80+50) 29, 30, 31 2MASS ! archive 31, 61, 62 

W 4  1 (80) · · ·  2MASS ! archive 31 

Carinac
 · · ·   c 32, 33, 34 · · ·   c ! Vela-Carina 63, 64, 65, 66, 67 

Trifid 1 (60) 35 UKIDSS ! GLIMPSE 68, 69, 70 

NGC 3576 2 (60+60) 29 2MASS ! archive · · ·  

NGC 1893 1 (446) 36, 37 UKIRT ! archive 33 

!

a Chandra Orion  Ultradeep Pro ject.   X-ray  source list  and  properties  were obtained  from 

Getman  et al.  (2005).    About  22 publications  based  on  the X-ray  sources  are  associated 

with Getman et al. (2005) in the October 2005 Special Issue of the Astrophysical  Journal 

Supplements.   The  near-infrared counterparts  are  based  on deep  VLT/ISAAC  observations. 

Mid-infrared  counterparts are obtained from the Spitzer survey of Megeath et al. (2012). 
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!

bX-ray  source list and properties were obtained from Kuhn et al. (2010).  Near-infrared 

counterparts are based on UKIRT  observations. 
!

cThe Carina observations are obtained from the Chandra Carina Complex Pro ject (Townsley 

et al. 2011a) based on a large mosaic of Chandra images (Broos et al. 2011a), VLT/HAWK-I 

near-infrared images  (Preibisch et al.  2011),  and  Spitzer  IRAC  observations  (Povich  et al. 

2011b).  The MYStIX field of view is restricted to the HAWK-I  survey field; this is shown in 

Figure 5 of Townsley et al. (2011a) and Figure 1 of Preibisch  et al. (2011).  Chandra exposures 

overlap so exposures can vary across a cluster, particularly for Tr 16. 

!

!

Note.  — X-ray publications:  1. Skinner  et al. (2003) 2. Ezoe et al. (2006a) 3. Kuhn  et al. 

(2010) 4.  Ramı́rez et al. (2004) 5.  Sung et al. (2004) 6.  Rebull  et al. (2006) 7.  Flaccomio  et 

al. (2006) 8.  Townsley  et al. (2003) 9.  Wang  et al. (2008) 10.  Wang  et al. (2009) 11.  Wang 

et al. (2010) 12.  Damiani  et al. (2004) 13.  Henderson  & Stassun  (2011) 14.  Delgado  et al. 

(2006) 15. Damiani  et al. (2006) 16. Dahm et al. (2007) 17. Wolk et al. (2002) 18. Wolk et al. 

(2006) 19. Winston et al. (2011) 20. Ezoe et al. (2006b) 21. Feigelson et al. (2009) 22. Wang 

et al. (2007) 23.  Linsky et al. (2007) 24.  Guarcello  et al. (2007) 25.  Guarcello  et al. (2010) 

26. Guarcello  et al. (2012) 27.  Broos et al. (2007) 28. Townsley et al. (2011b) 29.  Hofner et 

al. (2002) 30. Feigelson & Townsley (2008) 31. Roccatagliata et al. (2011) 32. Feigelson et al. 

(2011) 33. Wolk et al. (2011) 34. Wang  et al. (2011) 35. Rho et al. (2004) 36. Caramazza et 

al. (2008) 37. Prisinzano et al. (2011) 

!

Mid-infrared  publications:  38.  Morales-Calderón et al. (2011) 39.  Megeath et al. (2012) 40. 

Gutermuth et al. (2008a) 41. Shuping  et al. (2012) 42. Teixeira  et al. (2006) 43. Young et al. 

(2006) 44. Sung et al. (2009) 45. Teixeira  et al. (2012) 46. Balog et al. (2007) 47. Poulton et 

al. (2008) 48. Kumar  & Anandarao (2010) 49. Dahm  & Hillenbrand (2007) 50. Currie  et al. 

(2009) 51. Marston et al. (2004) 52. Kumar  et al. (2007) 53. Beerer et al. (2010) 54. Brogan 

et al. (2009) 55.  Fang  et al. (2012) 56.  Indebetouw et al. (2007) 57.  Guarcello  et al. (2009) 

58. Povich  et al. (2007) 59. Povich  et al. (2009) 60. Ruch  et al. (2007) 61. Rivera-Ingraham 

et al. (2011) 62.  Tapia  et al. (2006) 63.  Smith  et al. (2010) 64.  Povich  et al. (2011a)  65. 

Povich et al. (2011b) 66. Tapia  et al. (2011) 67. Rho et al. (2006) 68. Lefloch et al. (2008) 69. 

Cambrésy et al. (2011) 
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3.  MYStIX datasets 
!

!

3.1.  Chandra X-ray Data 

!

Table  2 lists  the multiwavelength  datasets used  for the MYStIX  project.    The  first 

columns summarize the archived Chandra observations examined.  ObsIDs (column 2) gives 

the observation  identifiers.   ‘Pointings’  (column  3) indicates  the number  of different  expo- 

sures.  Each exposure subtends 171 × 17 using Chandra’s four-CCD Advanced CCD Imaging 

Spectrometer Imaging Array (ACIS-I, Garmire et al. 2003). The following numbers in paren- 

thesis gives the approximate exposure time in kiloseconds.  For typical Chandra exposures 

of star forming regions around  � 2 kpc, and  applying  the well-established  (though  poorly 

understood) correlation between X-ray luminosity and stellar age for pre-main sequence stars 

(Preibisch  et al. 2005; Telleschi et al. 2007), Chandra’s sensitivity  is sufficient  to capture 

most 1 M0 stars and higher-mass stars with a decreasing fraction of lower mass stars.  We 

thus emphasize that, although  Chandra images typical show hundreds  to thousands of pre- 

main  sequence members,  these  represent  only a small portion  of the full IMF  that peaks 

around  0.3 M0. 

For  seventeen  MYStIX  targets, we reanalyzed  archived  Chandra data using the pro- 

cedures outlined  in §5.1.  Methodology,  X-ray source lists  and images for these  regions are 

presented by Kuhn et al. (2013a) and Townsley et al. (2013). For three MYStIX MSFRs − 

Orion Nebula Cluster, W 40, and the Carina Complex − X-ray analysis at the same level of 

sensitivity  had been carried out by our group (Getman et al. 2005; Kuhn et al. 2010; Broos 

et al. 2011a). In these cases, we used the published  X-ray source lists and stellar properties 

for MYStIX analysis. 
!

Column (4) lists the principal published  studies of the Chandra image of MYStIX star 

forming regions. Most involve the stellar populations, but a few discuss diffuse plasma X-ray 

emission.   Most  of the X-ray  images have  been studied  in the past, some in considerable 

detail.  We reiterate that the role of the MYStIX project is to analyze the full sample with 

the same methodology available today − the most sensitive point source detection techniques 

and careful characterization of diffuse emission. The existing publications are heterogeneous, 

and often not optimal, in X-ray analysis capabilities. 
!

!

!

3.2.  UKIRT and 2MASS Near-Infrared Data 
!

!

A critical component of the MYStIX project is the availability  of JH K imaging of most 

targeted MSFRs with the Wide Field Camera  on the United  Kingdom InfraRed  Telescope 
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(UKIRT). Many of these observations were performed by the United Kingdom Infrared Deep 

Sky Survey Galactic  Plane  Survey (UKIDSS GPS)  surveying  1800 sq.deg.  of the Galactic 

Plane (Lawrence et al. 2007; Lucas et al. 2008). The remaining fields were observed with the 

same camera using UKIDSS procedures.  In regions where crowding is unimportant (such as 

NGC 2264), the UKIRT sensitivity  reaches J"'19.6, H"'18.9 and K"'17.9 at a signal-to-noise 

of 10.  Typical  UKIDSS point  spread  functions  (PSFs)  have 0.811 − 1.011  FWHM  with  0.411
 

pixels.  For finding counterparts of Chandra sources in MYStIX fields, spatial resolution is 

often  more important than photometric  depth, both to resolve crowded stellar  fields and 

to reduce the effect of spatially variable nebular  emission in HII  regions associated with the 

clusters. 
!

For MYStIX targets inaccessible to UKIRT,  and for brighter stars that are saturated in 

UKIRT  images, we obtained JH K  photometry  from the Point Source Catalog of the Two 

Micron All Sky Survey (2MASS PSC)  obtained  with dedicated  1.3m telescopes  (Skrutskie 

2006). 2MASS sensitivity  limits are approximately J "' 15.8, H "' 15.1, and Ks  "' 14.3. For 

the more distant MYStIX targets, the 2MASS PSC is inadequate for identifying young stellar 

counterparts to Chandra sources both due to limited sensitivity and spatial resolution.  With 

211  pixels, 2MASS source blending difficulties start around  611 − 811  separations (Cutri 2006, 

§4b).  However, for the nearer MYStIX star forming regions (hence with brighter and more 

widely separated pre-main sequence members),  2MASS has fewer difficulties. 
!

The near-infrared  coverage of the Chandra MYStIX  targets is listed  in column (5) in 

Table 2. This can be summarized as follows: eleven star forming regions have corresponding 

UKIDSS or UKIRT  observations,  three  have published  near-infrared  counterparts  to high- 

quality  X-ray source lists, and six have 2MASS survey coverage.  The UKIRT  observations 

are presented in detail by King et al. (2013). 
!

!

!

3.3.  Mid-Infrared Data 

!

The Infrared Array Camera (IRAC) on the Spitzer Space T elescope provides wide-field 

imaging in four MIR bands:  3.6µm, 4.5µm, 5.6µm and 8.0µ (Fazio et al. 2004). At the shorter 

wavelengths, blackbody photospheres of even fainter cluster members are readily seen at the 

distances of MYStIX star forming complexes. At the longer wavelengths, dust emission from 

protoplanetary disks dominate.  Used by itself, IRAC data provide samples of disk-dominated 

young stars if unrelated Galactic field stars can be removed.  Used in conjunction with X-ray 

selection,  IRAC  complements  UKIRT  in providing  stellar  counterparts  to X-ray  emitting 

young stars.  The MYStIX approach  analyses spectral energy distributions (SEDs) with the 

seven bands combined from UKIRT  and IRAC to identify young disk-bearing stars (Povich 
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!

et al. 2013). 
!

All of the MYStIX star forming complex targets have Spitzer IRAC coverage (last col- 

umn of Table 2). Five are only covered by the short-exposure Galactic Legacy Infrared Mid- 

Plane  Survey Extraordinaire (GLIMPSE)  project (Benjamin  et al. 2003).  Ten have deeper 

archived observations that we analyze as part of the MYStIX effort.  For the Carina complex, 

we take infrared results published by the Chandra Carina Complex Project (Townsley et al. 

2011a; Povich et al. 2011b; Preibisch  et al. 2011). For RCW 38 and NGC 3576, the data are 

obtained from the Vela-Carina  survey (Majewski, PI). 
!

!

!

4.    Two Prototype MYStIX Star-Forming  Regions: NGC 2264  and the Trifid 

Nebula 
!

!

To illustrate the methodology and scientific potential of the MYStIX project, we focus 

on two MYStIX  star forming complexes that exemplify range of challenges encountered  in 

this effort.  The presentation here concentrates on the identification of stellar members of the 

MSFRs, a sample we call ‘MYStIX Probable  Complex Members’ (MPCMs).   The MYStIX 

project also involves mapping  of diffuse X-ray emission, and comparing it to maps of cloud 

gas and dust. This aspect is not discussed here for the prototype MSFRs. 
!

NGC 2264 is relatively nearby  with bright cluster members and it lies in a region with 

low field star contamination.   Its pre-main  sequence stellar  membership  has been studied 

for decades in the visible band.   However, the stars are not concentrated  into  a single rich 

cluster,  and  the region is dominated  by late-O  and  early  B stars that produce  relatively 

weak nebular  HII   regions.   The  Trifid  Nebula  is more distant and  lies in a very crowded 

region of the Galactic  Plane  at longitude  7◦.  It has a centrally  concentrated  main cluster 

dominated  by an O6 star that ionizes a very bright  HII  region nebular  emission.  Its pre- 

main sequence membership  is poorly established  with  no study  in the visible band.   Both 

NGC 2264 and Trifid have both revealed young stars and active star formation in molecular 

clouds;  a  wide range  of absorptions  is thus present.    The  NGC  2264 and  Trifid  regions 

are briefly reviewed in §A.5 and §A.18, respectively.  This section is limited to a qualitative 

examination of multiwavelength images of the prototype clusters before quantitative MYStIX 

analysis  has taken  place.  The  following section  (§5) traces  the MYStIX  data and  science 

analysis procedures to show the results of the MYStIX analysis for these prototype MYStIX 

MSFRs (§6). 
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4.1.  NGC  2264 
!

!

