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The effects of compression on single and multiphase flow in a model

polymer electrolyte membrane fuel cell gas diffusion layer
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Abstract

A two-dimensional study of an idealised fibrous medium representing the gas diffusion layer of a PEMFC is

conducted using computational fluid dynamics. Beginning with an isotropic case the medium is compressed

uni-directionally to observe the effects on single and multiphase flow. Relations between the compression

ratio and the permeability of the medium are deduced and key parameters dictating the changes in flow

are elucidated. The main conclusions are that whilst compression reduces the absolute permeability of an

isotropic medium, the creation of anisotropic geometry results in preferential liquid water pathways. The

most important parameter for capillary flow, in uniformly hydrophobic media, is the minimum fibre spacing

normal to the flow path. The effect is less pronounced with decreasing contact angle and non-existent for

neutrally wettable media.
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1. Introduction

The Gas Diffusion Layer (GDL) of a Polymer Electrolyte Membrane Fuel Cell (PEMFC) is a crucial

component and performs several functions simultaneously; it facilitates reactant gas transport towards the

catalyst regions and also provides pathways for product water and electron transport. A review of gas

diffusion layer properties and characterisation is provided by Park et al. [1]. The GDL also helps protect

the membrane when the Membrane Electrode Assembly (MEA) is sealed between the current collector

plates. Typically the current collectors will have gas channels, between 1 and 2mm wide, which can be

connected in a range of configurations [2]. This presents a series of channels and ribs or land areas that form

the contact points with the GDL. It is necessary to clamp the fuel cell together using bolts and a gasket in

order to seal the gasses and this can exert considerable pressure on the GDL, thus changing the material

structure and properties of the medium with sections beneath the ribs subject to high compression.

Several experimental studies of the effect of compression on the GDL have been made and are summarised

in Table 1. Compression is found to affect the liquid water profile in the GDL and the performance of the

fuel cell, but no clear picture emerges about the mechanism by which compression affects transport or how

this can be controlled.

Numerical studies of the effects of compression include a study by Hottinen et al. which revealed that

non-uniform current and temperature distributions occur and this can lead to hot-spots in the membrane

which affect the proton conductivity [14]. Su et al. found that cell performance is controlled by transport

under the channel area but when a sufficient pressure difference exists between adjacent channels, cross-

flow occurs and brings more reactant gas to the sections beneath the rib which improves performance [15].

Wang & Chen looked more closely at the water distribution inside compressed GDL and applied a spatially

varying porosity in order to obtain a saturation profile which matched neutron radiography data [16]. These

studies were all performed using CFD incorporating models for liquid water that rely on a saturation

profile linked to the liquid phase pressure. Another approach that does not rely on this assumption or

constitutive relationships, but instead models the percolation process directly, is the pore network model.

Lee et al. observed the effect of compression on the saturation profile in the GDL which took a more linear

shape under increasing compression [17]. The assumptions on the construction of the network and how the

geometry changes under compression meant that the pore-entry pressure for liquid was unaffected in the

through-plane direction but increased in the lateral in-plane directions thus creating preferential flow in the

through-plane direction.

Many studies of liquid permeation through fibrous GDL medium have been conducted and 2 descriptions
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Figure 1: Schematic illustration of PEMFC showing compression of GDL occurs up to the thickness of the
gasket.
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Authors Relevant Findings Highest CR
Nitta et al. [3] When compressed, sections of GDL beneath the channels remained at the same thickness and

sections under the rib were compressed to the thickness of the gasket. In-plane permeability
of the GDL decreased non-linearly by an order of magnitude in the compressed sections and
the electrical conductivity increased linearly with compression.

35%

Ge et al. [4] High compression reduces performance at high current density so contributes to greater mass
transport losses. Losses occur sooner and the effect is more pronounced for carbon paper
compared with carbon cloth. The decrease in contact resistance improved performance at low
current densities but the amount is insignificant compared with mass transport loss.

39%

Gostick et al. [5] Compressed GDL samples suffer a reduction in permeability by an order of magnitude in
both in-plane and through-plane directions. Results compare well with Carmen-Kozeny and
Tomadakis-Sotirchos models of permeability

50%

Bazylak et al. [6] Ex-situ study using fluorescence microscopy showed that 80% of liquid breakthroughs occur
in compressed regions which is greater than the proportion of GDL being compressed, thus
illustrating that compression creates preferential liquid pathways. The effect is attributed to
the hydrophobic PTFE coating being damaged leading to the creation hydrophilic pathways.

