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Abstract

This paper presents, for the first time, an analysis of space plasma turbulence based
on the NARMAX system identification approach. Fundamental nonlinear processes
in the low frequency turbulence observed in the terrestrial fore-shock by AMPTE
UKS and AMPTE IRM satellites are studied using time-domain identification methods
developed for nonlinear dynamical systems. It is shown, directly from the experimental
data, that the cubic nonlinearity has a significant influence on the steepening of the
nonlinear low frequency waves and on the dependence of the phase velocity upon the
wave amplitude. In comparison with a previous frequency domain approach the present
method requires only short data sets.

1 Introduction

The ultimate goal of the experimental investigation of space plasma turbulence is to pro-
vide a complete quantitative description of the composition of turbulence (distribution of
energy between various plasma modes) and the processes of energy transfer in it. The lat-
ter can be subdivided into two fundamental groups. The first group of processes includes
energy exchange between turbulence and plasma particles due to plasma instabilities.
Such processes can be considered as linear in the analysis of the plasma turbulence since
this does not require multi-wave coupling or energy exchange between various scales of
turbulence. The strength of such processes is characterized by linear growth (damping)
rates. The second group includes nonlinear processes of the wave-wave interaction which
provide energy transfer between various modes and scales. Three wave coupling (e.g.
decay instability) corresponds to a quadratic nonlinearity. Four wave interactions (e.g.
modulational instability) corresponds to a cubic nonlinearity. In the case of weak turbu-
lence the consideration of nonlinear processes can be safely limited only to the processes
which involve not more than four waves. Processes which involve five or more waves can
be disregarded for such turbulence because the time scale associated with the action of a
particular process increases with the number of waves involved. [Zakharov, et al.,1985].
All previous estimations of these parameters from multi-point measurements were
based on direct frequency domain modelling approaches. For example [McCaffrey et al.,
1999] for dispersive turbulence and [ Dudok de Wit et al., 1999] (DW) for non-dispersive
turbulence. The main disadvantage of these methods is that modelling in the frequency
domain involves solutions of ill posed problems and requires very long series of stationary P—
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data to provide reliable results. Such a strict requirement resulted in the absence in the
literature of even a single example in which the application of this method leads to the
estimation of the strength of three and four wave processes in space plasma. Only in the
case in which four wave processes can be disregarded can reliable results be obtained on
data sets of a realistic length [ McCaffrey et al., 1999]. However when the role of the four
wave processes is significant even the combination of all three components of the magnetic
field data in one surrogate data set for such a huge region as an ion fore-shock failed to
provide a data set long enough to estimate the strength of the four wave processes (DW).

In this paper we propose a new approach in the study of plasma turbulence using a
well established time-domain nonlinear system identification method based on the NAR-
MAX model [Leontaritis and Billings, 1987 |. This method provides reliable results even
for short data series. We applied this method to the developed turbulence observed in the
terrestrial fore-shock populated by diffusive ions. This region of application was chosen
for three reasons. First because it is saturated by the fundamental plasma turbulence
processes. Instability caused by the ion distribution leads to energy exchange between
plasma waves and ions. Manifestations of nonlinear wave coupling such as steepening of
waves and the generation of wave trains in schocklets [ Hope and Russell, 1983] ensures
significant energy transfer between various modes (and or scales) of turbulence. In par-
ticular, high order spectral analysis results indicate that three wave processes can not
be disregarded. The second reason was that in spite of the complexity of the turbulent
dynamics and absence of complete experimental data very comprehensive theories of the
processes in that region exist. The comparison between our results obtained from experi-
mental data with existing theoretical models of the processes involved can be considered
as an extra validation tool for our approach, reinforcing the standard model validation
methods in nonlinear system identification. The third reason is that it allows a compre-
hensive comparison of our results with the results obtained via the direct multi-spectrum
frequency domain modelling approach recently applied to the same interval of data (DW).