Figure  1 shows the NGC  2264 region at X-ray  (Chandra), near-infrared  (UKIDSS), 

mid-infrared (Spitzer) and visible (Digital Sky Survey) wavelengths.  (Note that we consider 

visible light  images in this  section  although  they  are  not included  in MYStIX  analysis.) 

The polygon outlines the Chandra mosaic that constitutes the field of MYStIX study.  The 

images have qualitatively  different  characteristics.   The  visible image shows stars,  but the 

population is severely limited by obscuring dust clouds and, to a lesser degree, by Hα neb- 

ulosity.  The near-infrared  image penetrates deeper and gives a more reliable stellar census; 

both obscuration and nebulosity  (mostly Brγ  emission) are reduced.  The mid-infrared  im- 

age shows many  of these  stars plus others  in heavily  obscured  cloud cores but it  is more 

severely affected  by bright  nebulosity,  mostly  from emission bands  of polycyclic aromatic 

hydrocarbons,  and  by saturation of the brightest  infrared  protostars.  In all of the optical 

and infrared images, the large majority  of stars are Galactic field stars distributed through- 

out the image, giving a challenge to selection  of recently  formed stars.   The  X-ray  image 

has no immediately evident  emission nebulosity  (the diffuse orange structures  Figure 1 are 

due to the detector background),  and the sources are a combination of cluster members and 

background  extragalactic  sources.  Comparison  with  the infrared  images shows that X-ray 

detections  are  common  even  among  cluster  members  with  moderately  heavy  absorption. 

With  many fewer contaminants,  the X-ray image list  gives a more direct  indication  of the 

young stellar population and structure than the infrared images. 
!

A closer examination of some distinctive locations gives further insight into the contri- 

butions and limitations of each waveband. 

!

1. In the northern  ACIS field, the V   = 4.6 O7 main  sequence star S Mon lies on the 

edge of a small (� 3011  � 0.1 pc) clump of pre-main sequence stars seen in X-rays and 

infrared.  These lower mass members are invisible in standard visible light images due 

to the wings of the O star PSF. 

2. The  bright  ‘Fox Fur  Nebula’  LBN 912 � 101  southwest  of S Mon has an amorphous 

morphology  in visible Hα  images,  but appears  as a prominent  incomplete  shell-like 

H II  region in the Spitzer image. Associated with a small molecular cloud (Teixeira  et 

al. 2012), it is likely illuminated by the off-center B1 star BD +09◦1331B, an isolated 

massive star without an associated concentration of X-ray emitting pre-main sequence 

stars. 
!

3. The embedded  massive star IRS 2 lies near the top of the southern ACIS field lies in 

curved and elongated stellar  structure � 21  long with several dozen members seen in 

both infrared and X-rays.  Each band has advantages and deficiencies. The mid-infrared 
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shows very heavily absorbed  faint  stars but is insensitive  in the inner  � 3011  due to 

bright dust emission around IRS 2. The near-infrared  image shows the central object is 

a visual binary with separation � 211  and sees some of the associated young stars.  The 

X-rays from the massive member is relatively weak (as is typical for intermediate-mass 

A and  B stars) but X-ray  selection  here does not add  significantly  to the youngest 

embedded  populations. 
!

4. The  IRS 1 region above the Cone Nebula  is the most  crowded portion  of the X-ray 

image. As with the IRS 2 region, the cluster has an irregular structure without a central 

concentration, extending � 101  to the south.  IRS 1 itself is not detected in X-rays, but 

a number  of closeby X-ray stars are masked by diffuse emission and saturation in the 

infrared images. 
!

5. The  V  = 7.2 B2 III star HD 47887, famous as the bright  star 21  north of the bright 

tip of the Cone Nebula, is a weak X-ray source with several X-ray pre-main sequence 

in its immediate  vicinity.  The two optical stars superposed  on the ionized portion of 

Cone Nebula are brightly detected in X-rays. 
!

!

!

4.2.  Trifid Nebula 
!

!

Figure  2 shows a four-band  view of the Trifid  Nebula  MYStIX  field, delineated  by a 

single Chandra ACIS pointing (upper left panel).  Here the OB stars produce a high-surface 

brightness HII region nebular emission that prevents detection of the lower mass population in 

the visible band (lower right panel).  The near-infrared  image has much reduced nebulosity, 

but the dense  stellar  pattern is nearly  uniform  across  the field (lower  left  panel).    This 

indicates that the vast majority of UKIDSS stars are Galactic field stars unrelated to the star 

forming regions because the Trifid, lying in a nearby Galactic spiral arm, is projected against 

the Galactic  Center  region.  The  mid-infrared  image (upper  right  panel)  shows nebulosity 

from heated dust (mostly PAH bands),  and a moderately rich stellar field that is also nearly 

uniform.   Thus,  superficial examination  of all long-wavelength  images does not reveal the 

young stellar cluster. 
!

!

1. Near the top of the Chandra field of view, the Spitzer image shows a north-facing 

bright rimmed cloud. Nearly 50 X-ray luminous stars lie above this cloud; more would 

likely be resolved if the region were on-axis.  The  brightest  is the intermediate-mass 

(K  = 8.0) Class II young  star 2MASS J18025044-2247501  (Rho  et al. 2008).  This 

loose collection  of young stars has not previously been recognized as a young stellar 

subcluster. 
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2. The northern component of the Trifid Nebula, characterized by a large reflection nebula 

of blue light  in the visible image (Figure  2, lower right), is illuminated  by the A7 I 

supergiant HD 164514. It is isolated without an associated cluster of infrared or X-ray 

emitting lower mass stars. 
!

3. The main (southern) ionized component of the Nebula is ionized by the double O6 star 

HD 164492 lying near the intersection of the three dark dust lanes.  The X-ray image 

reveals a moderately rich cluster distributed asymmetrically � 51  east and north of the 

dominant star (Rho et al. 2004). 
!

4. Infrared-excess  protostars  are concentrated  in dense cloud cores, particularly  to the 

south of the emission nebula (Rho et al. 2008). 
!

!

!

!

!

5.  MYStIX Data  Analysis Methodology 
!

!

Figure 3 shows a diagram of the principal data analysis tasks involved in MYStIX anal- 

ysis. We briefly describe these methods in the following subsections.  Details and electronic 

source lists are given in accompanying  MYStIX papers on the Chandra X-ray observations 

(Kuhn  et al. 2013a; Townsley et al. 2013), UKIRT  near-infrared  observations  (King et al. 

2013), Spitzer mid-infrared observations (Kuhn et al. 2013b), X-ray/infrared source match- 

ing (Naylor et al. 2013), infrared excess determination (Povich et al. 2013), and MSFR 

membership classification (Broos et al. 2013). We illustrate the application of these methods 

on the prototype clusters, NGC 2264 and Trifid. 
!

!

!

5.1.  X-ray analysis 
!

!

MYStIX  analysis  of the archived  Chandra data is based  on the ACIS Extract  (AE) 

package and associated recipes developed by the ACIS Instrument Team at Penn State since 

2002.  Written in the Interactive  Data  Language, AE is described  in detail  by Broos et al. 

(2010).  The  procedure  has a variety  of advantages  over standard Chandra data analysis 

tools.  Source candidates  are found a local bumps  in a maximum  likelihood reconstruction 

of the image using local PSFs;  this  method  is more sensitive  and  reliable than commonly 

used procedures  based  on the wavelet  transform  (Townsley  et al. 2006).  The  final source 

list  is constructed  iteratively  in the original image of photon  events  based on a statistical 

significance level that a source exists above a local Poisson background.  The use of a local 

(rather than global) detection criterion allows consistent detection when the background rate 
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!

!

!

!

 

!

Fig.   3.— Flow diagram  for analysis  of MYStIX  clusters.   The  top portion  outlines  the 

analysis of the data in each waveband:  X-ray, near-infrared,  and mid-infrared.  The bottom 

portion outlines the combination of multiwavelength sources to produce a probabilistic list of 

cluster members.  Shaded boxes represent electronic source tables provided in accompanying 

MYStIX papers. 
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varies due to overlapping  exposures and/or diffuse astrophysical  emission.  Source photons 

are then extracted  using accurate  models of the telescope  PSF.  The  X-ray photometry  of 

faint sources are estimated nonparametrically using the source counts and median energy 

following procedures described by Getman et al. (2010). Diffuse X-ray emission is analyzed 

by extracting and smoothing source-free regions of the image, and then proceeding with 

parametric spectral analysis following procedures described by Townsley et al. (2011b). The 

MYStIX  analysis is similar the analysis of the Chandra Carina  Complex Project  (CCCP) 

with a few enhancements.  Figure 4 shows unsmoothed X-ray images and source extraction 

regions for portions of the NGC 2264 and Trifid fields. 

!

 
!

!

Fig.  4.— Example  of Chandra images illustrating challenges in MYStIX source detection. 

Left:  Northern  portion  of the NGC  2264 ACIS mosaic.   Green  polygons show the ACIS 

Extract source extraction regions, magenta circles are sources found by Ramı́rez et al. (2004), 

and cyan circles are two additional  sources found by Sung et al. (2004). Right: Dense source 

concentration in the Trifid Nebula. 

!

The  MYStIX  source detection  procedures  are considerably  more sensitive  than some 

other  commonly  used  analysis  procedures  for ACIS data, partly due  to lower source ex- 

istence thresholds and partly due to improved treatment of local background  levels and 

crowded source regions. This increase in sensitivity  is important for MYStIX star formation 

region memberships  because the X-ray luminosity  function of pre-main sequence stars rises 

rapidly  from the high  luminosity  limit  around  log Lx   � 32 erg s−1   to 30.0 ergs s−1 , the 

typical sensitivity  limit of a MYStIX exposure (see Figure 9 of Wang et al. 2008). Thus  an 
improvement of a factor of 2 in faint source sensitivity  can give a factor of 2 − 3 more cluster 

member  detections.   This  was a central  motivation  for the reanalysis  of archival  Chandra 



– 25 –  !

!

!

cluster data. 
!

The  sensitivity  of our source detection  method  is illustrated  in Figure  4, (left  panel) 
where MYStIX finds two faint isolated sources (� 5 photons) and resolve two close doubles 

(separation 1.0 − 1.511) missed by earlier researchers.  In this ACIS exposure, the Chandra 

Source Catalog lists  239 sources, Ramı́rez  et al. (2004) found 263 sources, and Sung et al. 

(2004) found 271.  The  MYStIX  analysis,  in contrast,  locates  450 sources in this  pointing. 

One can also see that the PSF  centroiding  method  in ACIS Extract  sometimes  gives more 

accurate source positions than wavelet positions. 
!

The MYStIX X-ray analysis procedures,  and resulting  X-ray source lists,  are given by 

Kuhn et al. (2013a) and Townsley et al. (2013). 
!

!

!

!

5.2.  Near-Infrared Analysis 
!

!

The UKIRT Wide Field Camera (WFCAM,  Casali et al. 2007) performs wide-field sur- 

veys in the JH K  bands.  MYStIX uses data from both the UKIDSS Galactic Plane  Survey 

(Lawrence et al. 2007) and independent  WFCAM  observations.  MYStIX analysis is based 

on procedures  developed for UKIDSS (Hodgkin et al. 2009) modified for the crowding and 

nebulosity  typically found in MSFRs.  For example, source extraction is made with smaller 

apertures.  Photometry for bright saturated stars is replaced with 2MASS photometry.  The 

combination of UKIRT catalog with 2MASS photometry for bright stars results in the MYS- 

tIX NIR catalog. 
!

Figure 5 (left panel)  shows a small portion of the UKIDSS K -band  image around  the 

bright  stars ionizing the Trifid  Nebula.   Visual  examination  of the MYStIX  star catalog 

shows it  is highly sensitive  and  reliable  for finding well-separated  stellar  sources.   But in 

high star density  (low Galactic longitude)  and high nebulosity  regions, a number  of errors 

are seen.  False positives can appear  as spurious sources in saturated PSFs  of bright stars, 

near intermediate brightness stars (yellow arrow in Figure 5), in regions of bright emission 

nebulosity,  and  along sharp  gradients  in nebular  emission (cyan  arrows).   False  negatives 

include  some missed stars �111  from stars (red  arrows  and  cyan  X), missed faint  stars in 

dense obscuring clouds with  rapid  surface brightness  gradients,  and  missed stars in bright 

filamentary nebulosity.  The orange arrows show detector effects which do not trigger source 

detection by our algorithm.  In the most crowded fields, these problems are a few percent of 

the UKIDSS sample.  The catalog has not been cleaned or altered  to treat these  problems 

except  in the vicinity  of X-ray  sources.   Solin et al. (2012) give a detailed  description  of 

the challenges and successes of locating young stellar clusters from UKIDSS Galactic Plane 
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False sources are seen in the PSFs of bright sources (red circles with black arrows) and occa- 

sionally in diffuse patches (cyan arrow).  The algorithm  misses some faint sources appearing 

mostly  in the 3.6 µm band  (green  arrows).   We provide  a second catalog  based  on more 

sensitive source detection settings that captures many of these faint sources; however, these 

settings also give rise to increased false positive sources. 
!