Not stated

Ismail et al. [7] The permeability in both in-plane and through-plane directions is reduced by up to an order of
magnitude when the samples are compressed from 80% to 65% of the uncompressed thickness.

35%

Gao et al.[8] Neutron radiography showed that the liquid water saturation in the GDL in the regions above
the ribs were lower than those in the regions above the channels

12%

Sasabe et al. [9] In-situ soft X-ray radiography study reveals in-plane and through plane visualisation of liquid
water profiles. The majority of liquid water accumulates under the rib sections with one
possible explanation given that the longer diffusion pathway for water vapour under the ribs
amounts to a less effective removal and more condensation.

Not stated

Ramos-Alvarado et
al. [10]

Compression shown to increase relative permeability for both wet-proof and non-wet-proof
samples.

24%

James et al. [11] X-ray computed tomography and numerical simulation based on pore-space shows that elec-
trical conductivity doubles for compressed sections. Diffusion co-efficient decreases, however,
through-plane diffusion co-efficient increases relative to in-plane co-efficient and both are sig-
nificantly lower than Brüggemann correlation.

40%

Mason et al. [12] Electrochemical Impedance Spectroscopy shows that with increasing compression, a significant
reduction in net performance is observed, with the most significant differences occurring in the
mass transport regions of the performance curves.

Not stated

Mortazavi & Tajiri
[13]

Breakthrough pressure increases as GDL is compressed but the trend is non-linear and changes
are slight for high compression. Breakthrough is only observed in 1 out of 5 cases when the
sample is virtually uncompressed suggesting that compression is beneficial to breakthrough
behaviour.

80%

Table 1: Experimental studies of the effects of compression on the GDL.

are most commonly found:

i Nam & Kaviany’s Inverted-Tree hypothesis [18] pictures many smaller flows agglomerating into a larger

branch towards the gas channel.

ii Litster et al. [19] present a picture of fingering and channelling where many liquid pathways emerge

from the catalyst region in a finger like fashion with some meeting dead-ends and others reaching the

gas channel.

Park et al. [20] were, to the author’s knowledge, the first to utilise the volume of fluid (VOF) method to

capture liquid water dynamics in a realistic 3-D GDL structure. Drainage was simulated and the pressure

gradient from reactant flow and the contact angle were observed to be the most important parameters

influencing the removal process, however the domain was very small and the percolation process was not

captured. Suresh & Jayanti [21] also modelled liquid transport through a representative GDL structure

and the methods employed are the basis for the present study. A regular isotropic lattice of cylindrical

fibres was created in 2-D and liquid was allowed to emerge from inlets at the bottom of the domain. Cases
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where gas-flow is absent, present in the channel and present through the GDL were simulated to observe the

effects of gas shearing on the liquid dynamics. The general pattern was that of channelling and fingering

similar to the description of [19]. When gas-flow was present in the channel, liquid droplets emerging at the

GDL-channel interface were removed from the surface, as observed by many experimenters and modellers

[22], [23], [24]. Gas-flow in the GDL was also observed to influence the dynamics of liquid water, creating

flow in the stream of the gasses. This convective flow, however, is dependent on the permeability of the

GDL medium, which reduces when the GDL is compressed as shown by many of the experimental results

in Table 1

In the present study, an idealised 2-D lattice of fibres representing the GDL is subject to compression

in the through-plane direction. Single phase and multiphase VOF simulations are conducted to observe the

effect of compression on the permeability and capillary flow which dominates the liquid transport process. It

will be shown that whilst permeability is reduced by compression, liquid flow in the through-plane direction

is actually positively affected leading to lower saturation of the GDL at breakthrough. Furthermore, the

effect of the contact angle on the liquid dynamics in the most compressed case is investigated and reducing

it is shown to have a detrimental effect on liquid water removal.