2 Brief description of the method and the data

The data used in this study were obtained by the AMPTE (Active Magnetospheric Parti-
cle Tracer Explorer) satellites UKS (United Kingdom Sub-satellite) and IRM (Ion Release
Module). The data sets came from the magnetometer instruments on board each space-
craft. The UKS fluxgate magnetometer [Southwood et al., 1985] was a modified version of
the ISEE 1/2 instrument. The IRM fluxgate magnetometer was described in Lihr et al.,
[1985]. The data used in the present study were gathered on day 304 of 1984 (October 30)
upstream of the quasi-parallel part of the terrestrial bow shock. This particular event was
intensively studied in several publications [ Schwartz and Burgess 1991; Schwartz et al.,
1992; Mann et al., 1994; Dudok de Wit et al., 1995, 1999]. In particular DW was devoted
to the identification of nonlinear processes in the fore-shock turbulence using modelling in
frequency space. The magnitude and three components of the magnetic field as measured
by AMPTE UKS and AMPTE IRM are plotted in Figure 1. The uniqueness of these
data explains why so many studies have already been devoted to that particular event.
The solar wind speed and magnetic field remained stable [Schwartz et al., 1992]. The
spacecraft separation vector was nearly parallel with the GSE z-axis. During the whole
period under investigation the orientation of averaged IMF remained in the quasi-parallel
regime and the angle between the magnetic field and the model shock normal was 10°-
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15° [it Schwartz et al., 1992]. The stability of these conditions enables the application
of a "black box” nonlinear system identification approach, which in this particular case
can be formulated as follows. After being detected by the first satellite (AMPTE UKS)
waves propagate in the plasma, where they are affected by the plasma instabilities and
the energy transfer processes within the turbulence itself. The accumulated effect of all
these processes is measured by the second satellite (AMPTE IRM). In this context the
measurements of AMPTE UKS and AMPTE IRM can be considered as input and output
of a black box system. The spectral components measured by the satellites should be
related by the following equation [Ritz and Powers, 1986 |:
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The first term on the right hand (r.h.s.) describes linear effects such as propagation and
growth (damping). The second term on the r.h.s. is due to the quadratic nonlinearity and
corresponds to the three wave coupling of the decay instability type in which two waves
at frequencies wy and wq transfer their energy to the wave on a summation frequency.
Similarly, the third term is a result of four wave interactions or cubic nonlinearity, which
involves interaction of three waves with energy transfer to the fourth one. The spectral
domain method proposed by Ritz and Powers [1986], which was used in DW, was based
on the solution of the system of linear equations similar to (1), in which L, @“*“? and
Ty1#>«s are unknown variables. Amplitudes of spectral components B} and B;: can
be estimated directly from measurements. As mentioned above the resulting system of
equations is ill posed and the standard regularisation procedure requires a very long data
series. The alternative approach, which we used in the present paper, is based on the
estimation of a time domain relation between discrete measurements of AMPTE-UKS
Buks and AMPTE-IRM Bj;p. This time-domain model can subsequently be mapped into
the frequency domain using the Volterra series representation which allows L, Q&2
and T¥1“2:%3 to be calculated analytically.

A linear dynamical system can be described as a convolution of the input u(t) and the
impulse response function A(?)

w®)= [ byt - ryr @

In the case of discrete measurements this will take the form
y(k) =Y h(i)u(k — 4) (3)
=1

where A(k) is the discrete impulse response. The Fourier transform H (jw) of h(7) which
relates the spectral components of the input and the output y(jw) = H(jw)u(jw) is the
linear frequency response function (H(jw) = Hyn(jw) = L(w)). An alternative and more

concise representation of (3) which does not involve infinite series is the linear difference
equation model
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The coefficients of the model in equation (4) can be estimated from a set of input and
output measurements using least-squares type algorithms. A generalisation of the convo-
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lution integral in equation (2) to nonlinear dynamical systems is the Volterra series
g(t) = /hl(r)u(t — T)dT + f / ha(Ty, T2)u(t — 7 )u(t — m2)dmdms + ... (5)
0 00

The Fourier transforms of the Volterra kernels Hy(jw), Ha(jw1, jw2)seee s Hn(JW1y eeey JWn)-.
define the Generalised Frequency Response Functions of the nonlinear system. While
Hq(jw) has the same meaning as Hpn(jw) for a linear system, the higher order fre-
quency response functions describe the energy transfer between tuples of input frequencies
Wi, ...,wy to the output frequency w = 5% ; w;. Therefore Ha(jw, jws) is equivalent to
Q1“2 and Hj is equivalent to T%1“2%3 in equation (1).