Overall, the MIR source detection algorithm appears to be effective with good sensitivity 

and few false positives even in regions of spatially variable nebular  emission. Of course, the 

sensitivity  to faint stars is unavoidably  greatly reduced in the close vicinity of the brightest 

infrared sources such as IRS 1 in NGC 2264. The MYStIX procedures are comparable in 

sensitivity  to the GLIMPSE analysis procedure with very similar photometry.  Comparing to 

the MYStIX mid-infrared  catalog to that obtained by Sung et al. (2009) for the same NGC 

2264 dataset shows our catalog includes 96% of their sources and has 21% additional  faint 

sources. 
!

A full description of the mid-infrared  analysis and source lists for the MYStIX project 

is given in the accompanying  paper by Kuhn et al. (2013b). 
!

!

!

5.4.  X-ray/Infrared  Source Matching 

!

The  matching  of X-ray to infrared  source catalogs is particularly  tricky  for the MYS- 

tIX project.  First, the positional uncertainties of Chandra sources are ‘heteroscedastic’, 

depending  on location  in the field and  count  rate.  Uncertainties  can  range  from � 0.211
 

on-axis to � 511  far off-axis.  The  infrared  positional  uncertainties  are constant  across the 

field, though they can increase for fainter sources.  Second, Spitzer images have lower reso- 

lution than UKIDSS or Chandra on-axis images, so unique one-to-one correspondences with 

mid-infrared  sources may not be possible in crowded regions. 
!

Third,  and most important, is the frequent dominance of Galactic field stars over MSFR 

members.   For uncrowded  MYStIX  complexes like NGC 2264, the Galactic  field star con- 

tamination is not heavy and a straightforward positional matching based on these positional 

uncertainties can give reliable X-ray/infrared counterparts.  But for distant clusters, partic- 

ularly those projected near the Galactic Center like the Trifid, 90 − 99% of stars may be field 

stars.  A single Chandra or Spitzer source can have multiple  UKIDSS counterparts so that 

false matches to foreground or background  stars become common.  This effect is illustrated 

in Figure 6 (left panel). 
!

We thus develop a statistical matching algorithm  that accounts for the heteroscedastic 

measurement errors and introduces a weighting that favors matches to UKIRT  stars having 
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magnitudes  characteristics of the young stellar population under consideration in each field. 

This method is based on the work of Sutherland & Saunders  (1992).  It is used in MYStIX 

for both Chandra-UKIRT and Chandra-Spitzer matching.  Figure 6 (right panel) shows the 

result  of its application  to the crowded Trifid Nebula  region; if the infrared  source closest 

to an X-ray source is faint,  it may be rejected  as the true counterpart  in favor of a more 

distant, but brighter, source. Naylor et al. (2013) fully describe the method and provide lists 

of infrared matches to MYStIX X-ray sources. 
!

!

!

5.5.  Infrared Excess Sources 
!

!

Populations of young stars in clusters and star forming regions have long been obtained 

by detecting photometric infrared excesses from dusty protoplanetary disks orbiting pre-main 

sequence stars.  Young stellar objects have traditionally been identified either in polygonal re- 

gions of infrared color-color diagrams (e.g., Grasdalen et al. 1973; Lada & Adams 1992; Allen 

et al. 2004) or by fitting star-plus-disk models to infrared spectral energy distribution (e.g., 

Robitaille  et al. 2007). Unfortunately, for the more challenging MYStIX clusters that have 

bright,  spatially  variable  nebulosity  and  many  thousands  of Galactic  field stars unrelated 

to the star forming region, straightforward  application  of established  infrared  excess crite- 

ria give samples that are clearly dominated  by non-cluster  members.  Problems  arise from 

contributions of dusty galaxies seen through the Galactic Plane,  dusty post-main sequence 

asymptotic giant branch (AGB) stars, faulty photometry from nebular knots incorrectly 

identified as stars, and from incorrect matching of near- and mid-infrared stars.  As a result, 

the MYStIX  procedures  involve a number  of additional  criteria  to reduce contaminants  at 

the expense of completeness. 
!

Sources in the UKIRT (§5.2) and Spitzer(§5.3) catalogs are first merged using a simple 

proximity  rule (not the the magnitude-weighted  matching  outlined  in §5.4).  Seven photo- 

metric  values constitute  the spectral  energy distribution  (SED)  are typically  available  for 

each infrared sources in the MYStIX fields (J , H , K , 3.6 µm, 4.5 µm, 5.6 µm, and 8.0 µm 

bands).    A range  of star-plus-disk  models are  fit  to these  SEDs  using  by  weighted  least 

squares regression following the procedures of Robitaille  et al. (2007) after systematic pho- 

tometric errors are added to the measurement errors.  Spectral energy distributions for three 

of the 282 X-ray selected  IR excess in NGC 2264 are shown in Figure  7 to illustrate  the 

results of this analysis.  Stars with a number of characteristics are omitted to reduce contam- 

inants.  These include sources in the IRAC color-magnitude  diagram  consistent  with dusty 

galaxies; inadequate signal-to-noise in a sufficient number  of spectral bands; and unphysical 

structure in the SED (usually  associated with PAH nebular  contamination).  We designate 
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the resulting sample culled of these problematic SEDs as ‘MYStIX InfraRed Excess Sources’ 

(MIRES). 
!

The  MIRES  sample  is still  often  dominated  by unclustered  sources unrelated  to the 

star forming region. The surface density of remaining infrared-excess sources away from the 

known clusters is measured and assumed to represent remaining contamination by AGB stars 

and galaxies. A probability  of cluster membership is then calculated for each source based on 

the local surface density of infrared-excess objects, and only sources above some probability 

threshold  are flagged as probable  cluster  members (§5.7).  The infrared-excess sample that 

enters the MPCM catalog is thus biased towards clustered groups of infrared-excess sources, 

and is less sensitive to widely dispersed populations. 
!

A full description  of the infrared  excess analysis  with  tabulated MIRES  source lists 

is given in the accompanying  paper by Povich et al. (2013).  For many MYStIX fields, this 

analysis is performed over a wider field of view than covered by the Chandra exposures.  The 

MIRES sample thus has infrared excess stars that are not included in the MPCM sample. 
!

!

!

5.6.  Published OB  Stars 

!

The catalog of cluster members includes all stars in the MYStIX fields of view that are 

identified as OB stars by optical spectroscopy.  We obtain these stars by combining stars listed 

in two collations of the astronomical literature:  the catalog of stellar spectral classifications 

by  Skiff (2010) and  the SIMBAD  astronomical  database2 .   Stars  with  spectral  types  B3 

through O2 are included.  More modern types are used when discrepant classifications are 

present in the historical literature. 
!

As historical positions of OB stars often do not have the subarcsecond accuracy needed 

for MYStIX  analysis,  we use positions from our near-infrared  catalog.  Historical positions 

are matched  to JH K  band  catalogs, and a prominent near-infrared  star is typically  found 

within  � 111.  As these  stars are bright  in the near-infrared,  positions  and  magnitudes  are 

typically obtained from the 2MASS catalog rather than from UKIRT  data where the image 

and photometry can be badly saturated. But the low resolution of the 2MASS telescope can 

be confused by the crowded environment and/or binary components of high-mass systems. 
!

The association of X-ray sources to published OB stars presents several particular prob- 

lems. It is not uncommon for two or more X-ray stars to lie within the 2MASS point spread 

function  of massive stars (see for example,  the O5 star HD 46150 in Rosette;  Wang  et al. 
!

!

2 http://simbad.u-strasbg.fr/simbad 
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2008).  To mitigate  these  problems,  X-ray sources close to published  OB stars were exam- 

ined in the Chandra and UKIRT  images, and the literature of the OB stars was studied for 

reliability  of the spectral classification.  A number  of associations that were not obtained by 

the automated system were added.  Results  from these examinations of OB stars are given 

the footnotes of the MPCM lists given by Broos et al. (2013). 
!

!

!

5.7.  Statistical  Classification  of ‘MYStIX Probable Complex Members’ 
!

!

Although the X-ray and infrared-excess source populations of MYStIX fields show clear 

concentrations  of stellar  clusters,  it is not trivial  to reliably associate  an individual  source 

with the young stellar population.  In simpler single-waveband situations, straightforward 

decision trees can be effectively used, such as ‘Disk-bearing young stars can be discriminated 

from disk-free stars by Spitzer IRAC colors [3.6]-[4.5[≥0.0 and [5.8]-[8.0]≥0.4’ or ‘An X-ray 

source exhibiting  a strong variations on timescales  of hours is a magnetically  active  young 

star’.  Our  multiwavelength  study  not only needs to combine criteria  such as these,  but it 

needs to reduce large contaminating populations of Galactic field stars. 
!

To address  this challenge in classifying MYStIX sources, we build upon the statistical 

classifier for X-ray sources developed by Broos et al. (2011b) for the Chandra Carina  Com- 

plex Project (CCCP). Based on ‘naive Bayes classifiers’, the probability  that an X-ray source 

lies in a chosen class is treated as the product of independent probabilities  associated with 

different properties (J band magnitude,  mid-infrared  colors, X-ray hardness and variability, 

and so forth).  The method  requires prior knowledge of the properties  from ‘training  sets’, 

giving in advance  the probability  distribution of each property for each class of target and 

contaminants.  The construction of training sets for both young stars and contaminant popu- 

lations for the CCCP is presented by Getman et al. (2011) and further refined in Broos et al. 

(2013). The probability  that an X-ray source is classified as a young star is increased when 

it lies in a localized spatial concentration of X-ray sources. This is based on the premise that 

contaminant populations (both stellar and extragalactic) will be roughly spatially uniform. 

Table 3 lists the four classes and eight properties used in the MYStIX classifier. 
!

Five data products flow into the classifier (see also the bottom panel of Figure 3): the X- 

ray source catalog (§5.1); the catalog of infrared-excess stars, including both X-ray selected 

stars and the full infrared  catalogs  (§5.5); the catalog of published  O and early-B stars in 

the MYStIX field (§5.6); spatial maps of expected young star and contaminant distributions; 

and the class likelihood functions of the properties in Table 3 for each class based on training 

sets or simulations.  Figure 8 illustrates this with distributions J magnitudes  of X-ray source 

counterparts, one of the principal discriminators in the classifier. 
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Table 3.  MYSTIX Source Classification 
!

!

!

!

!

Classes of ob jects 

H1             Foreground Galactic  stars 

H2             MYStIX cluster members 

H3             Background  Galactic stars 

H4             Galaxies  and active galactic nuclei 

Source properties 

X-ray         J magnitude 

sources      X-ray median  energya
 

X-ray variabilityb
 

X-ray source density  mapc
 

Infrared     [4.5] magnituded
 

sources      SED infrared  excesse
 

MIR source density mapc
 

Optical     Spectroscopic OB star 
!

!

aThis  measures  line-of-sight absorption. 
!

bThis  indicates magnetic flaring. 
!

c This indicates spatial clustering. 
!

dThis discriminates extragalactic sources that 

are always faint. 
!

e This indicates warm circumstellar dust. 
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After the ‘naive Bayes’ product of class probabilities  is computed for each X-ray source, 

a decision rule is applied to define when the probability  of MSFR membership  exceeds the 

probability  of a contaminant  population.   We also indicate  when an  X-ray  source has  so 

little associated information that no classification is feasible.  Many of the fainter members 

of rich clusters are seen only at one or another band, and thus do not have multiwavelength 

confirmation of membership.  Most contaminants are ‘unclassified’. 
!

X-ray sources satisfying these classification criteria  are combined with infrared sources 

with SEDs satisfying the criteria  for dusty disks (§5.5) and spectroscopic OB stars (§5.6) to 

constitute the final list of MPCMs. 
!

The  full description  of the MYStIX  source classifier and  other  elements  entering  the 

MPCM sample construction is given in the accompanying paper by Broos et al. (2013). The 

resulting MPCM samples seem effective in most respects, giving large populations of highly 

clustered stars, often with X-ray emitting stars dominating rich clusters and infrared-excess 

stars distributed  in the molecular  cloud around  the main  clusters.   Spatially  uniform  star 

distributions that may be highly contaminated with non-MSFR populations have low surface 

densities. 
!

!

!

6.  Results of MYStIX Analysis of the Prototype Star Forming Complexes 
!

!

