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Abstract 

It is a generally adopted policy, albeit unofficially, to sample flow and pressure data at a fifteen 

minute interval for water distribution system hydraulic measurements. Further, for flow this is 

usually averaged whilst pressure is instantaneous. This paper sets out the findings of studies into the 

potential benefits of higher sampling rate and averaging for flow and pressure measurements in water 

distribution systems. A data set comprising sampling at 5 seconds (in the case of pressure), 1 minute, 

5 minutes and 15 minutes, both instantaneous and averaged, for a set of flow and pressure sensors 

deployed within two DMAs has been used. Engineered events conducted by opening fire 

hydrants/wash outs were used to form a controlled baseline detection comparison with known event 

start times. A data analysis system using Support Vector Regression (SVR) was used to analyse the 

flow and pressure time series data from the deployed sensors and hence detect these abnormal 

events. Results are analysed over different sensors and events. The overall trend in the results is that 

faster sampling rate leads to earlier event detection. However it is concluded that a sampling interval 

of 1 minute or 5 minutes does not significantly improve detection to the point where it is worth the 

added increase in power, communications and data management requirements with current 
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technologies. It was discovered that averaging pressure data can result in more rapid detection when 

compared to using the same instantaneous sampling rate. Averaging of pressure data is also likely to 

provide better regulatory compliance and provide improved data for EPS hydraulic modelling. This 

improvement can be achieved without any additional overheads on communications by a simple 

firmware alteration and hence is potentially a very low cost upgrade with significant gains.  

 

 

INTRODUCTION 

 

For regulatory and more strategic management of Water Distribution Networks (WDN), both flow 

and pressure are continuously measured at strategic points in water distribution systems.  

 

The use of flow meter data for mass balance based leakage evaluation requires good absolute 

accuracy, as even at the level of a single District Meter Area (DMA) with multiple inlets and outlets 

mass balance calculations would be flawed without good accuracy of flow data. The output of most 

flow measurement instrumentation is an electronic pulse per unit of flow. The number of these pulses 

are counted over, and then divided by the data resolution period (generally fifteen minutes). This 

approach ‘smoothes’ the data but in doing so loses components that may be informative. Pulse units 

can be specified to provide different quantities of flow per pulse. A commonly selected pulse size is 

10L (2.2 gallons): 10L (2.2 gallons) in a 15 minute period provides an accuracy of 0.67L (0.147 

gallons)/min.  

 

A plethora of devices are available for measuring pressure with various accuracies, measurement 

ranges, response time and size as a function of cost. Wherever there is a tapping point on the system 

to which a pipe/hose can be connected pressure measurements can be obtained. One of the points 
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most commonly used to obtain pressure data is fire hydrants. When connecting pressure gauges it is 

important to ensure that the connecting pipe work is free of air, as the compressible nature of the gas 

will compromise the data obtained. Irrespective of the basis of operation, pressure instrumentation 

generally provides an instantaneous value. This can give rise to analysis problems as dynamic system 

data tends to be noisy and an instantaneous reading could be at a level not representative of the 

general pressure trend. Commonly used instrumentation in England and Wales has an accuracy of +/- 

0.5% of range, typically providing an absolute accuracy of between 0.2 and 0.5m (0.29 to 0.71 psi). 

The pressure instruments providing the data used in this study had an accuracy of 0.5m (0.71 psi).  

 

Currently, in the UK water industry only flow is routinely averaged over a fifteen minute interval, 

whereas pressure data tends to be instantaneous 15 minute values. This technical note explores the 

use of sub-fifteen minute sampled data and also addresses the issue of averaging. Near real time data 

was obtained from disparate DMA loggers which are not critical. Water companies in the UK are 

deploying many such sensors in remote locations without any access to mains power. Two key 

questions are addressed:  

i)    What are the potential benefits for sub-fifteen minute sampling for event detection? 

ii)   Should data be averaged? 