A finite dimensional input-output realisation of (5) is often much more suitable for
practical applications. The problem of finding equivalent finite-dimensional models for the
Volterra representation (5) has been studied by several authors including Sontag [1979]
and Fliess and Normand-Cyrot [1982]. A similar problem involving discrete-time response
functions has been investigated by Leontaritis and Billings [1987]. They derived a class of
finite-dimensional recursive nonlinear input-output models described in terms of a finite
number of parameters which can be estimated from data. These models are known as
NARMAX (Nonlinear AutoRegressive Moving Average with eXogenous inputs) models.
The models take the form of a set of nonlinear difference equations which can be viewed
as a generalisation of the linear input-output model in equation (4)

y(k) = fly(k—1),...,y(k—ny),u(k—1),...,u(k— ny),e(k — 1), ....,e(k—n.)) + e(k) (6)

where f(-) is some nonlinear function. Typical choices for f(-) are polynomial, rational
or wavelet functions expansions. Practically (6) is of the form of the linear difference
equation (4) with the addition of nonlinear higher order terms.

The finite dimensional model in equation (6) is equivalent to the infinite Volterra series
description in equation (5) but (6) is much more convenient to estimate and to analyse in
practice. Estimating the parameters in a nonlinear model (6) from data is however more
difficult than estimating a linear model. The main difficulty stems from the fact that
the number of all possible combinations of polynomial terms in the model can be very
large. Finding the right combination of terms that is appropriate to the data requires
searching through all the candidate terms to find the significant terms. This is known as
structure selection. Once the model terms are known the corresponding parameters can
be estimated. Finally a number of tests can be performed to check the model validity.

Normally linear models are estimated initially. If the linear models fail the validation
tests quadratic, cubic or higher order polynomial terms are included. Often, neither the
number of model terms nor the type of terms are known in advance. The method used
to estimate the model is known as nonparametric regression. The algorithm used in this
paper, Chen et al [1989], selects the model terms in an iterative manner until a given
error tolerance is achieved and estimates the unknown parameters. Validation tests are
then used to validate the identified model using correlation based tests that detect pos-
sible unmodelled dynamics in the residuals Billings and Voon [1986]. Other tests involve
comparing the model predicted output with the available experimental measurements.
The model predicted output is calculated at each sampling time using the previous model
predicted outputs and measured inputs as opposed to the one-step-ahead predicted out-
put which is calculated using previous output measurements in lieu of previous model




predicted outputs. The model predicted output can expose major flaws in the identified
model that the one-step-ahead predicted output cannot detect, such as lack of stability
and therefore is a more reliable indicator of the validity of the estimated model.

The experimental data set D is usually divided into two disjoint subsets Dy and D,.
The first data set D; is used to estimate the model while the second data set D5 is reserved
for testing the model. Since the model estimated from D; is assumed to have generated
the entire data set D, the model should be able to predict equally well the test data set
D,. The goodness of fit between the model predicted output and the data can be assessed

in terms of the Root Mean Square Error RMSE = N e(t:)?/N or by computing the
coherency function between the experimental and model generated data.