Table 4 and Figure 9 summarize the results at several stages of the MYStIX analysis for 

the prototype NGC 2264 and Trifid Nebula targets. Tabulations similar to Table  4 for the 

full MYStIX MSFR sample are given by Broos et al. (2013); an abbreviated version is shown 

in Table  5 here.  The  Chandra populations  are generally in the range 500 − 3000 sources 

for each MYStIX target. While we see here that the NGC 2264 field has roughly twice the 

X-ray population  of the Trifid Nebula  (line 1 of Table  4), this  is largely a function  of the 

closer distance, deeper exposures, and multiple pointings of NGC 2264 (Table 2) rather than 

an assertion that NGC 2264 intrinsically  has twice  the number  of MPCM  members as the 

Trifid.  Similarly, the finding that NGC 2264 has seven published OB stars compared to only 

two in Trifid (line 4) similarly may not reflect the underlying  populations; it is particularly 

difficult to locate blue stars in the Trifid region where the nebular emission and obscuration 

are strong and spatially complex.  The MYStIX project will provide new lists of candidate 

OB stars from its MPCM catalogs (Busk et al., in preparation).  Careful evaluation of 

sensitivity  limits (which vary across the field due both to intra-pointing degradation of the 

PSF  and  to inter-pointing  exposure  differences) is needed  before total stellar  populations 

can be estimated from MPCM samples. 
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The NIR source population in the Chandra field of view (line 2) is � 7 times  higher, 

and  the MIR  population  (line  3)  is �  2.5 times  higher,  in  the Trifid  Nebula  compared 

to NGC 2264 despite  the smaller field of view of the Trifid.  This illustrates  the enormous 

contamination by Galactic field stars in MYStIX fields at low Galactic longitudes:  sometimes 

>99% of the infrared stars have no relation to the star formation region under study.  This 

problem has inhibited infrared-only studies of stellar populations in many rich star formation 

regions.  The  majority  of X-ray sources (� 60%) have stellar  matches  in either  or both of 

the NIR and MIR catalogs (lines 5 − 7 of Table  4).  The top panels of Figure 9 give more 

details on the X-ray matching results.  In NGC 2264, the UKIRT and Spitzer surveys provide 

nearly identical matches:  �95% of the near-infrared matches have mid-infrared counterparts, 

and vice versa.  The availability  of infrared  photometry for most X-ray sources allows SED 

analysis  showing that only � 10 − 20% of X-ray sources have infrared  excesses (line 8 of 

Table  4).  This  confirms the long-standing  experience (see review by Feigelson 2010) that 

Chandra is most effective at locating Class III disk-free pre-main sequence stars.  It is clear 

that young star samples based only on infrared excesses often miss the majority of the young 

stellar populations in these fields. 
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Table 4.  Source Populations in Prototype MYSTIX Fieldsa
 

!

!

Line  Population NGC 2264 Trifid 

!

Single-wavelength  results 

1 C handra X-ray sources ‘ 1,328 633 

2 UKIDSS/2MASS NIR sources 11,865 76,251 

3 Spitzer MIR sources 10,284 26,020 

4 Published OB stars 7 2 

!

Multi-wavelength  results 

5 X-ray/NIR matches b
 753 355 

6 X-ray/MIR matches b
 769 240 

7 X-ray/(NIR or MIR) matches b
 799 364 

8 MIRESc
 556 174 

! X-ray detected 282 60 

! X-ray undetected 274 114 
!

!

!

9 

!

!

Classification  results 

X-ray foreground  starsd
 

!

!

!

0 

!

!

!

3 

10 X-ray background starsd
 0 10 

11 X-ray extragalactic objectsd
 126 38 

12 X-ray young starsd
 898 418 

13 X-ray unclassifiedd
 304 164 

14 MPCMse
 1173 532 

!

a Spatially restricted to X-ray field of view 
!

bCounterpart  probability >0.80 using  the  magnitude- 

weighted proximity procedure  (Naylor  et al. 2013) 
!

c MIRES  = MYStIX  InfraRed  Excess Sources (Povich  et al. 

2013) 
!

dIncludes  X-ray sources only 
!

e MPCM  = MYStIX  Probable Complex  Member,  including 

classified X-ray sources, infrared  SED excess sources, and spec- 
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Fig.  6.— Results  from two methods  for matching  C handra X-ray sources with  UKIDSS stars in 

the  crowded Trifid Nebula  field.  Left:  Proximity-only matching (Broos et al. 2010).  The abscissa 

gives the radius allowed for matches,  viewed as a probability associated  with the X-ray error circle; 

smaller radii are towards the right.  The ordinate gives the number  of X-ray sources matched.  The 

black  curve  shows the increase  in  matches  as the radius  allowed  for matches  increases  towards 

the  left.   The  associated  changes  of several  types  of matching  errors  are  shown.   Right:  K -band 

magnitude  weighted  matching  (Naylor  et al.  2013).   The  abscissa  is the offset  distance  between 

the X-ray and  infrared  sources scaled to the X-ray error  circle radius.  Open circles represents  the 

nearest UKIDSS counterpart to each X-ray source.  Red, blue and black circles are cases where the 

probability  of being a true counterpart is >99%,  90%-99%, and  67%-90%, respectively,  based  on 

a weighting  using the counterpart’s K  magnitude.  Unfilled circles are rejected  as counterparts in 

favor of brighter counterparts with wider separation from the X-ray position.  The vertical dashed 

lines represent the 90%, 95% and 99% confidence regions based on the X-ray positions without 

consideration of K  magnitudes. 
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Fig.  7.— Three  examples of X-ray sources with infrared  excess from SED modeling in the 

NGC  2264 region:  (a)  previously  studied  T  Tauri  star; (b)  previously  identified  Class  I 

protostar;  and  (c)  previously  uncatalogued  star with  a  weak infrared  excess.   The  solid 

curves show the best-fit SED model and the dashed curves show the dereddened photospheric 

contribution from the best-fit star-plus-disk model. 
!
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Fig.    8.— Distributions  of the J -band  magnitudes   of the ‘training  set’  samples  in  the 

NGC 2264 field illustrating  the discriminating  power for X-ray  source classification.   The 

red curve shows the distributions  of observed X-ray sources in high-density  (clustered)  re- 

gions with  individual  sources are shown by orange plusses.   The  other  curves are derived 

from simulations of contaminating populations (Getman et al. 2011; Broos et al. 2013): fore- 

ground  Galactic  stars (black),  background  Galactic  stars (green),  and  extragalactic  active 

galactic nuclei (blue).  Each curve is normalized to encompass unity  area. 
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

!




!

!

!

!

!

!

Fig.  9.— Venn diagrams  showing intermediate results from MYStIX processing of the pro- 

totype NGC 2264 and Trifid Nebula fields. Top:  X-ray sources with and without matched 

counterparts  in the near-infrared  UKIDSS and  mid-infrared  Spitzer images.  Bottom:  In- 

frared  sources with  and  without  photometric  excesses at longer wavelengths,  restricted  to 

the X-ray field of view. The category ‘SED IR excess’ includes contaminants such as dusty 

galaxies, AGB stars, and spurious detections of nebular  knots. 



– 38 –  !

!

!

troscopic OB stars. 
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The results of the multi-property statistical classification of X-ray sources are sum- 
marized  in lines 9 − 14 of Table  4.  Only a handful  of sources are confidently  classified as 
foreground or background Galactic field stars (lines 9−11); simulations of the Galactic stellar 

X-ray populations indicate that most contaminants are among the X-ray sources with uncer- 

tain classifications (line 13). The young stars are indicates in lines 12 and 14: in NGC 2264 

[Trifid Nebula], we find 898 [418] of the 1,328 [633] X-ray sources are probable  members of 

the star forming region, and  1,173 [532] stars are probable  members  when infrared-excess 

and spectroscopic OB stars are added.  Although the classifier combines all information in a 

complicated  probabilistic  fashion for the X-ray sources, one can roughly see that �75% of 

the members would have been identified by virtue of their X-ray emission alone, and �40% 

of the members  would have been identified  by virtue  of their  photometric  infrared  excess 

emission alone (compare lines 8, 12 and 14 of the table and the diagrams in Figure 9). 
!

Further insight into the relationship between infrared and X-ray selection can be inferred 

from Figure 10 showing the MPCM population on spatial maps of NGC 2264 and the Trifid 

Nebula.   In the northeast  region of the NGC 2264 field, we see that the subcluster  of X- 

ray  selected  stars around  S Mon (item  1 in §4.1) are older without  infrared  disks (small 

yellow circles) while a clump of mostly disk-bearing stars (large red circles) lies off-center of 

the Fur  Fox nebula  to the west.   In the southern  portion  of the field, rich clusters  of very 

young members extend around and between IRS 1 and IRS 2. Here infrared-excess selection 

captures most of the members, but X-ray selection improves the sample where the infrared 

image suffers crowding or saturation. Finally,  we do not see an obvious spatial gradient in 

MPCM surface density or disk fraction from inside to outside the Cone Nebula at the south 

of the region. This suggests that the Cone Nebula is not undergoing a burst of triggered star 

formation as seen in some other bright rimmed clouds (e.g. Getman et al. 2009). 
!

The Trifid Nebula results (Figure 10b) also shows informative spatial segregation of disk- 

bearing and disk-free stars.  A diffuse group of mixed disk-bearing  and disk-free stars lie in 

the bright rimmed cloud to the north of the bright HII region (item 1 in §4.2). The rich cluster 

inside the nebula has a high fraction of older, disk-free stars.  The densest concentration of 

members in the immediate vicinity of the heavily absorbed O star CD −23◦13804B have no 

disky members  at all; disk destruction  by the radiation  and  wind of the massive star is a 

possibility.  Finally,  a considerable population of disk-bearing  stars is seen to the southwest 

of the bright  nebula  and  extends  beyond  the X-ray field of view.  These  very young stars 

appear to be aligned with filamentary Infrared Dark Clouds (IRDCs).  Absorptions from the 

handful  of X-ray sources within  or behind  the IRDCs may give valuable  measures of their 

gas columns. 
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Table 5.  Summary  Source Populations in All MYSTIX Fieldsa
 

!

!

MYStIX  # C handra  # M I RES  # M P C M 
!

!

Orion 
!

1616 
!

631 
!

1524 

Flame 547 193 485 

W 40 225 308 426 

RCW  36 502 135 384 

NGC 2264 1328 556 1173 

Rosette 1962 622 1730 

Lagoon 2427 468 2056 

NGC 2362 690 67 491 

DR 21 765 507 980 

RCW  38 1019 112 886 

NGC 6334 1510 407 1667 

NGC 6357 2360 523 2235 

Eagle 2830 721 2574 

M 17 2999 155 2364 

W 3  2094 259 1676 

W 4  647 415 519 

Carina 7412 815 7334 

Trifid 633 174 532 

NGC 3576 1522 142 1213 

NGC 1893 1442 538 1301 
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7.  Comparison with  Independent  Membership Surveys of NGC  2264 
!

!

Among all MYStIX targeted MSFRs, NGC 2264 has the most comprehensive published 

catalogs  of complex  members3 .   We  compare  the MYStIX  selection  of ‘probable  cluster 

members’ in NGC 2264 with two previous catalogs that are independent from the MYStIX 

datasets:  the photometric  variables  of Walker  (1956) which were historically  important in 

establishing  the pre-main  sequence nature of T Tauri  variables;  and  the sensitive  Hα  star 

survey of Dahm & Simon (2005).  The individual  stellar associations between MPCM stars 

and stars from these and other published membership surveys appear in the footnotes of the 

electronic MPCM membership  table in the accompanying  paper by Broos et al. (2013). 
!

One hundred  seventy  three  of the photometric  variables  studied  by Walker  (1956) lie 

in the X-ray exposures  defining the MYStIX  field of view for NGC 2264.  Most  (76%) of 

these  are astrometrically  matched  with  X-ray  sources associated  with  near-infrared  stars. 

The remainder are dominated by A and late-B stars which are often undetected in the X-ray 

band.  The photometrically variable sample size is 16% of the MPCM sample of MPCM stars 

indicating  that, at least  with  the precision achieved by Walker  using photographic  plates, 

photometric variability  alone provides a very incomplete cluster sample. 
!

Approximately 430 Hα stars of Dahm & Simon (2005, designated ‘IfAHα’ stars) lie in 

the MYStIX  field of view of which 83% are recovered  as MPCM  stars.   Dozens of other 

MPCM  stars recover members  found in the ESO-Hα  survey  (Reipurth  et al. 2004).  The 

failure to recover 17% IfAHα stars is largely attributed to the limited sensitivity  of the X- 

ray and mid-infrared surveys; the missing low mass members are on average � 1 mag fainter 

than the recovered stars.  This loss is expected:  due to the strong correlation between X-ray 

luminosity  and  stellar  mass among pre-main  sequence stars (Telleschi  et al. 2007), X-ray 

surveys will not detect lower mass young stars in most MYStIX regions. 
!

The MPCM sample is less effective in recovering the youngest members of NGC 2264. 