No previous study on the effects of GDL compression have been conducted using this technique. The

advantage of the technique over other modelling approaches is the resolution of the discrete phases when

compared to a mixture model and the solving of the full Navier-Stokes equations when compared to a

pore network model, lattice Boltzmann or morphological technique. Modelling provides the opportunity to

carefully control and investigate geometric and other parameters in order to elucidate fundamental cause

and effect in a way experimental studies cannot.

2. Method

2.1. Modelling Domain

The modelling domain is a 2-D cross section of cylindrical fibres that are non-overlapping and equally

spaced in a lattice configuration. This represents a small section of the GDL and channel configuration and

is idealised to enable a sufficiently detailed parametric study of the effects of changing the fibre spacing in

both the in-plane and through plane directions by means of compression; the model is most similar to a

carbon paper type GDL. The modelling process involves the construction of five geometrical configurations

representing different degrees of compression, details of which are found in Table 2. A channel section is later
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added to three of the modelling domains (cases A, C & E) which are used for the multiphase simulation.

Figure 2 shows the unit cell with characteristic lengths.

R

Dp,y

Dp,xy

Dp,x

Lx

Ly

Figure 2: Unit cell with characteristic lengths for the modelling domain.

The change in important parameters are also summarised in Table 2, where ǫ is the porosity which can

easily be calculated from the geometry and t is the tortuosity which is commonly related to the porosity

through Archie’s Law: t = ǫ−n where n is typically taken to be 0.5 when applying Brüggemann’s correction

to various transport properties [25].
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Case CR Dp,y[µm] Dp,xy[µm] ǫ t
A 0.00% 10.00 4.73 0.69 1.20
B 11.11% 8.00 4.04 0.65 1.24
C 22.22% 6.00 3.40 0.60 1.29
D 33.33% 4.00 2.82 0.53 1.37
E 44.44% 2.00 2.30 0.44 1.51

Table 2: Characteristic lengths and properties of the compressed geometry, t = ǫ−0.5.

Following the common assumptions that fibres are incompressible and that deformation only occurs in

the direction of compression [5], the fibre radius (R) and pore diameter in the x-direction (Dp,x) are fixed

at 4µm and 10µm respectively, for all cases. The compression ratio (CR) is defined as follows [26]:

CR =
L∗
y − Ly

L∗
y

=
D∗

p,y −Dp,y

D∗
p,y + 2R

(1)

where ∗ denotes the uncompressed value.

The modelling domains, which are 10 pores by 5, were created using ANSYS R© ICEM CFDTM by

constructing an ordered mesh surrounding a single fibre with an octagonal boundary which forms the interior

connections. The single fibre mesh is translated diagonally and copied and nodes are merged to form the

modelling domain. Additional square sections between adjacent fibres in each row are also required but can

easily be tessellated and merged in the same manner, providing the node spacing matches the vertical and

horizontal node spacing of the octagonal mesh. A section of the final result is shown in Figure 3. Typical

commercial GDLs can range in thickness between 110 and 420 µm as surveyed by El-kharouf and Mason

[27], and the current collector’s gas flow channels are usually between 1 and 2 mm in height. In the present

study, the thickest uncompressed GDL section is approximately 90 µm thick which is close to the actual

thickness of some GDLs and allows for a good degree of variability in the liquid flow paths whilst minimising

the computational expense of the simulation. We are not primarily concerned with channel droplet dynamics

or the behaviour of the liquid water after it has permeated through the GDL and merely include the channel

as representative of an open space so only part of it is resolved.

2.2. Governing Equations

2.2.1. Single-phase study

For the single-phase study the top and bottom edges form the inlets and outlets to calculate through-

plane permeability and the sides are treated as no slip walls, free slip boundary conditions for the domain

edges were not found to alter the results. For in-plane permeability, the boundary conditions are switched

7



Figure 3: Tessellated Structured Mesh.
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and the sides become the inlets and outlets. The circular boundaries around each fibre are treated as no slip

walls in all cases. The simulation is isothermal and the full Navier-Stokes equations of motion are solved

with zero gravity and other body forces owing to the dominance of viscous forces at these length scales. The

fluid is modelled as incompressible air (but any Newtonian fluid could have been chosen) which is a valid

assumption for low mass flow rates.