 

 

BACKGROUND 

 

Sampling Rate 

A sensor’s sample rate determines how many observations per time period are acquired. The 

unofficial UK industry standard for the collection of both flow and pressure data is for fifteen minute 

temporal resolution at most locations. For pressure readings this tends to be instantaneous values, 

while flow is usually averaged over fifteen minutes. The basis and justification of this fifteen minute 
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resolution is somewhat obscure, however it does provide a reasonable balance between the volume 

of data and definition of daily patterns. A good representation of the overall dynamics within a 

network can be observed with fifteen minute data points. However, the shape and amplitude of 

transients cannot be resolved with data points less than a tenth of a second apart. Flow dynamics can 

also be well represented by fifteen minute data points but higher frequencies allow component 

analysis to gain an understanding of the different contributions to the overall flow from different 

types of demand such as domestic and industrial or due to leakage. However, little published work 

has investigated the benefit of using sample rate in the sub- fifteen minute range.  

 

Use of data 

Primary uses of hydraulic data are: burst and leak detection monitoring and reporting; confirming 

compliance with standards of service; and to inform operation and maintenance for example by 

providing data to calibrate and drive hydraulic models. One of the primary standards in the UK is the 

requirement that there is a pressure of not less than ten metres head (one bar) (14.22 psi) at the 

external stop tap of a property at a flow of nine litres (1.98 gallons) per minute within the property. 

For such management and reporting purposes in England and Wales, and common globally, water 

distribution systems are broken down into hierarchical areas comprising: production management 

zones, DMAs, and sub DMAs created for regulatory population reasons or pressure control. DMAs 

are designed to be hydraulically isolated areas which are generally permanent in nature (apart from 

occasional rezoning). Data collected usually includes flow monitoring at DMA inlet(s) and any 

outlet(s) (for cascading structures), coincident monitoring of pressures and at least one other critical 

(DG2) pressure point, usually the point of highest elevation or a location furthest from the inlet.  

 

Another use for pressure data, usually collected by temporary short term field studies, is for 

hydraulic (offline) model calibration. Hydraulic model calibration is usually validated against 
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distributed nodal pressure profiles, augmented by information from DMA boundary meters and 

possibly tank and reservoir level data (Walski 2000). If the model is to be used for pressure 

management only, calibration primarily to pressure data is generally suitable. 

 

Data analysis 

 

In practice, analysis of hydraulic data is typically through mass balance, night line or comparison to 

threshold levels making use of 15 minute resolution data. Previous research work on event detection 

has generally utilised industry standard data, with some exceptions. Mounce and Machell (2006) 

applied an Artificial Neural Network (ANN) classification technique to one minute sampled 

engineered data. Khan et al. (2006) applied an ANN detection approach to 5 minute sampled opacity 

failure sensors. To some extent the use of 15 minute flow data is pragmatic (storage capacity of 

loggers etc.), but also it reflects a trade off between amount of information and size of events to be 

captured. Pipe rig studies using inverse transient analytic methods require a number of pressure 

transducers and the sample rate of pressure measurements can be extremely high (for example 600 

Hz) which is important in transient event data collection (Stoianov et al., 2002). Although showing 

promise in experimental facilities, these techniques have not yet been applied very successfully in 

the field. In a similar manner to increasing interest in automated intelligent analysis of flow (e.g. 