3 Wave phenomena in the fore-shock

The regions in which ion fluxes are streaming upstream along the magnetic field from the
terrestrial bow shock form the ion fore-shock. Gosling et al., 1978 and Paschmann et al.,
[1979] have shown that these ion populations fall into three distinct classes reflected, dif-
fuse and intermediate . Hoppe et al., [1981] established that distinct types of turbulence
correspond to these types of ion population. They have shown that typical waves asso-
ciated with the diffuse ion populations are strongly compressional waves which possess a
tendency towards steepening into shock like structures. Hoppe et al., [1981] proposed the
term shocklets to describe such structures. Often a discrete wave packet can be observed
at the upstream edge of shocklets. Hoppe et al., [1981] determined the dispersion of these
discrete wave packets from the ISEE data and identified them as whistler waves.

Schwartz et al., [1988], and Schwartz [1991] proposed the subdivision of nonlinear
wave phenomena observed in the vicinity of the front of a quasi-parallel shock into two
types. The first type includes structures "nested” relative to the shock. Nested structures
are often regarded as short bow shock encounters. The second type includes structures
"convected” with the solar wind. The other classification proposed by these authors sub-
divided wave structures into relatively short (= 10 seconds) isolated or identifiable single
excursions of the magnetic field (Short Large Amplitude Magnetic Structures, ”SLAMS”)
and longer periods of enhanced, turbulent field, ”Long Pulsations” (LPs). Often SLAMS
are observed to be embedded in Long Pulsations. Schwartz et al., [1988], and Schwartz,
[1991] showed that while LPs often show a nested signature all SLAMS observed by them
including those embedded in LPs, are convected with the flow. LPs usually have a higher
value of beta.

Some studies attribute primary significance to the nonlinear wave phenomena observed
in the fore-shock. Omidi and Winske [1990] suggest that the deceleration of solar wind to
sub-sonic speed at cometary shocks is due to the interaction with a number of shocklets.
Schwartz and Burgess [1991] concluded that the front of a quasi-parallel shock could
be considered as a superposition of SLAMS, which gradually decelerate the solar wind
and lead to the formation of the downstream state. The importance of identification of
nonlinear processes in the fore-shock turbulence is therefore related to the role of nonlinear
wave phenomena in the formation of the shock front.




4 Results and Interpretation

The wave phenomena investigated were first encountered by AMPTE UKS and then after
propagating through the plasma were measured by AMPTE IRM. Thus the data set
measured by AMPTE UKS and by AMPTE IRM were considered to be the input and
output of the system, respectively. The same preprocessing procedures used in DW were
applied to the data to allow an effective comparison between the two methods (Dudok de
Wit private communication).

One thousand pairs of input/output measurements of B, (the y component of the
magnetic field in Figure 1) obtained during the time interval 500-575 seconds past 10:50:00
UT were used in the identification.

A cubic polynomial model was identified from these data. The identified model was
simulated using the AMPTE UKS data as the input and the resulting model predicted
output was compared with the original AMPTE IRM measurements used to identify the
model. Figure 2 shows the measurements of the B, component by AMPTE UKS as a
solid line (input to the system), AMPTE IRM (output the system) as a dotted line and
the model predicted output calculated using the identified model as a dashed line.

Figure 3 shows the B, component measured by AMPTE UKS, AMPTE IRM and
the model predicted output calculated using the identified model over a different time
interval. This is the test data set that has not been used for model estimation. Both
Figures 2 and 3 show very good agreement between the AMPTE UKS measurements and
the model predicted output.

Linear and nonlinear correlation based tests were performed on the residuals to vali-
date the model. The correlation functions shown in Figure 4a,b,c,d,e are within the 95%
confidence bands, indicating that the model has captured the dynamics in the data.

The visual evaluation of the model predictions does not illustrate how the model
performs over a particular frequency range. This can be investigated by computing the

COheI‘eHC}’ functioﬂ
j T (J
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where P2 (f) is the magnitude of the cross spectral density of the model predicted output
B;IRM and the AMPTE IRM B, measurements, while P,(f) and P,(f) denote the power
spectral density of the model predicted output and the AMPTE IRM B, measurements
respectively. The value of the coherency is bounded between 0 and 1. A value of coherency
close to 1 means high correlation between the spectral components of the two data sets. A
value close to zero means complete independence between two signals at that particular
frequency. The magnitude and phase of the coherency function calculated for the real
measurements and the output of the model are plotted in Figure 5a,b.