The continuity equation is given by:

∂ρ

∂t
+∇.(ρ~v) = 0 (2)

where ρ is the fluid density and ~v is the velocity. The momentum equation is given by:

∂

∂t
(ρ~v) +∇.(ρ~v~v) = −∇p+∇.(~τ) (3)

where p is the pressure and ~τ is the stress tensor given by:

~τ = [µ(∇~v +∇~vT )−
2

3
∇.~vI] (4)

where µ is the dynamic viscosity and I is the unit tensor.

Ismail et al. [28] have shown that, when calculating permeability, the Forchheimer or non-Darcy terms

cannot be ignored for higher flow rates when inertial losses account for a significant proportion of the

pressure drop across the medium. Ward [29] has shown that a smooth transition occurs between the linear

Darcy regime and the non-linear Forchheimer regime when increasing the Reynolds number, defined as

Re = ρ~vK1/2/µ where K is the permeability, above 1. The simulations are all conducted for Re < 1 and so

Darcy’s law holds:

Q = K
A

µ

∆p

L
(5)

where Q is the volumetric flow rate, A is the cross-sectional area of the medium open to flow and L is

the length of the medium.

2.2.2. Multiphase study

For the multiphase study, the domain is initially filled with air and three of the inter-fibre sections at the

lower boundary are selected for water inlets with the rest being set to no slip walls. The inlet velocity is set

to 0.01m/s corresponding to a capillary number, Ca = µlvl/σ where σ is the coefficient of surface tension,

of the order 10−4. This value is higher than those usually encountered in actual fuel cell operation but is
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closest to the capillary fingering flow regime reported in the literature [30] whilst remaining computationally

efficient and is also consistent with other studies [21],[31],[32]. A channel region above the GDL is included

in the flow domain with a pressure outlet at the top of the domain set to zero gauge pressure.

The VOF model is employed to simulate the multiphase behaviour with the primary phase being air and

the secondary phase being liquid water, thus simulating the environment within the GDL of the cathode

side of a PEMFC. The VOF model is a surface tracking technique where two immiscible fluids share a single

set of momentum equations and the volume fraction of each fluid is tracked throughout each cell of the

computational domain. The continuity equation for each phase becomes:

∂

∂t
(αqρq) +∇.(αqρq ~vq) = 0 (6)

and the momentum equation becomes dependent on each phase through the phase averaged density and

viscosity terms:

ρ =
∑

αqρq (7)

µ =
∑

αqµq (8)

where αq is the volume fraction of the qth phase. As for the single-phase simulations, the effects of

gravity are ignored in the multiphase simulations. This is justified by considering the Eötvös number of the

system, a dimensionless measure of the relative importance of gravity and surface tension:

Eö =
∆ρgd2

σ
(9)

which for droplets of diameter 30 µm (the largest possible in the simulation) is of the order 10−4, therefore

the surface tension is the dominant force.

2.3. Capillary Pressure Models

For simple straight capillary tubes, the capillary pressure, Pc, is determined by the curvature of the

interface. The curvature is essentially governed by the contact angle, θ, between the phases at the solid

boundaries constricting the flow and can be expressed by the Washburn relation:

Pc =
2σcos(θ)

R
(10)

10



where R is the capillary tube radius. The contact angle is a measure of how much a fluid wets (θ < 90◦) or

doesn’t wet (θ > 90◦) a particular surface and determines the direction of capillary flow as the fluid filling

the concave side of an interface will be at higher pressure. In the present study the contact angle is set to

130◦, thus signifying a uniformly hydrophobic medium. This value has been shown by Fairweather et al.

[33] to hold for a range of PTFE loadings. In reality, the PTFE coverage is not even and fuel cell diffusion

media do not possess uniform wettability but for the purposes of this study, which is more focused on the

geometrical structure of the medium, it is best to eliminate the influence of other variables on the results so

each fibre has the same boundary conditions applied.