Forbrich et al. (2010) identify several dozen infrared-excess stars in the Spokes Cluster (IRS 2 

vicinity)  from Spitzer spectroscopy.  While most (16 of 20) stars spectroscopically classified 

as  Class  II  are  in  the MPCM  catalog,  only  5 of 14 Class  I stars are  found.   The  poor 

performance of MPCM in recovering Class I protostars is partly due to their heavy absorption 

of X-ray emission in the Chandra band:  three  of the five X-ray detected  protostars  have 

extremely high Median Energy "' 4.5−5.8 keV indicating AV  > 100 mag (see Fig 4 of Getman 
!

!

3 The  Orion Nebula  Cluster also has an excellent membership  list from prior near-infrared study, but its 

MYStIX  dataset is anomalous:   the Chandra observations  are  several  times  longer  than for other  targets 

(from the Chandra Orion Ultradeep Pro ject, Getman et al. 2005) and the Spitzer observations are unusually 

insensitive  due to the high surface brightness of the Orion Nebula  throughout the field of view. 
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et al.  2010).  Other X-ray sources with comparable  absorption may have been erroneously 

place in the ‘Unclassified’ category  due to the paucity  of similar objects  in the young star 

‘training  set’  (Broos et al. 2013).  The  conservative  photometric  selection  criteria  used to 

identify  young  stellar  infrared  excess sources may  also have  excluded  some spectroscopic 

Class I stars (Povich  et al. 2013).  But the spectroscopic  sample of Forbrich  et al.  is also 

very incomplete:  our MIRES [MPCM] samples have � 5 [� 8] times more stars in the small 

region around  IRS 2 than they consider in their Spitzer spectroscopic study. 
!

The MYStIX X-ray/infrared matching procedure performed very well: four cases (1%) 

of an X-ray source proximate to an Hα star failed to match to the UKIRT near-infrared  star 

due to binarity  or far-off-axis X-ray positional  error,  but all of these  cases were recovered 

in matches to Spitzer UKIRT  sources.  The MYStIX statistical classification procedure was 

also successful; only one Hα star that was astrometrically matched to an X-ray source was 

not classified as a MPCM. The MPCM census has � 340 X-ray sources matched  to K band 

stars that are not detected in Hα, indicating that the Hα sample captures somewhat more 

than half of the lightly obscured young stars obtained by MYStIX. The missed members are 

mostly non-accreting Class III systems selected by their X-ray emission. 
!

Of the 1,174 MPCM sources in the NGC 2264 field, 205 have no published  association 

within  211  in the SIMBAD  database.   These  can  be considered  completely  new probable 

members  of the NGC 2264 complex.  Many lie in the eastern  portion  of the field that has 

been less well-studied in earlier surveys. 
!

We thus find that MYStIX recovers about 80% of traditional optical-band variable star 

and  Hα  samples,  and  about 35% of a Class I protostar sample,  using X-ray and  infrared 

selection criteria.  Unfortunately, Hα star surveys are not feasible for many MYStIX MSFRs 

where spatially varying HII region nebular Hα and cloud obscuration are prevalent.  However, 

sensitive multi-epoch variability surveys of star forming regions such as the VISTA Via Lactea 

survey (§8) may give variable stars cluster member subsamples that can be added to MYStIX 

samples in the future. 
!

!

!

8.  Discussion: Laying the Empirical Foundation  for  Stellar Population Studies 

in  Massive Star Formation  Regions 

!

The MYStIX approach  to stellar populations of star formation complexes is essentially 

to join together X-ray selected  stars with infrared-excess stars and spectroscopic  OB stars 

into a single sample of ”MYStIX Probable  Complex Members”  (MPCMs).   A considerable 
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number  of other studies  have taken a similar approach  for individual  clusters4 .  Our group 

has  developed  sophisticated  methodology  to address  several  tricky  aspects  of the effort, 

and applies these methods to 20 MSFRs to facilitate comparative studies to further our 

understanding of clustered star formation.  The observational foundation of the MYStIX 

project described here is more fully presented in the accompanying  MYStIX papers (Kuhn 

et al. 2013a; Townsley et al. 2013; King et al. 2013; Kuhn  et al. 2013b; Naylor et al. 2013; 

Povich et al. 2013; Broos et al. 2013). 
!

The analysis effort to construct  MPCM  samples can be viewed as a sequence of three 

stages (Figure 3). First, we collect single-wavelength images of each region from the archives 

of the Chandra X-ray Observatory,  UKIRT  and its UKIDSS project supplemented  by the 

2MASS surveys,  and the Spitzer Space Telescope.  We emphasize consistent  analysis with 

methods carefully designed to identify sources in crowded and nebulous regions. Our X-ray 

analysis techniques,  in particular,  typically  doubles the number  of X-ray sources obtained 

by traditional procedures. 
!

Second, we match the single-wavelength source catalogs with each other, taking into 

account source variations in positional measurement error and the likelihood that the match 

corresponds  to a young stellar  member.  This reduces contamination by uninteresting  field 

stars that can overwhelm proximity-only source matching procedure.  The NIR-MIR matches 

are then subject to photometric SED analysis to find the infrared-excess stars likely associ- 

ated with  protoplanetary  disks.  Several decision rules, and a weight  in favor of high local 

surface densities,  are applied  to reduce likely contaminants.  The  young stars entering  the 

MPCM  catalog  from the MIRES  infrared-excess  catalog  is thus based  on very restrictive 

rules, and many infrared-excess stars are probably  excluded from MPCM. 
!

The third stage is a probabilistic classification of X-ray sources to identify likely MSFR 

members.   This  is needed  to combine information  from a variety  of analysis  efforts  in an 
objective  fashion.   Some sources  − such  as  published  OB  stars and  X-ray  sources  with 
infrared  excesses or flares − are very likely to be classified as MSFR  members.   In other 

cases, the chances of MSFR membership  is based on the combined properties of the source 

compared to training sets of both members and contaminants, again with weighting to favor 

sources in spatially  clustered  regions.   For  many  sources,  the multiwavelength  properties 

are too  sparse for classification,  and  most  of the contaminants  (foreground  or background 
!

!

4 A list of such studies is given in the review by Feigelson (2010).  More recent studies include W 40 (Kuhn 

et al. 2010), Cyg OB2 (Wright  et al. 2010), Eagle Nebula  (Guarcello  et al. 2010), IC 1795 (Roccatagliata 

et al. 2011), RCW  38 (Winston  et al. 2011), NGC  1893 (Prisinzano et al. 2011), Cep OB3b  (Allen  et al. 

2012), and the large Chandra Carina Complex Project by Townsley et al. (2011a).  Some of these studies use 

near-infrared or mid-infrared, but not both bands,  together with X-ray selection. 
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Galactic field stars, external galaxies or active galactic nuclei) are placed into an ‘Unclassified’ 

category. 
!

Appendix  B discusses the limitations  of the resulting  MPCM  samples.  In some ways, 

the samples are too small (false negatives), missing true young stars associated with the 

targeted  MSFRs.  In other  ways, the samples are too large (false positives),  adding  to the 

MPCM  samples that are not real members.   It is difficult to evaluate  the completeness  of 

MPCM samples although progress is possible with subsamples, in particular by matching the 

observed X-ray luminosity  function of X-ray selected members to the Orion Nebula Cluster 

(e.g.,  Getman  et al.  2006).   We  note  that similar  difficulties in  completeness  evaluation 

are present  in many  traditional  methods  for identifying  young stellar  populations  − such 

as optical variability,  Hα emission, or infrared  excess.  Comparison  with different  selection 

techniques in the NGC 2264 region (§6-7) shows that the MYStIX multiwavelength samples 

are much more complete than samples based on infrared-excess or any other single property 

alone. 
!

The  MYStIX  project  also takes  a particular  approach  to statistical  decision making 

known as ‘soft classification’.  In matching X-ray sources to crowded infrared star fields, we 

calculate a probability  of matching to plausible possible counterparts and a probability  that 

no match  is present  (Naylor  et al. 2013).  An arbitrary decision rule based on these  prob- 

abilities  is then applied to make the X-ray/infrared counterpart assignment.  In classifying 

X-ray sources as young stars or one of three  populations  of contaminants,  we calculate  a 

probability  for each class based on several source properties and apply an arbitrary decision 

rule to make the class assignment  (Broos et al. 2013).  In both X-ray source classification 

and in infrared excess classification (Povich et al. 2013), we weight classification by the local 

spatial  density  of likely complex members.   The  final assignment  decision rule (equivalent 

to setting  a ‘3 sigma’  detection  criterion  for faint  source detection)  can be easily revised 

by other researchers  because we provide intermediate  tabular results  of class probabilities. 

Soft classifiers differ from commonly used hard  classifiers that establish sharp classification 

boundaries  and bypass class probability  estimation.  For example, Class 0-I-II-III classifica- 

tion of infrared excess using polygons in an infrared color-color plot is a hard  classification 

technique.  These results can not be revised later without new computations.  Both soft and 

hard approaches  are commonly used in modern statistical applications (Wahba  2002; Liu et 

al. 2011). 
!

While the MYStIX project is a significant observational effort, it is incremental in various 

respects.  Future deep exposures of MYStIX targets with the Chandra X-ray Observatory can 

add new X-ray sources to the MYStIX sample.  Most of the existing Chandra exposures are 

too short to capture the bulk of the young stellar population; new exposures in the range 0.3− 
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1 Ms could increase the X-ray selected cluster membership several-fold without encountering 

confusion. In the near-infrared,  several new capabilities have recently emerged. The 4m-class 

Visible and Infrared Survey Telescope for Astronomy (VISTA) telescope produces surveys in 

six bands over a large field of view with high resolution (0.311  pixels;  Emerson & Sutherland 

2010). VISTA is now engaged in the Via Lactea project involving multiple scans of Galactic 

Plane fields to locate and characterize large populations of variable stars, including pre-main 

sequence stars (Minniti  et al. 2010; Saito et al. 2012).  The  NOAO Extremely  Wide Field 

Infrared Imager (NEWFIRM) camera for 4m-class telescopes covers near-infrared bands (0.411
 

pixels;  Probst et al. 2008). The High-Acuity Wide-field K-band  Imager (HAWK-I)  camera 

for ESO’s Very Large Telescope has a smaller field of view but higher resolution (0.111  pixels) 

and  sensitivity  than other  available  imagers (Kissler-Patig  et al. 2008).  We hope that, as 

higher quality  X-ray and  infrared  observations  become available  for MYStIX  clusters,  our 

electronic tables of single-wavelength sources will be useful for counterpart searches. 
!

The restriction of the MYStIX sample to MSFRs within  distances ≤ 4 kpc also elimi- 

nates the most massive and luminous ‘super-star clusters’ in the Galaxy including those in 

the nuclear starburst around the Galactic Center (see review by Turner  2009). In these star 

forming regions with  bad crowding and  high absorption,  it is difficult to detect  individual 

pre-main  sequence stars and  study  has been mostly  restricted  to O stars and supergiants. 

Further investigation  of these  most  massive star clusters  in the Galactic  Plane  is possible 

with long Chandra exposures and high-resolution infrared imagery. 
!

Finally,  we note that the ‘MYStIX Probable  Complex Member’ data product is based 

only on spatial,  X-ray and infrared  photometric  properties  that are combined into a prob- 

abilistic  classification  of membership.   Spectroscopy,  preferable  in the near-infrared  bands, 

is needed to solidify individual  memberships.  Multiobject JH K  spectrographs on southern 

sky telescopes are particularly needed for this task. 
!

!

!

9.  Conclusions 
!

!

No single astronomical  method  can identify  the full stellar  population  emerging over 

time from a massive star forming complex.  The historically important tools of photometric 

variability  and Hα emission from accretion in the visible band capture different portions of 

the classical T Tauri population, and the selection hot blue stellar photospheres captures OB 

stars with low obscuration.  However, these visible band survey techniques are not available 

for most  massive  star formation  regions that are  often  subject  to both spatially  varying 

cloud obscuration  and  nebular  emission contamination.  Infrared  excess and  submillimeter 

surveys locate the youngest stars with dusty  protoplanetary disks.  However, Galactic field 
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star contamination in optical and infrared images often overwhelm efforts to identify the full 

young star population.  X-ray surveys reveal the disk-free pre-main  sequence stars down to 

a stellar mass correlated with the X-ray sensitivity  limit, as well as OB stars and significant 

portions of the disk-bearing population.  Here field star contamination is much reduced.  Each 

waveband  captures  a portion of the full stellar  population, often overlapping  with samples 

obtained at other wavebands  (Figure 9). 
!