Mounce et al 2010a) new systems for automated analysis of pressure data are being explored 

(Mounce et al. 2010b, Romano et al. 2010, Ye and Fenner 2010). Puust et al. (2010) review 

traditional and emerging methodologies for leakage management. SCADA technological advances 

including increased data storage capabilities, telemetry portals allowing real time access to data (e.g. 

through a web browser), AMI (Advanced Metering Infrastructure) systems and communications 

using peer-to-peer technologies or local hubs  are opening up new possibilities for real time 

hydraulic performance management of the system in terms of demand growth and leakage detection 

(Wu et al. 2011). 
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CASE STUDY 

 

Three interconnected typical urban DMAs were selected for use in a field study. The study DMAs 

had existing, permanent, flow meters and pressure transducers at inlets and DG points, all connected 

to sensors and a telemetry system. The sampling interval of this existing equipment was 15 minutes, 

changed to every 1 minute for the study. Additional pressure sensors (approximately ten per DMA) 

were installed that were set to capture data at 0.2 Hz (5 second intervals) and connected to the 

SCADA system (in the UK the term SCADA is used for small/local situations such as factories or 

treatment works only). In most cases data was collected over several weeks to establish a “normal” 

pressure profile at each instrument location. Engineered events to provide known abnormal 

conditions were conducted involving the opening of five fire hydrants across two of the DMAs to 

provide a comprehensive set of conditions. The simulated bursts were created by fitting a standpipe 

to a fire hydrant and then slowly opening the fire hydrant valve with an in-line flow meter connected 

until the required flow rate was reached. Each hydrant was opened for approximately 24 hours, with 

each event approximately 2 l/s (0.44 gallons/sec) for the duration (alternating between each DMA 

and allowing at least 24 hours between each flush for system recovery). This flow rate represents 

between 6% and 12% of the average incoming flow for the two DMAs. 

 

METHODOLOGY 

There exist many different approaches to classifying data into two or more groups including 

statistical, naïve Bayes and Artificial Neural Networks (ANNs). Support Vector Machine (SVM) is a 

statistical learning theory widely used in the fields of bioinformatics, data mining, image recognition 

and hand-writing recognition. SVM was originally developed for solving classification problems 

however it can be extended and successfully applied to regression estimation. A novelty (anomaly) 
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detection data analysis system using Support Vector Regression was used to analyse flow and 

pressure time series data from the deployed sensors and hence detect abnormal events. The 

MATLAB code developed to implement the scheme described utilises LibSVM (Chang and Lin 

2001) which is a library for support vector machines and includes implementation of ε - SVM 

regression. The program implements the required data handling, normalisation, formatting into time 

delayed vectors (sparse format), SVR training and testing and also realises the algorithmic procedure 

for classification. Due to the distinct diurnal pattern in both flow and pressure and therefore the 

training is performed for each time of day and day type (i.e. weekday, Saturday or Sunday, as usage 

is different between them). Hence there is a separate SVR model for each (time of day, day type) 

pair, which is trained using all instances of that (time of day, day type) pair from the training data. 

Although this limits the amount of data available to train the separate models, SVR is not reliant on a 

vast amount of training data, four weeks was used in general for this study. The above scheme was 

implemented with 96, 288 and 1440 periods per day (i.e. 15 minute, 5 minute and 1 minute data) and 

by using a delay vector of the last D observations, i.e. each value was predicted using only the 

previous D values. Hence for fifteen minute data there are 96 weekday models, 96 Saturday models 

and 96 Sunday models. The model at time t  is trained with all vectors of the form 

[ ]
ttDtDt
yyyy ,,,, 11 −+−− K  in the training data for that day type. The model at time t is trained with all 

vectors of the form in the training data for that day. When the difference between the SVR model 

prediction and the actual value was greater than epsilon (derived from the standard deviation of 

observed data), this was classed as a ‘surprise’. If enough surprises are detected within an event 

window (of fixed size), this signals an event. Full details on the methodology and algorithmic 

parameter values, which were common across all sites, are provided in Mounce et al. (2010c). The 

data analysis system used was not intrinsic to the study in that it was inherently connected to the 

methodology and other data driven analysis systems could have equally been employed, and the 

important results are comparative across the sampling rates and use of averaging or instantaneous 