The coherency estimated from a finite set of data is a statistical value, the distribution
of which is related to the real value of the coherency between the two signals. In particular,
the variance of the phase is determined by the real value of the coherency. The diagrams
show that the coherency is very high (> 0.9) up to the frequency 0.6 H z, which is the
frequency range which contains most of the energy of the turbulence. This frequency range
contains both nonlinear waves (in particular SLAMS) with frequencies less than 0.1 — 0.2
Hz, and important ULF waves such as whistler wave trains of shocklets which are usually
observed in the frequency range 0.2 > f > 0.5 Hz. The value of the phase is distributed
around 0 for the same frequency range implying the absence of an artificial delay in the



derived model. The same interval of data was used in DW to model the nonlinear processes
in the frequency domain and, although the coherency function calculated to validate the
DW model was relatively high for low frequencies corresponding to SLAMS f < 0.2 Hz,
it was very low ['(f) < 0.35 in the frequency range which corresponds to the whistler
wave trains. Such a low coherency implies that the DW model has failed to describe the
dynamics of this second class of waves accurately. In contrast, the high coherency of the
NARMAZX model indicates that this model describes the dynamics of both SLAMS and
the whistler packets and possible energy exchange between them very well.

The NARMAX polynomial model can be decomposed into its components to allow
the linear, quadratic and cubic contributions to be studied separately

BIFRMIE = % a; BUES (k — i) + > bi ;BYES (k= 0)BYES (k- j) + (7)
7 2,7
S €ijpBYES (k — )BYES (k - j)BYES (k - p)
2,7,P
or )
BJRM - BiRM,I x ByIRM,g . B;RM,C (8)

where BiRM’l, BéRM 2 and B;RM “ represent respectively the linear, quadratic and cubic
components of the model.

The linear part of the model can be used to compute the true linear frequency response
function H;(jw) the magnitude of which accounts for the change of the wave amplitude
due to the interaction with the plasma and the linear wave propagation effect.

The magnitude of H;(jw) calculated from the identified NARMAX model (7) is plotted
in Figure 6. In the lower frequency range f < 0.325, H,(jw) is greater than unity which
corresponds to the instability pumping energy into turbulence. This frequency range
corresponds to the nonlinear ULF waves and SLAMS which were assumed to grow as a
result of the unstable ion distribution. At higher frequencies, which correspond to whistler
wave trains and to discrete whistler wave packets, H;(jw) is less than 1 and reflects the
damping of the waves and energy transfer from turbulence to the plasma.

The significance of the linear, quadratic and cubic contributions to the dynamics of
turbulence can be illustrated using a particular nonlinear wave, SLAMS according to
Schwartz, which was observed during the interval 360-400 seconds past 10:50:00 UT.
In Figure 7 the original AMPTE IRM (output) measurements BIFM (solid) are plotted
together with the model predicted output (dashed line), the linear BjRM ! (dashed-dotted)
and the sum BJRM 4 4+ B;rRM’C (dotted) of the quadratic and cubic components of the
model output. From this figure it is evident that the linear part of the model provides
a relatively good representation of the evolution of the wave field, close to the model
predicted output which provides a very good match to the original data. The nonlinear
contribution is non-negligible only in the regions where the magnetic field gradient is
significant.

The real measurements of the same SLAMS (dashed), the quadratic (dashed-dotted
line) and cubic (solid line) contributions to the model are plotted in Figure 8 together
with the difference Ajpeq, (dotted line) between the measured output and the output of
the linear part of the model. It is evident from Figure 8 that the contribution of the cubic
term almost coincides with 6;peq- at the beginning of the whistler wave train whilst the
contribution of the quadratic component BéRM'q is very small. This indicates that the




effect of the quadratic nonlinearities on the dynamics of the wave field is less important
than that of the higher order nonlinearities.