The best available approach  to the stellar census of star formation regions is to combine 

methods from different wavebands.  The MYStIX project combines the capabilities  of three 

instruments  − Chandra X-ray Observatory  ACIS spectroscopic  imager, the UKIRT  wide- 

field near-infrared imager in three bands, and the Spitzer Space Telescope IRAC mid-infrared 

imager in four-bands  − with historical  OB stars to obtain new lists  of cluster  members in 

20 OB-dominated star forming complexes at distances between 0.5 and 4 kpc.  The full list 

of 31,550 MPCM stars in 20 MYStIX MSFRs is given in Broos et al. (2013). 
!

Specialized source detection techniques are used to achieve high sensitivity  (particularly 

in the X-ray images where sources with  as few as 3 photons  are identified)  while treating 

crowding and  nebular  contamination.   Our  source detection  philosophy  is to produce  the 

most sensitive single-wavelength source lists, even at the expense of false positive detections, 

and then cull the lists by applying  quantitative criteria  to multiwavelength  properties.  As 

infrared images are often overwhelmed by older Galactic field stars, the selection of cluster 

members is greatly boosted by the detection of X-ray emission and/or infrared excess from 

a protoplanetary disk.  Statistical methods are applied to multiwavelength source matching 

in crowded fields, and to discriminate cluster members from unrelated Galactic field stars or 

extragalactic contaminants.  The resulting samples of ‘MYStIX Probable Complex Members’ 

(MPCM) represent the largest census yet obtained for most of the target star forming regions. 
!

The MYStIX approach has its limitations; some stellar subpopulations are poorly recov- 

ered, and it is difficult to establish the completeness limit of the combined samples.  MPCM 

samples  have  substantial  limitations  (Appendix  B) but give more comprehensive  samples 

than any single-method approaches to uncovering young stellar populations (optical variabil- 

ity, Hα surveys, K -band excesses, mid-infrared  excesses, X-ray emission, spatial clustering). 

For MSFRs with  high levels of nebular  emission and/or  Galactic  field star contamination, 

often no serious attempts had been made to define individual  complex members. 
!

The  MPCM  samples thus represent  the largest  and  most  comprehensive  membership 

lists  for most  MYStIX  regions.  These  samples are particularly  advantageous  by their  in- 

clusion of pre-main  sequence stars both with  and  without  protoplanetary  disks.  Disk-free 

systems are found from X-ray surveys that efficiently remove contamination by older Galactic 

field stars; this considerably extends our view of past star formation (stellar ages > 2 Myr) 
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in these regions.  Furthermore, our fields of view are relatively  large, typically �5 to 30 pc 

in extent, permitting  a view of star formation  in the vicinity  of rich clusters.   Finally,  the 

MYStIX study has the advantage of a consistent treatment of a significant number of young 

stellar clusters.  This permits  comparisons to examine how various cluster  properties (such 

as spatial  extent and  shape,  monolithic  vs. clumpy  structure, mass segregation,  triggered 

star formation, spatial-age gradients, and OB wind interactions with clouds) appear  under 

differing conditions. 
!

The astrophysical issues outlined in §1.1 can be powerfully addressed  using MPCM 

samples.  In the two prototype fields examined here, NGC 2264 and Trifid Nebula, younger 

disk-bearing  and older disk-free stars show different  spatial structures  suggesting  that star 

formation  in these  regions has a complicated  history  likely involving multiple  star forma- 

tion sites over an extended  period of time.  Future MYStIX  science studies  will include:  a 

multifaceted spatial study of clustering to elucidate dynamical states; a new stellar age esti- 

mator applied to (sub)clusters to elucidate star formation histories;  a search for previously 

unremarked  massive members; study of triggered star formation in molecular cloud material 

adjacent  to rich clusters;  investigation  of OB winds both close to and  far from the stellar 

surface; comparison  of cluster  IMFs;  and other  issues.  These issues will be discussed in a 

series of forthcoming papers. 
!

!
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!

A.  MYStIX Star-Forming  Complexes 
!

!

This Appendix  gives brief overviews of the MYStIX MSFRs based on previous studies 

of their stellar populations.  The regions are listed in order of increasing distance (Table  1). 

Comprehensive  descriptions  of the regions based on pre-2008 observations  are provided  in 

the Handbook of Star  Forming  Regions (Reipurth & Schneider 2008). 
!

!

!

A.1. Orion Nebula 
!

!

The stellar content of the Orion Nebula (M 42) is the best studied for any massive star 

formation  region in the sky (Muench  et al. 2008).  The  region of interest  for MYStIX  is a 

single Chandra ACIS 171 × 171 field centered on the Orion Nebula Cluster (ONC). The ONC, 

or the Orion Id OB association, is a monolithic, centrally condensed rich cluster of stars with 

about 3000 members down to the stellar limit.  The stellar distribution can be modeled as an 

isothermal ellipsoid elongated north-south with core radius � 0.2 pc and central star density 

� 2 × 104  stars  pc−3.  The cluster exhibits strong mass segregation with the ‘Trapezium’ of 

OB stars concentrated inside the core dominated by the O7 star θ1C Ori with mass around 

30 M0. The typical age of ONC stars is around 2 Myr with controversial evidence for a wide 

age spread  over � 1 − 10 Myr.  The ONC is superposed  on a � 1◦-long molecular filament 

along the center of the Orion A cloud with current star formation in its cores. The OMC-1 

core lie in the MYStIX field with two components:  the Becklin-Neugebauer  Kleinman-Low 

region and the OMC-1S core.  They  contain  several dozen embedded  protostars,  including 

several with high mass, seen in infrared and X-ray wavelengths. 
!

The  ONC  stellar  population  has been subject  to three  recent  intensive  surveys  with 

major space telescopes.  First, the Chandra Orion Ultradeep  Project (COUP)  observed the 

Nebula for 13.2 nearly-contiguous days, producing a catalog of � 1400 X-ray emitting young 

stars (Getman  et al. 2005).  Second, an  intensive  survey  with  several instruments  on the 

Hubble Space Telescope and associated  ground-based  telescopes  produced  a sensitive  high- 

resolution  catalog  of cluster  members  (Da  Rio et al. 2009; Robberto  et al. 2010).  Third, 

a  multi-epoch  Spitzer mid-infrared  survey  has  found  periodic  or aperiodic  variability  in 

� 1200 ONC stars (Morales-Calderón et al. 2011). 
!

!

!

!

A.2. Flame Nebula 
!

!

The  Flame  Nebula,  or NGC 2024, is a prominent  HII  region in the L 1630 (Orion  B) 

dark  cloud near the Orion Belt star ζ Ori and the Horsehead  Nebula  (Meyer et al. 2008). 
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Although  it  is the richest  star cluster  in the Orion  complex after  the ONC,  visible band 

studies are impeded by a dark lane of cloud material obscuring the cluster.  A ridge of dense 

molecular cores lie behind the cluster.  A thorough infrared census of the cluster has not yet 

been reported  and  the spectral  types  of the dominant  stars are not well-established.   The 

fraction  of members  with  infrared  excess protoplanetary  disks appears  to be high around 

70 − 80%.  Chandra images show � 250 cluster  members  with  mean  absorption  around 

AV  � 10 mag. 
!

!

!

A.3.  W  40 
!

!

The W 40 HII  region and associated cluster, though close to the Sun, was poorly studied 

until recently  due to high local obscuration  (Rodney  & Reipurth  2008).  At visible wave- 

lengths, the ionized nebula  is seen but the central cluster is covered with a screen of dusty 

cloud, similar to the Flame Nebula.  Several late-O or early-B stars powering the region were 

identified at radio and infrared wavelengths.  The Chandra source catalog gives � 200 cluster 

members with AV  � 5 − 20 mag obscuration and an estimated � 600 star total population 

(Kuhn  et al. 2010).  The near-infrared  disk fraction around  50% implying an age < 1 Myr. 
The structure appears roughly spherical with core radius �0.15 pc. Mass segregation is seen; 

not only are massive stars concentrated into the core, but stars below 1.5 M0 more dispersed 

than intermediate-mass  stars.  Star formation is not present  in a small molecular core just 

west of the cluster, but mid-infrared  protostars detected with Herschel are prevalent in the 

obscuring dust lane and elsewhere in the vicinity (Maury  et al. 2011). 
!

!

!

A.4.  RCW  36 

!

RCW 36 is the smallest, and presumably  the youngest, of several HII  regions distributed 

over � 10◦ in the Galactic  Plane  in the Vela Molecular Ridge Cloud C (Pettersson  2008). 

Infrared  imaging shows a cluster with > 350 members within a radius of 0.5 pc; the central 
density  is �  3000 stars pc−2.   The  two  brightest  stars have  spectral  types  O9 and  the 

distance  is estimated  to be 700 pc (Ellerbroek  et al. 2012).  The  cluster  is obscured  with 

typical AV  � 10 mag.  The structure shows two clumps separated by � 0.2 pc; massive stars 

appear  concentrated in the northern clump.  The cluster illuminates several bright rimmed 

clouds in the nearby  cloud, and a large area (� 3 pc in extent) of heated  dust.  Herschel 

images reveal dense filament of cold dust with AV  > 100 mag lies within the nearby  cloud, 

suggesting that more massive star formation may occur in the future (Hill et al. 2011). 



– 64 –  !

!

!

A.5.  NGC  2264 
!

!

NGC 2264 (Christmas  Tree  Cluster)  associated  with  the Cone Nebula  bright  rimmed 

cloud and Fox Fur Nebula HII  region has low contamination by Galactic field stars and 

negligible interstellar  absorption  to the region.   Known  as  an  emission  nebula  since the 

18th  century, it was the site where Merle Walker first described stars during their pre-main 

sequence phase during  the 1950s (Dahm  2008a).  The  most  massive stellar  member  is the 

O7+O9.5  main  sequence binary  S Mon; and  at least  30 B stars are present.   It does not 

have a monolithic  cluster  structure, but rather appears  to be a collection of 2 − 3 clusters 

with additional  distributed  young stars.  A true age spread  is probably  present  among the 

lower mass stars ranging from protostars around  IRS 1 and IRS 2 to several hundred  X-ray 

selected  stars,  many  of which are disk-free (Class  III).  A considerable  number  of Class II 

and Class III stars are dispersed 5 − 10 pc from the currently active star forming clouds.  A 

new infrared  study  estimates  that the total stellar  population  is � 1400 stars (Teixeira  et 

al. 2012). A deep 300 ks Chandra observation of the southern portion of the region is now 

underway. 
!

!

!

!

A.6.  Rosette 

!

The  Rosette  Nebula  is ionized by  NGC  2244, the youngest  cluster  within  the large 

Mon OB2 association.  It produces a blister HII  region on an edge of the Rosette Molecular 

Cloud that extends east of the nebula (Román-Zúñiga & Lada 2008). The cloud consists of 

several clumps spread over 1.5◦, imaged with the Herschel satellite (Schneider et al. 2010). 

A linear mosaic of five Chandra fields cover the cluster and, with lower sensitivity,  portions 

of the cloud (Wang  et al. 2010, and  references therein).   The  central  cluster  is quite  rich 

with  over thirty stars earlier than B3, dominated  by two  � 100 M0 stars.   The  OB stars 
do not show mass segregation  with  respect  to the pre-main  sequence stars.   Two clusters 
on the periphery  of NGC 2244, RMS XA and NGC 2237 each with � 200 stellar members, 

may be have been triggered  by the main  cluster  in cloud material  that is now dissipated. 

Several smaller clusters are embedded in the cloud, well-populated in both X-ray and infrared 

surveys.  Although the cloud dust is heated by the central cluster massive stars, most of the 

embedded  clusters do not appear  to be triggered by the expanding  HII  region. 
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A.7.  Lagoon Nebula 
!

The Lagoon Nebula (M 8) is a large (� 501 × 401) HII  region in the nearby Sagittarius- 

Carina spiral arm in front of the Galactic Center region (Tothill et al. 2008). NGC 6530, the 

central cluster, is dominated by the O4 star 9 Sgr with nearly 70 other OB stars.  A secondary 

nebular region called the Hourglass Nebula is powered by the O7 star Her 36. The HII  region 

contains numerous bright rimmed clouds, pillars, and molecular clumps.  Due to heavily 

contamination by Galactic field stars, the cluster can barely be discerned in the distribution 

of optical or 2MASS stars.  A Chandra study  finds � 800 members, centrally concentrated 

with core radius around 1.6 pc and extending beyond 7 pc. Mass segregation is present.  The 

pre-main  sequence stars have  typical  ages between  � 0.8 and  2.5 Myr,  and  near-infrared 

disk fraction  appears  to be high.   In the surrounding  molecular  cloud,  over 60 Class 0/I 

protostars are identified by mid-infrared  excess in Spitzer images, indicating active current 

star formation (Kumar  & Anandarao  2010). Her 36 is surrounded  by a distinct concentrated 

Hourglass Nebula Cluster with at least 100 stars, many of them with near-infrared  disks. 
!

!