 8

data i.e. it is the sampling rate methodology and not the SVR classification which is the main thrust 

of the research. Results are summarised from analysis using the SVR detection technique for data 

with different instantaneous and averaged  temporal resolutions sampled from the base data set; the 

temporal resolutions being 1, 5 and 15 minute. Note that flow data is already averaged over 1 minute, 

so that 1 minute instantaneous and 1 minute averaged data is identical. An event window, the length 

of a time period used for evaluating whether an event had occurred, of 2 hours was used in each case, 

i.e. 120 one minute periods, 24 five minute periods or 8 fifteen minute periods. The number of 

surprises (i.e. when the expected value was more than a given percentage away from the predicted 

value) required for a novel event classification was calculated using the proportion of surprises in the 

training data, with a minimum of 2 for 15 minute sampling, 3 for 5 minute sampling and 7 for 1 

minute sampling (derived empirically). Any sensor with insufficient training data or other data 

problems was not used. 

 

RESULTS 

 

Inherent short term variations exist in measured pressures within distribution networks. An example 

of this is shown in figure 1 which shows pressure data collected at 5 second intervals at a point in a 

distribution system on a 100mm (4 in.) diameter pipe. Because of these variations, instantaneous 

measurements may be unrepresentative of the underlying pressure in the particular part of the 

network. The time-averaging of pressure data nullifies the effects of these variations over the chosen 

time span in order to expose the underlying trend. Instantaneous 5 minute and time-averaged at the 

end of consecutive 5 minute periods is plotted. Clearly, the time-averaged data follows the trend of 

the pressure data whereas instantaneous pressure readings extracted from the data every 300 seconds 

can be extreme values which do not describe this trend, such as the value at 2400 seconds. 

{Figure 1 approximately here} 
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Analysis was conducted on the available data streams for each relevant event and the overall results 

compiled. A summary of the detection time results is represented by means of scatter plots. The 

detection time results for a particular event (hydrant flush) and sensor were included only when: 

a) the event was detected by all three sample rates and both data handling methods (e.g. 

instantaneous versus averaged) on that sensor, 

b) all of the detection times were within a two hour window (since a two hour event classification 

window is used in the SVR algorithm), 

c) all of the event detections occur after the start of the engineered event. 

The detection times were normalised to values between zero and one; zero representing an 

instantaneous detection and one representing the maximum delay in detection time for that event and 

sensor. Figures 2a and 2b provide a comparison of these results at different sample rates for 

instantaneous vs. averaged data for flow and pressure respectively. 

 

{Figure 2a and 2b goes approximately here} 

 

The figures illustrate an upward trend, i.e. that faster sampling leads to faster detection. Also, the use 

of averaged data is faster than instantaneous data, improving as the sampling interval decreases. 

Overall, averaged data has an improved detection time over instantaneous data, hence the 

instantaneous 15 minute data is used as a reference datum. These improvements in detection times 

are summarised in table 1 (with current industry practice cells shaded) and it is evident that 

averaging can result in a more rapid detection time when compared to using the same instantaneous 

sampling rate. Note that the 15 minute instantaneous entry appears as zero in the table as this was 

used as the baseline. 

{Table 1 approximately here} 
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DISCUSSION 

 

The overall trend in the results is that faster sampling rate leads to earlier event detection. It is 

important to note that faster sampling may also lead to slightly more ghost detections (false 

positives) depending on parameters chosen. Figure 3 illustrates this general trend for the study.  

 

{Figure 3 approximately here} 

 

It was discovered that averaging can result in a more rapid detection for the SVR methodology when 

compared to using the same instantaneous sampling rate. Hence, we could conclude that averaging is 

a useful strategy for both flow and pressure when dealing with fifteen minute data. A note of caution 

should be applied in that one reason for the earlier detections is likely to be an artifact of the SVR 

technique. The standard deviation of the training data (which is used to determine whether a value is 

a surprise or not) is calculated from the averaged data. Since the variability of the averaged data is 

less than the raw data, basing the standard deviation on the averaged data and not the raw data makes 

a surprise more likely using the SVR technique which may result in more ghosts (results in figure 3 

show instantaneous results having 19% fewer ghosts). However, in practice, the data averaging is 

performed on the sensor so the instantaneous data would not be available directly.  