The majority of the other nonlinear waves and discrete wave packets have similar
dynamics. Their evolution can be described with good accuracy in terms of the linear
part of the model except at the upstream edges of the nonlinear waves. If a whistler wave
train is attached to the upstream nonlinear wave, the nonlinear contribution is usually
significant at the interface between them. Outside that interface the dynamics of both
can be described with good accuracy by linear terms only.

All nonlinear waves except high amplitude whistler packets have such dynamics. The
dynamics of the latter is affected by an additional nonlinear effect which is illustrated
in Figures 9,10,11. The AMPTE IRM B, measurements taken during the time interval
600-630 seconds past 10:50:00 UT, plotted as a solid line, are superimposed in Figure
9 with the model predicted output BJRM calculated using the identified model (dashed
line) and the output BIEM:! corresponding to the linear part of the model (dotted line).
Two nonlinear wave phenomena were observed during this time interval. The first of
these is SLAMS observed during the time interval 604-610 seconds which is followed by a
high amplitude wave packet. While the evolution of SLAMS follows the pattern described
above, and can accurately be described by a linear process except around the edge region,
the large amplitude wave packet shows different dynamics.

Although the model predicted output calculated using identified NARMAX model
follows very closely this large wave packet (dashed line in Figure 9), there is an obvious
phase shift between the linear part of the model predicted output (dotted line in Figure
9) and the real measurements (solid line in Figure 9). This indicates that the linear
part of the model fails to provide the correct "phase” velocity for this wave packet. The
measurements taken by the AMPTE IRM satellite over the same time interval (solid line),
the output of the linear part of the model (dotted line) and output of the cubic part of the
model (dashed-dotted line) are plotted in Figure 10. This reveals that the contribution
due to the cubic nonlinearity is very significant. The actual role of the cubic nonlinearity
in correcting the phase of the linear part of the model is obvious in Figure 11, where
the real measurements (solid line) are superimposed with the cubic component BgRM € of
the model output (dash-dotted) and the linear model error Ajineqr (dotted line). In the
present paper we will limit our analysis of the evolution of nonlinear waves to these two

examples. A more comprehensive analysis of different types of wave events is the subject
of a further paper.

5 Discussion and comparison with frequency space iden-
tification

Many previous studies of the nonlinear waves in the part of the fore-shock considered
in this study pointed to the possible steepening of the upstream edge of the observed
waves. Such steepening can be attributed to fundamental nonlinear effects. In particular,
the fact that the effect of the nonlinear terms in our model on the wavefield dynamics
is important only at the upstream edge of SLAMS, is consistent with the effects of the
usual gasodynamic nonlinearity related to the terms 8V /8t 4+ VVV in the isothermal gas
motion or in the equations of ordinary hydro- or magneto-hydrodynamics. In such media,
initially finite amplitude waves will steepen up.

In frequency space such an effect leads to the coupling of spectral components and the




transfer of energy to higher frequencies and smaller spatial scales. In the frequency space
the steepening can be described as a generation of smaller scales in wave-wave interaction
processes [Sagdeev and Galeev, 1969]. In the case of SLAMS, Akimoto et al., [1991]
proposed another scenario in which steepening occurs as a result of plasma instability.
That is, the presence of the ions reflected from the shock give rise to resonant electro-
magnetic ion-ion instability. The fastest growing mode is saturated by trapping the ion
beam. According to this model two effects can contribute to the wave steepening. First,
the spatially bunched ion beam can generate localised waves. Second, as the beams slow
down they will resonate with the waves of shorter wavelength. Both effects will result in
the apparent steepening of the original wave.

Our results endorse the usual model of wave steepening because they show that the
cubic nonlinearity (i.e four wave coupling) plays a significant role in the steepening of the
leading edge of SLAMS and the transfer of energy to the attached whistler wave train.