More generally the capillary pressure is defined as the difference between the phase pressures and is

determined by the Young-Laplace equation [34] which makes use of the curvature of the interface (κ):

Pc = σκ = σ∇.n̂ = Pl − Pg (11)

where

n̂ =
n

|n|
(12)

and

n = ∇αq (13)

where Pc > 0 is conventionally understood to mean that liquid is the non-wetting phase as is the case

in a hydrophobic medium. Gostick [34] remarks that the Washburn relation’s simple dependence on the

contact angle erroneously predicts a switch in wettability for contact angle transitions across the value of

90◦ when in fact a porous medium remains neutrally wettable across a wide range of contact angles from

75◦ to 105◦. This suggests that wettability alone cannot determine the transport but dependence on the

structure, such as pore throat shapes and sizes, also plays an important role.

A model, shown schematically in Figure 4 and first proposed by Purcell [35], incorporates the influence

of geometry on the capillary pressure by considering a liquid interface passing through a toroid. Equation

(14) is an analytical expression for the capillary pressure and has been discussed in detail by Mason and

Morrow [36] and shown by Gostick [37] to fit very well with capillary pressure data for GDLs:

Pc =
−2σ

ri
.

cos(θ − β)

1 +R/ri(1− cos(β))
(14)

where ri is the minimum fibre spacing and β is the filling angle which is defined as zero when the interface
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reaches the smallest constriction at the centre of the throat. The filling angle at which the maximum

meniscus curvature occurs, βmax, was shown by Mason and Morrow to be:

βmax = θ − π + arcsin

[

sinθ

1 + ri/R

]

(15)

Figure 4: Schematic of a meniscus in the converging-diverging orifice of a toroid ring. For a non-zero contact
angle, the position of the maximum meniscus curvature is below the constriction in the torus.[36]

Surface tension is accounted for in this study by using the continuum surface force (CSF) model proposed

by Brackbill et al. [38] based on the Young-Laplace equation. It is expressed as a volume force Fvol as part

of the momentum equation where:

Fvol = σpq
ρκ∇αp

1/2(ρp + ρq)
(16)

In the present study, the surface tension coefficient between the phases (σpq) is taken to be 0.072 N/m which

corresponds to room temperature.

2.4. Mesh Independence

Mesh independence was established by observing the multiphase flow on a smaller section of the domain.

A structured mesh was favoured to an unstructured approach due to the recommendations that surface

tension models are very sensitive to mesh uniformity and quadrilaterals and hexahedra should be used in

regions where surface tension is important [39]. The resolution of the mesh can be controlled more easily
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with a structured approach with special attention paid to the node spacing normal to the fibre walls thus

ensuring a smooth transition from smaller to larger cells. Two tessellation techniques were applied with

one forming acute angles in the cells of adjoining units. These acute angles were observed to influence the

direction of liquid permeation so the technique was abandoned in favour of the octagonal approach with

adjoining square sections. The optimum number of cells was found to be about 200,000 for the uncompressed

case and about 350,000 for the most compressed case. Further details of the mesh and solution procedure

are available on request.

3. Results and Discussions

3.1. Single-Phase Study

The motivation for the single-phase study is partly to validate the modelling approach against published

experimental results and theories of permeability and partly to observe the effects on the flow to enable

comparisons with the multiphase modelling. The geometry is idealised in this approach and has a limited

range of pore and throat sizes but can be thought of as representing the average properties of the medium.

The 2-D restriction is necessary for computational efficiency but imposes a level of order which is not

commonly found in real GDL materials. Therefore, it is important to establish whether valid conclusions

can be drawn from such a modelling approach; comparisons made with established theory is the best way

of doing this.

The most frequently used permeability relation in studies of porous medium is the Kozeny-Carman (K-

C) equation, which is based on the idea of a porous medium being comprised of many tortuous capillary

tubes [40]:

K =
ǫ

kc

(

Vp

Ap

)2

=
ǫr̄2

4kc
=

ǫr̄2

8tv
(17)

where Vp and Ap are the total volume and surface area of the pore space, kc is the Kozeny constant

and r̄ = D̄/2 is the mean intercept half-length of the pore structure, a measure of the average pore radius.

The tortuosity for viscous flow, tv, is not defined straight-forwardly for complicated geometry and is usually

combined with the Kozeny constant as a fitting parameter for the medium and therefore:

K = C
ǫD̄2

32t
(18)
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Tomadakis & Sotirchos [41] showed that for random non-overlapping fibres D̄/R = 2ǫ/(1 − ǫ) and

therefore Equation (17) can be written:

K =
ǫ3R2

8tv(1− ǫ)2
=

ǫ3R2

4kc(1− ǫ)2
(19)

where R is the fibre radius, however this equation does not account for orthotropic fibre spacing unless

different constants are used for different directions so Equation (18) will be used.