 

The use of hydraulic models for operational decisions requires well calibrated models with small 

errors which reflect as closely as possible the actual behaviour of the system, this becomes even 

more critical for real-time modelling (Machell et al., 2010). Pressure measurements must provide 

calculation of accurate friction loss components in order that an accurate representation of the flow 

regime in the network can be calculated. At any point in a distribution network, friction losses will 
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be small in comparison with the total head. However, any error in the measurement of total head will 

be reflected in the implied friction loss, potentially leading to large errors in the network hydraulic 

solution. Time-averaging accurate, higher frequency pressure data over consecutive time periods has 

the potential to eradicate errors associated with short-term variations in pressure leading to more 

accurate model calibration. This is readily possibly, allowing for suitable firmware upgrade, as 

sensors already perform this for flow. Although this is sometimes utilised for temporarily deployed 

logging (e.g. for leak surveys or data for model calibration) this is not the case for permanent 

installations. It should be noted that the benefits reported here pertain to event detection and do not 

necessarily apply to other applications such as real-time hydraulic state estimation. 

 

CONCLUSIONS  

 

• This investigation has shown that averaging is a useful strategy for both flow and pressure 

data collected from water distribution systems for event detection. In particular, averaging on 

the sensor (achievable without any additional overheads on communications by a simple low 

cost firmware upgrade) is recommended for pressure data, with the following significant 

benefits: 

o Improved detection time over instantaneous data when using data for event detection 

software (table 1) 

o Eradication of errors associated with short-term variations in pressure leading to more 

accurate hydraulic model calibration 

o The likely provision of better regulatory compliance. 

• It is concluded that, at the present time, a sampling interval of 1 minute (or 5 minutes) does 

not significantly improve detection to the point were it is worth the added increase in power 

(for battery powered sensors) and data management requirements with current technologies. 
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Similarly, current online model approaches do not require data at these frequencies. 

However, this is likely to change in the future as the density of sensing of water distribution 

system parameters increases due to reducing costs and improving logging capacity and 

communications options. 
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Figure captions: 

 

Figure 1: Pressure measured at five second intervals with five minute averaging and to a resolution 

of 0.5m in a 100mm diameter pipe 

 

Figure 2a: Average normalised detection times for instantaneous versus averaged data (flow) 

 

Figure 2b: Average normalised detection times for instantaneous versus averaged data (pressure) 

 

Figure 3: Average ghosts for differing sample intervals for averaged vs. instantaneous data across all 

sensors 

 

 

Table captions: 

Table 1: Summary of average improvement in detection times minutes, relative to 15 minute 

instantaneous data in each case 
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Table 1: Summary of average improvement in detection times (minutes), 

relative to 15 minute instantaneous data in each case. 

 

 

 Flow and pressure Flow only Pressure only 

 Inst. Avg. Inst. Avg. Inst. Avg. 

15 minute 0 44 0 45 0 43 

5 minute 29 49 38 52 26 48 

1 minute* 53 54 53 53  53 54 

 

*It should be noted that 1 minute was the minimum resolution for source flow data hence 1 

minute instantaneous and average flow data are the same, however source data for pressure 

was available at 5 second resolution hence 1 minute averaged and instantaneous pressure data 

are not the same. 
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Figure 1: Pressure measured at five second intervals with five minute averaging and to a resolution 

of 0.5m in a 100mm diameter pipe 
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Figure 2a: Average normalised detection times 

for instantaneous versus averaged data (flow) 

Figure 2b: Average normalised detection times for 

instantaneous versus averaged data (pressure) 
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Figure 3: Average ghosts for differing sample intervals for averaged vs. instantaneous data across all 

sensors 
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