The second nonlinear effect which has been observed is a contribution of nonlinearity
to the propagation velocity of high amplitude nonlinear wave packets. Such an effect also
has a straightforward theoretical explanation. In some theoretical studies [Mjolhus and
Wyller (1986)] it has been shown that quasi-parallel, circularly polarised MHD waves of
finite amplitude obey the Derivative Nonlinear Schréedinger (DNLS) equation

db 0
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where o and 3 are the model parameters. The solution of this equation takes the form:
b(z,t) = Agexp [i(kz — wt)]

where w = aA%k — Bk%. Thus the dependence of the phase velocity Vpn = % on the
amplitude Ag is due to the cubic nonlinearity.

Previously Dudok De Wit et al., [1995] pointed out a similar effect as a possible expla-
nation of the differences between maxima in the joint frequency-wave number spectrum
and the joint frequency-wave probability density. However the comparison of the joint
frequency-wave number spectrum and joint frequency-wave probability density did not
provide a definite experimental answer regarding the significance of involvement of a par-
ticular type of nonlinearity in that process.

It is worth comparing our results with those obtained by DW for the same interval
of data using frequency domain modelling. DW concluded that as the linear processes
govern the dynamics of SLAMS the quadratic processes are equally important to the
dynamics of whistler wave packets (see Figure 13 in DW ). The quadratic contribution
is therefore considered significant through the whole whistler wave packet. In contrast
our results indicate that the nonlinear effects are confined to the interface between the
whistler precursor and SLAMS.

In the DW model the quadratic nonlinearity is essential for the whole whistler wave
precursor. DW interprets this nonlinearity as three wave coupling which transfers energy
from the SLAMS to the precursor. However such a nonlinear coupling can take place in
a particular point of space-time only if both whistler wave precursor and SLAMS coexist
at that point which is not possible. Therefore such energy transfer can only take place at
their interface point, which is in agreement with our results, and not through the whole
whistle precursor, as would happen if the DW model were correct.

The other important issue concerns the role played by three wave interaction processes
(quadratic nonlinearity) in the dynamics. Unlike in the DW model, the results of our study
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reveal that the influence of the quadratic nonlinearity is very small compared to the effect
of higher order nonlinearities. In particular our analysis shows that the contribution of
four wave processes (which correspond to the cubic nonlinearity) exceeds the contribution
of three wave processes (quadratic nonlinearity).

An important argument to support the validity our model in this context is given by
comparing the time-domain identification approach used to derive it with the frequency
domain approach employed by DW.

There are two major steps in identification of the mathematical model of a physical
input-output system from experimental data. The first is to determine the "structure” of
the model i.e. the order of the nonlinearity and the terms involved. The next step involves
estimating the parameters associated with this model structure. The algorithm used in
this study to estimate our model performs model structure selection and parameter esti-
mation. The algorithm can deal with real noisy measurements and allows the estimation
of a noise model which ensures unbiased parameter estimates. As a major advantage, this
approach requires relatively small data sets.

There are two major disadvantages of the frequency domain method proposed for the
laboratory turbulence by Ritz and Powers [1986] and used in DW. The first is that this
approach requires that the structure of the mathematical model should be known. In the
case of the DW paper for example, this means deciding which of three types of dynamic
interactions should be included in the model, linear w « w, quadratic (i.e. three wave
processes of a decay instability type w; + wp < w), cubic (i.e. four wave processes of a
modulational instability type wy +ws+ws < w), and which, if any, should be disregarded.

But the main disadvantage of using this approach to analyse space plasma turbulence
is the enormous amount of data required to fit parameters to a model that accounts for
cubic nonlinearities. This precludes taking into account four wave processes despite the
fact that the cross-tricoherence estimated in DW indicate that four-wave interactions have
a considerable role in the dynamics of turbulence.

This may explain why the cross-coherency between the real measurements of the
maguetic field by AMPTE IRM and the output of the DW model is lower than 0.3 for the
frequency range that corresponds to the discrete wave packets. This is a strong indication
that the DW model is not an accurate description of the physical processes which take
place in plasma in the vicinity of the terrestrial bow-shock.