!

A.8.  NGC  2362 
!

!

Along with Tr 15 in Carina, NGC 2362 may be the oldest cluster in the MYStIX sample 
with age � 5 Myr.  It is dominated by the O9 Ib supergiant τ CMa.  No main sequence O 
stars are present, likely lost by supernovae, and �40 B stars are present.  Molecular material 

is absent immediately around  the cluster, although  triggered star formation in more distant 

clouds may be active.  With  no obscuration and a location several degrees off the Galactic 

Plane, field star contamination is not heavy and membership of � 300 stars can be established 

in optical  color-magnitude  diagrams.   About  a third of these  are Hα emitters.  Nearly 400 

X-ray sources are seen in the Chandra field; the total stellar  population  is below that of 

the ONC. Infrared  excesses from full protoplanetary disks are rare,  although  depleted  and 

transition disks are more common (Currie  et al. 2009). 
!

!

!

A.9.  DR  21 

!

The  DR 21 star forming region is part of the huge Cygnus Super-Bubble  (Cygnus  X, 

� 15◦ in size; Reipurth & Schneider 2008). It lies at the end of an unusually dense molecular 

filament several parsecs in length with embedded high-mass young stellar objects producing 

masers.   The  DR 21 cloud itself has a deeply embedded  massive star producing  an ultra- 

compact HII  region and molecular outflow; however, it is not accompanied by a rich cluster. 
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It is possible that the cluster  has not yet  formed; the cloud has � 20, 000 M0 of molecu- 
lar gas within  � 1 pc, but may be supported  against  collapse by magnetic  and  turbulent 

pressure (Kirby 2009). Several dozen mid-infrared  excess young stars in Spitzer images are 

distributed in the cloud and along the molecular filament (Kumar et al. 2007). The Chandra 

X-ray findings of the region have not been published  prior to MYStIX. 
!

!

!

A.10.  RCW  38 
!

!

RCW  38 is an unusually  young, heavily obscured  rich cluster  that appears  associated 

with,  but probably  lies behind,  the Vela Molecular Ridge (see RCW  36 above; Wolk et al. 

2008). The cluster is dominated by a heavily obscured O4 star accompanied by an estimated 

� 30 additional  OB stars.  Some are strongly concentrated in the cluster core while others are 

dispersed.   The  identified  pre-main  sequence population  has over � 600 disk-bearing  stars 

with infrared  excesses, many of which are seen in a Chandra X-ray image (Winston et al. 

2011).  Obscuration varies widely from AV  � 3 to 60 magnitudes.   The X-ray sources show 

several subclusters spread over several parsecs in addition  to a central dense concentration. 
!

!

!

A.11.  NGC  6334 
!

!

The  NGC 6334 complex, or the Cat’s  Paw  Nebula,  is a major  star forming region on 

the Sagittarius-Carina  spiral  arm  close to the NGC  6357 complex (Persi  & Tapia  2008). 

Several luminous  mid-infrared  sources in the central  101  aligned along the Galactic  Plane 

mark  very young embedded  clusters.   NGC 6334 I(N)  is a proto-massive  star well-studied 

at millimeter  and far-infrared  wavelengths.  Optical  and infrared  images are dominated  by 

filamentary ionized gas and heated dust, dense patchy obscuration, and heavy contamination 

by Galactic field stars.  Hence there is no catalog of cluster members,  or even OB stars,  in 

the region.  A mosaic of Chandra fields reveals several unobscured  star clusters  in front of 

and around  the dense cloud, as well as members of the embedded  clusters (Feigelson et al. 

2009). The X-ray source population is rich with > 1500 cluster members. 
!

!

!

!

A.12.  NGC  6357 

!

NGC 6357 appears  to have formed from the same giant molecular cloud as NGC 6334 

(Russeil et al. 2010). G353.2+0.9 is its brightest HII  region on the northern rim of an annular 

evacuated region in the cloud, ionized by the massive stellar cluster  Pismis 24 (Bohigas et 
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al. 2004).  The three  most  massive (O3) stars in Pis 24 each have masses �100 M0 (Máız 

Apellániz et al. 2007). NGC 6357’s degree-sized shell seen in Hα may outline a superbubble 

blown by a MSFR that preceded Pis 24. The presence of a post-main sequence Wolf-Rayet 

star inside this shell, and the possible X-ray discovery of an older population dispersed around 

Pis  24 (Wang  et al. 2007), provide  indirect  evidence that the cavity  supernova  remnants 

of an  older  cluster  might  have  helped  to expand  the bubble  into  the 601  shell structure 

seen today.  Chandra  observations reveal previously unrecognized embedded  clusters in the 

molecular  cloud south  and  east  of Pis-24.   The  full region may be one of the closest  and 

youngest  examples of a giant  molecular cloud complex engaged in rapid,  extensive,  nearly 

coeval, multiple  massive stellar  cluster  formation  (Townsley  et al. in prep.).   This  makes 

NGC 6357 a rare  addition  to the Galaxy’s complement  of “clusters  of clusters”  – a mode 

of star formation that appears to be inherently different than the more familiar single, 

monolithic  cluster  formation  that created  such regions as M 17 or NGC 3603.  NGC 6357 

may represent an earlier phase of older “cluster of cluster” complexes like the Carina Nebula 

and NGC 604 in M 33. 
!

!

!

A.13.  Eagle Nebula 
!

!

The Eagle Nebula (M 16) and its ionizing cluster NGC 6611 have been popular targets 

for multiwavelength star formation studies since the famous Hubble Space Telescope images 

of its “Pillars  of Creation”  (Oliveira  2008).  It contains  13 O stars,  at least  half of which 

are binary  (Sana et al. 2009), and may have lost several more through dynamical  ejections 

(Gvaramadze   & Bomans  2008).   Its earliest  stars are  an  O3.5 V and  an  O4 V, both in 

binary systems.  A Chandra ACIS-I pointing towards NGC 6611 revealed 1,101 X-ray point 

sources (Linsky  et al. 2007); a recent  re-analysis  of this  dataset (Flagey  et al. 2011) also 

shows faint diffuse X-ray emission that these authors suggest might be produced by a cavity 

supernova.   Adding  two  more ACIS-I pointings  on the eastern  side of the complex to the 

original NGC 6611 ACIS data, Guarcello et al. (2012) catalog 1,755 X-ray point sources. 
!

!

!

A.14.  M  17 
!

!

M 17 produces the second-brightest  HII  region in the sky (Chini  & Hoffmeister  2008), 

and its massive central cluster NGC 6618 is very young with >8000 total members (Broos 

et al. 2007). The central O4+O4 binary shows evidence in the X-ray (Broos et al. 2007), IR 

(Hoffmeister et al. 2008), and radio (Rodŕıguez et al. 2012) for being a pair of colliding-wind 

binaries,  implying that the region is ionized by at least  4 early-O  stars.   It is situated at 



– 68 –  !

!

!

the  edge of one of the Galaxy’s most  massive and dense molecular cloud cores, M 17 SW, 

at a distance  of 2.0 kpc (Xu  et al.  2011).   Its orientation  gives an  excellent  view of the 

interface  between  the HII   region and  the molecular  cloud,  and  of the outflow  of shocked 

massive stellar winds into the Galactic interstellar  medium (Meixner et al. 1992; Townsley 

et al. 2003; Pellegrini et al. 2007). Near this young massive cluster, a large bubble to its north 

hosts a 2–5 Myr old young stellar population that may represent the previous generation of 

star formation in the M 17 complex (Povich et al. 2009). NGC 6618 is one of the few bright 

massive star-forming regions that has sufficient stellar wind power to produce a bright X-ray 

outflow (Townsley et al. 2011b) and yet is unlikely to have hosted any supernovae. 
!

!

!

A.15.  W  3 

!

W 3, at the western side of the W3-W4-W5 complex, is by itself an important complex 

in the outer Galaxy.  It exhibits the full range of massive star formation environments fueled 

by material  from the “high density  layer” where the W4 superbubble  (see below) is inter- 

acting with its adjacent giant molecular cloud (Megeath et al. 2008).  The W4/W3/HB3 

complex contains  one of the most  massive molecular clouds in the outer Galaxy  (Heyer & 

Terebey  1998), massive embedded  protostars (Turner  & Welch 1984; Megeath et al. 1996), 

every known type  of radio HII  region (Tieftrunk  et al. 1997), and one of the largest super- 

nova remnants  in the Galaxy  (Routledge  et al. 1991).  A prominent  monolithic,  revealed, 

centrally-concentrated  cluster just east of the W 3 cloud is the 3–5 Myr old IC 1795 (Roc- 

catagliata et al. 2011). W3 North is a parsec-scale HII  region powered by the isolated O7 star 

IRAS 02230+6202; Chandra observations establish that it has no lower-mass accompanying 

population (Feigelson & Townsley 2008). W3 Main is a rich, centrally concentrated embed- 

ded cluster  characterized  by sequential  star formation (Bik et al. 2012).  It is still  forming 

massive stars,  revealed  by hypercompact  radio  HII  regions, but it  also hosts  a rich,  older 

pre-main  sequence population  that has lost  most  of its protoplanetary  disks (Feigelson & 

Townsley 2008). Further to the south, W 3(OH) is a well-studied ultra-compact HII  region 

ionized by an O9 star (Hirsch  et al. 2012) and  surrounded  by a cluster  of more than 200 

stars (Carpenter et al. 2000). OH and H2 O masers, molecular outflows, and strong CO line 

emission indicate the presence of massive embedded  protostars. 
!

!

!

A.16.  W  4 
!

The  radio continuum  and  Hα nebula  W 4 is a �14 Myr old (Lagrois & Joncas 2009) 

superbubble  in the Perseus Arm of the Milky Way, perhaps the nearest interstellar ‘chimney’ 
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between  the dense Galactic  plane gas and the Galactic halo.  Although  too young to have 

formed the W4 superbubble  (Lagrois  et al. 2012), IC 1805 is a 1–3 Myr  old (Massey  et 

al. 1995) massive young stellar cluster now re-energizing the preexisting  gaseous structure. 

The  single Chandra pointing  of IC  1805 is centered  on HD 15558, a massive  binary  or 

possibly a triple  system  (De Becker et al. 2006).  This  cluster  contains  a large number  of 

intermediate-mass stars that exhibit  a wide range of disk properties (Wolff et al. 2011). 
!

!

!

A.17. Carina Nebula 
!

A Chandra  mosaic of 22 ACIS-I pointings  of �60 ks each revealed over 14,000 X-ray 

point  sources and  extensive  diffuse emission (Broos  et al. 2011a; Townsley  et al. 2011b). 

These complement extensive near-infrared  observations with the VLT’s HAWK-I instrument 

(Preibisch  et al. 2011) and mid-infrared mapping with Spitzer’s IRAC instrument (Smith et 

al. 2010; Povich et al. 2011a). Many of these studies are collected into the Chandra Carina 

Complex Project (Townsley et al. 2011a). 
!

The  MYStIX  project  adopts  the portion  of the Chandra mosaic that is covered  by 

both HAWK-I and Spitzer.  This field includes Tr  14, Tr  15, and Tr  16 that are the most 

massive clusters in a system of many clusters and stellar groups that form the Carina  star- 

forming complex (Feigelson et al. 2011).  While Tr 14 and Tr 15 are centrally-concentrated 

and mass-segregated, Tr 16 consists of several clumps (Wolk et al. 2011) and appears some- 

what older than Tr 14 with evolved supergiants including the remarkable Luminous Blue 

Variable,  η Car.  Tr 15 appears  yet older and appears  to have lost its most massive stars as 

supernovae (Wang et al. 2011). An isolated neutron star discovered in XMM observations of 

Carina (Hamaguchi  et al. 2009; Pires et al. 2012) and bright complex diffuse X-ray emission 

(Townsley  et al. 2011b) strengthen  the case for extensive  supernova  activity  in the Carina 

complex. The Herschel satellite observations reveal large quantities of atomic and molecular 

material remain in Carina,  particularly in the ‘South Pillars’ region, with densities sufficient 

to continue fueling star formation (Preibisch  et al. 2012). 
!

!

!

A.18.  Trifid 
!

!

The Trifid Nebula (M 20) is an optically bright HII  region trisected by three dust lanes 

(Rho  et al.  2008).   The  main  emission  nebula  is ionized  by  the main  sequence  O7 star 

HD 164492A that lies in a dense group of intermediate-mass  stars.  An evolved supergiant 

heats  a reflection  nebula  to the north.  A molecular  cloud surrounds  most  of the HII   re- 
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gion, fragmented into dense cores with > 30 embedded  Class 0/I protostars that are widely 

distributed  along the dust lanes and  in the surrounding  molecular  cloud.   Bright  rimmed 

clouds are associated with star formation.  The stellar population includes > 80 candidates 

identified by K -band photometric excess, > 150 with mid-infrared  excess, and � 300 X-ray 

sources.  The distance is uncertain and estimates have recently increased from � 1.7 kpc to 

� 2.7 kpc; it thus is probably  not in the Sagittarius-Carina arm like the Lagoon and Eagle 

Nebulae. 
!