In contrast to the frequency domain method of Ritz and Powell the time domain
analysis based on the NARMAX model does not assume any prior knowledge of the
structure of the system. The model structure determination is an inherent part of the
identification procedure.

6 Conclusions

This study has demonstrated the potential of the NARMAX approach for the identifica-
tion of the processes in space plasma turbulence. The main advantages of this method
compared with the direct multi-spectrum estimation approaches previously adopted, are
the realistic amount of data that is required for the identification and the fact that the
resulting NARMAX model appears to provide a far more accurate description of the
dynamics with far fewer adjustable parameters than the low-order truncated Volterra ex-
pansions used in the frequency domain approach proposed by Ritz and Powers [1986].
Although such fundamental nonlinear processes as wave steepening and nonlinear phase

11




velocity shifts have been known from analytical studies for a long time, until now there
has not been much explicit experimental evidence of their importance in the dynamics of
turbulence in space plasma.
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Figure 1: The magnitude and GSE components of the magnetic field measured by AMPTE
IRM during the period on 30°* October 1984. Time in seconds after 10:50:00 UT
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Figure 2: The By, GSE components of the magnetic field measured by AMPTE UKS
(solid line), AMPTE IRM (dotted line) and the model predicted output of the identified
time domain model (dashed line) over the estimation interval. Time in seconds after
10:50:00 UT on 30" October 198.
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Figure 3: The By GSE components of the magnetic field measured by AMPTE UKS

BJ¥S (solid line), AMPTE IRM BIFM (dotted line) and the model predicted output

of the identified time domain model (dashed line) over the validation interval. Time in
seconds after 10:50:00 UT on 3G** October 1984.
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Figure 5: (a) The magnitude and (b) the phase of the coherency function calculated for
BgRM GSE components of the magnetic field measured by AMPTE IRM and the model
predicted output of the derived time domain model.
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Figure 6: Magnitude of the first order (linear) transfer function
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AMPTE BLHM—solid; Model B'YHM—dashed; B;_HM"—dash—dotted;BLHM'qq-B;RM':-duﬁed
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Figure 7: The B, GSE components of the magnetic field measured by AMPTE IRM,
BJRM (solid) are superimposed with the model predicted output (dashed line), the linear
B!':RM"! (dashed-dotted) and the sum B?{RM"? —I—JB’yI‘F""V['c (dotted) of the quadratic and cubic

components of the model predicted output. Time in seconds after 10:50:00 UT on 30t
October 1984.
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Figure 8: The B, GSE components of the magnetic field measured by AMPTE IRM,
BIEM  (dashed) superimposed with the quadratic BIfM.q (dashed-dotied line) and cubic

BJRM'C (solid line) contributions and the difference Ajineq, (dotted line) between the real

data and the output of the linear part of the model. Time in seconds after 10:50:00 UT
on 30" October 1984.
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Figure 9: The By GSE components of the magnetic field measured by AMPTE IRM,
BéRM (solid) superimposed with the output BTEM: corresponding to the linear part of the

model (dotted line) and the output B;:RM’C of the cubic part of the model (dash-dotted
line). Time in seconds after 10:50:00 UT on 30** October 1984.
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40 T T T T T T T

1 1 1 L
605 810 615 620 625 630 635 640
Time in seconds after 10:50:00 UT

Figure 10: The By GSE components of the magnetic field measured by AMPTE IRM,
BZ{RM (solid) superimposed with the model predicted output of the identified model BiRM
(dashed line) and the output BIM corresponding to the linear part of the model (dotted
line). Time in seconds after 10:50:00 UT on 30** October 198/.
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Figure 11: The B, GSE components of the magnetic field measured by AMPTE IRM,
BQTRM (solid) superimposed with the output B'RM:< corresponding to the cubic part of
the model (dash-dotted line) and with the difference Ajineqr between the real data and the
output of the linear part of the model (dotted line). Time in seconds after 10:50:00 UT
on 80F* October 1984.
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