!

!

!

A.19.  NGC  3576 
!

!

This massive star-forming complex contains at least two major clusters, both prominent 

in  X-rays  (Townsley  et al.  2011b):  a  very  young,  massive,  embedded  cluster  ionizing a 

giant  HII  region (de Pree  et al. 1999), and  an  older,  revealed,  more relaxed  cluster  to its 

north. The southern cluster is so deeply embedded that its dust-processed infrared emission 

saturates most  detectors.  It contains  >50 OB stars (Maercker  et al. 2006) but the census 

of its ionizing sources is still  incomplete  (Figuerêdo et al. 2002; Barbosa  et al. 2003).  The 

embedded  cluster  shows a plume of hot X-ray-emitting  plasma  just breaking  through  the 

edge of its giant molecular cloud; this outflow may be similar to that seen in M 17, but with 

a less convenient face-on orientation and earlier in its evolution (Townsley et al. 2011b). The 

northern  revealed cluster  is not well-studied;  its two  most  massive members  (late-O stars) 

constitute the NGC 3576 OB Association (Humphreys  1978), but the accompanying  young 

cluster (ASCC 65) was only recently recognized (Kharchenko  et al. 2005). A young pulsar, 

PSR J1112-6103 (Manchester et al. 2001), is situated near the center of ASCC 65; if it lies 

at the same distance, it may be the remains of one of this cluster’s more massive members 

(Townsley  et al. 2011b).  ASCC 65 may resemble Tr  15 in Carina:  a massive cluster  with 

age 5 − 10 Myr where the IMF is truncated at high mass by the evolution and supernova of 

its most massive stars. 
!

!

!

!

A.20.  NGC  1893 

!

The young star cluster NGC 1893 and is associated HII  region IC 410, a portion of the 

Aur OB2 association,  have only recently  been studied.   Lying towards  that Galactic  anti- 

center  at a distance  � 3.6 kpc, it is in the MYStIX  sample due to a very deep Chandra 

observation as well as Spitzer, near-infrared,  optical,  and Hα imaging observations  (Cara- 

mazza et al. 2008; Prisinzano  et al. 2011). They reveal � 360 cluster members; the majority 

are Class II systems  with  infrared  excesses,although  a few are protostars.   Most  members 
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have estimated  ages below � 2 Myr.  The  cluster  has evacuated  a large interstellar  region 

and little molecular material lies within the Chandra field of view. 
!

!

!

!

B.  Limitations  of the MPCM sample 

!

Section 5 and the accompanying papers (Kuhn et al. 2013a; Townsley et al. 2013; King et 

al. 2013; Kuhn et al. 2013b; Naylor et al. 2013; Povich et al. 2013; Broos et al. 2013) describe 

the construction of the MYStIX Probable Cluster Member (MPCM) samples for the MYStIX 

MSFRs listed in Table 1. The MPCM samples are based on analysis, both individually  and 

combined, of Chandra X-ray, UKIRT  and 2MASS near-infrared,  and Spitzer mid-infrared 

imaging observations.  Based on our results and validation procedures (§6-7), we discuss here 

a variety of uncertainties and limitations of the MPCM samples. 

!

Spurious sources in  MYStIX X-ray source samples By pushing down to �3 photon 

sources and sub-arcsecond resolution of double sources on-axis (Kuhn et al. 2013a; 

Townsley  et al.  2013),  we increase  the possibilities  that these  faint  and  proximate 

sources do not exist.  However, this problem is likely not severe. In the Chandra Carina 

Complex Project  where the X-ray detection  procedure  is the same as with  MYStIX 

and  superb  near-infrared  imaging  is available  from the HAWK-I  camera  on ESO’s 

Very Large Telescope, 89% of the X-ray sources have counterparts,  93% of which are 

classified as probable  members of the star forming region using a statistical classifier 

(Broos  et al.  2011a; Preibisch  et al.  2011).   The  MYStIX  X-ray  and  classification 

methods are closely modeled on those of the CCCP.  We believe that only a few percent 

of the X-ray sources are likely to be spurious, and these are unlikely to be matched to 

infrared sources and be successfully classified as members by the statistical classifier. 
!

Spurious sources in  MYStIX near-infrared and mid-infrared source catalogs  We 

have tuned the analysis to optimize the detection and photometry of faint stellar sources 

in the presence of moderate levels of crowding and nebulosity  (King et al. 2013; Kuhn 

et al. 2013b).  Thus,  the catalogs  have few missing detections  (false negatives)  when 

compared  to visual examination  of lightly  contaminated  images.  But the analysis is 

not optimized for the elimination of spurious sources.  The false positives have several 

origins; reducing their number using an automated algorithm without also reducing 

sensitivity  is difficult. However, the false positives rarely enter the MPCM samples, as 

they are unlikely to be positionally matched with X-ray sources or satisfy the stringent 

SED criteria  for infrared-excess.   We are more concerned,  in cases where the Galac- 

tic field star contamination  is high, about the chances that some real infrared  excess 
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sources are red giant stars with dusty envelopes are classified as MSFR members; con- 

servative criteria involving downweighting of widely dispersed infrared-excess stars are 

used to reduce this source of contamination (Povich et al. 2013). 
!

Incompleteness  in  MYStIX mid-infrared source catalogs  When  mid-infrared  nebu- 

lar emission (primarily  from PAH molecules) is strong and spatially variable, the sen- 

sitivity  of any  algorithm  seeking unresolved  stellar  sources is reduced  (Kuhn  et al. 

2013b).  In addition,  as the Spitzer telescope  has several-fold lower resolution  than 

the (on-axis)  Chandra or UKIRT  telescopes,  source confusion in the central  regions 

of rich clusters  can produce incorrect  photometry and missing sources.  This is not a 

small effect:  central  regions of Tr  14 in Carina,  NGC 3576, NGC 6618 in M 17, W 

3 Main in W 3, and  other  clusters  are seriously deficient  in mid-infrared  sources for 

these  reasons.   This  systematic  deficiency in mid-infrared  sources will cause spatial 

biases in the census of disk-bearing young stars. 
!

Incorrect counterparts  in  MYStIX multiwavelength  matching  The  matching  pro- 

blem inherently has no ideal solution for difficult cases such as off-axis Chandra sources 

(with large positional errors due to telescope coma) associated with crowded Galactic 

Plane  infrared  fields.  Some statistical technique,  such as our probability  scaled to K 

band magnitudes  (Naylor et al. 2013), is needed and will necessarily give some incor- 

rect  counterparts.  This  matching  problem  has negligible scientific  impact  for nearby 

uncrowded  fields like NGC 2264 (providing  one treats unresolved  binary  systems  as 

single stars). But it is a potentially serious problem for MYStIX targets like the Trifid, 

Lagoon, NGC 6357 and NGC 6334 with Galactic longitudes |l| ≤ 10◦. 
!

Unreliability  of MYStIX X-ray source classifications  The probabilistic nature of our 

assignment of X-ray sources to the MPCM samples (Broos et al. 2013) will unavoidably 

produce false negatives and false positives.  The class likelihood distributions for J , X- 

ray  median  energy,  and  X-ray  spatial  distributions  may  be inaccurate  or ineffective 

for the discrimination of young stars from contaminant populations.  The decision rule 

for assignment  into  classes is to some degree arbitrary, and reasonable  differences in 

classification  procedure  will give different  MSFR  membership  lists.   This  problem  is 

likely to be quantitatively  unimportant for nearby  and  lightly  contaminated  MSFRs 

like NGC 2264, but becomes important for distant, crowded clusters  like the Trifid. 

Until spectroscopic followup studies are conducted for MPCM samples, we cannot 

quantitatively evaluate the importance of this problem.  The high success rate of MSFR 

membership  lists derived from Chandra/HAWK-I and Chandra/Spitzer matching in 

the CCCP  (Povich  et al. 2011b; Preibisch  et al. 2011) in the Carina  Nebula suggests 

that this problem is not severe.  We provide electronic tables enabling other scientists 
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to apply different choices of classification criteria. 
!

Bias against  widely distributed  young stars At two steps in the MYStIX analysis pro- 

cess − in the weighting of young stellar disks to the local surface density  of infrared- 

excess stars (§5.5), and in the weighting  of MPCM  classification  by the local surface 

density of X-ray sources (§5.7) − our procedures generating the MPCM lists favor spa- 

tially concentrated members and disfavor widely dispersed young stellar populations. 

The  MPCM  samples thus can not give reliable quantitative insight  into  the ratio  of 

clustered vs. distributed star formation. 
!

Bias against  intermediate-mass  stars The  census  of young  intermediate-mass  A and 

late-B  stars may  be systematically  incomplete  in MPCM  samples.   First, infrared- 

excess criteria  may  miss a larger  fraction  of young  AB stars than lower-mass stars 

because protoplanetary  disks evolve faster  at higher stellar  masses (Carpenter  et al. 

2006).   Second,  X-ray  samples  miss many  young  AB  stars because  intrinsic  X-ray 

emission is weak or absent,  although  some are found due to lower mass companions 

(e.g., Berghöfer et al. 1997). MPCM samples may thus exhibit  a spurious drop in the 

IMF at intermediate masses. 
!

Bias against  very deeply embedded stars The  census  of the most  deeply  embedded 

stars, say 50 ≤ AV  ≤ 200, in the MPCM samples is deficient both due to loss of X-ray 

photons from soft X-ray absorption, and to erroneous classification as extragalactic or 

‘unclassified’ sources. These sources would have Chandra X-ray median energies in the 

range 3 < M edE < 6 keV (the calibration of median energy and interstellar absorption 

is discussed by Getman et al. 2010).  The misclassification  arises from an operational 

limitation  of our statistical  classifier because the training  sets  of young stars do not 

sufficiently populate the high-absorption tail of the median energy distribution.  Some 

of these  heavily obscured  stars will be protostars  captured  in the MIRES sample as 

IR-excess stars, but the comparison with Class I protostars in NGC 2264 Forbrich  et 

al. (2010) shows that many will be missing.  Others will be missed due to nebular 

contamination and crowding in the infrared images.   A detailed study of MYStIX 

protostars would thus benefit  by recovering X-ray sources with high median  energies 

and infrared excess stars that were not classified as MPCMs. 
!

Difficulties  in  establishing  completeness  limits  As MYStIX combines X-ray, near-in- 

frared and  mid-infrared  data in a complicated  fashion, no straightforward  statement 

of sensitivity  limits can be presented.  X-ray sensitivity  limits are strongly affected by 

off-axis degradation  of Chandra  mirror  performance,  and by variable  exposure times 

in overlapping exposures of MYStIX mosaics.  This can be mitigated by defining a 

subsample of ‘spatially complete’ X-ray sources; in the CCCP,  this truncation removed 
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about 2/3  of the X-ray sources from consideration  (Feigelson et al. 2011).  Even for 

this spatially uniform subsample,  luminosity  and mass limits depends on line-of-sight 

absorption. Infrared-excess sensitivity limits are roughly constant in regions without 

nebulosity,  but are badly degraded  within  PAH-bright HII  regions.  Conceptually,  the 

infrared excess selection criterion discovers protoplanetary disks not stars, and a well- 

defined completeness  limit  for disks does not give a clear completeness  limit  for the 

host  stars.    The  published  samples  of OB  stars confirmed  by  optical  spectroscopy 

have no clear completeness limits, and probably differ strongly among the MYStIX 

targets.  As MPCM  samples combine these  X-ray,  infrared-excess,  and  OB datasets, 

the completeness of the resulting  sample can not be evaluated. 
!

MYStIX samples do  not contain all  known young stars The stellar populations of a 

few MYStIX clusters  have been extensively  studied in Hα and stellar variability  sur- 

veys.  The  Orion  Nebula  Cluster  has been very carefully surveyed,  and  high-quality 

Hα  surveys are available  for NGC 2264, NGC 2362, DR 21, and  the Flame  Nebula. 

These historical samples have not been incorporated into the MYStIX analysis because 

they are not uniformly available for all targets. Many Hα and variable stars are inde- 

pendently captured by the MYStIX survey procedures (see §7 above and footnotes in 

electronic tables of Broos et al. 2013), but others are not recovered.  We also have not 

included far-infrared,  submillimeter and millimeter surveys of Class 0-I protostars ob- 

tained with telescopes such as the Herschel satellite, James Clark Maxwell Telescope, 

Submillimeter  Array,  or Atacama Large (Sub)Millimeter  Array.  Science analysis can 

thus often be enhanced  by combining MPCM  with other published  samples of young 

stars. 