Inspection of the velocity profile through the two extreme modelling domains in Figure 5 reveals that as

the geometry is compressed the flow path becomes less tortuous and regions develop where flow is stagnant

and unaffected by the bulk flow. A flow pattern emerges which is similar to a capillary tube and so fits well

with the K-C model.

(a) Case A (b) Case E

Figure 5: Comparison of the through-plane velocity profiles: Uncompressed case has uniform flow whereas
most compressed case shows areas of low velocity and capillary tube like flow.

By analysing the pressure drop and tangential velocity along a stream line that passes through the mid-

point of each throat, an effective capillary tube diameter can be derived using the following equation based

on flow through a slowly varying channel [42]:

v =
h2

2µ

dp

dx

(

y2

h2
− 1

)

(20)

where h is the half channel height, similar to r̄, in Equation (17), and y is the distance from the mid-point

of the channel. Therefore, along the stream-line coinciding with y = 0, the effective capillary tube diameter

that the fluid appears to pass through can be calculated as:

Deff = 2

√

2µv

|dp/dx|
(21)
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The flow parameters and effective capillary tube diameter along a streamline passing through the centre

of each pore throat for the uncompressed case and the most compressed case are shown in Figure 6.

The pressure gradients in all cases oscillate between a regular minima and maxima when passing through

pores and throats respectively. The minima and maxima lie within an order or magnitude of one-another so

to constrict the permeability calculation purely to a minimum length scale would be inaccurate. Excluding

edge effects the average effective capillary tube diameter is calculated for all cases in both in-plane (x) and

through-plane (y) directions and plotted as a function of compression ratio in Figure 7.

Figure 8 shows the numerically calculated permeability according to Darcy’s Law plotted against com-

pression ratio along with a simplified K-C type permeability utilising the average effective capillary tube

diameter and Equation (17). Here a constant value of C = 2.31 is used and Archie’s Law is used for the

tortuosity for lack of a better approximation that holds over the compression range. It can be seen that

the through-plane permeability becomes greater than the in-plane permeability under high compression.

Equation (18), can be tuned with kc = 9.5 to match the through-plane data quite well. A kc value of 8.10

was found by Gostick et al. [5] to correspond well to the permeability of SGL-10BA with flow perpendicular

to the fibre direction. Therefore, it can be concluded that the results are representative of carbon paper

GDLs.

3.2. Multiphase Study - Low Compression

The results from the multiphase simulations for the uncompressed and middle cases are presented in

Figures 9 and 10 respectively. The general pattern of evolution of the liquid phase through the GDL is

similar for the uncompressed and mid-level compression cases, and again they are both similar to the work

of Suresh & Jayanti’s case without the presence of air flow [21]. Liquid flows from each inlet and upon

meeting a fibre wall deforms and flows in one or both of two directions around it. As each row of fibres has

its centres placed directly between the fibres in the rows above and below, and there are no other deforming

forces present, the direction of flow is largely random and subject to bifurcation. Due to the method of

mesh creation the conditions at each of the inlets should be identical yet the individual pathways are not,

because of the non-linearity in the governing equations.

Before the liquid front has reached the mid-point through the fibrous domain, the paths have converged

and the pressure field is shared throughout the bulk of the liquid. As more liquid is added through the inlets,

capillary pressure increases and the interfaces penetrate the constricting throats between fibres further.

The flow pattern is that of a build up and quick release of pressure in the bulk fluid as surface tension

restricts the flow simultaneously across the interfaces. Once a constriction is transitioned the bulk fluid is
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Figure 7: Average effective capillary tube diameter (D̄eff ) for single-phase flow in the in-plane (x) and
through-plane (y) directions.
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Figure 8: Absolute permeability as a function of compression ratio with simple Kozeny-Carman relationship.
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(a) 3 ms

(b) 10 ms

(c) 16 ms

Figure 9: Uncompressed geometry showing liquid permeation as a function of time from 3 inlets through
the fibrous GDL and emerging as a droplet in the channel.
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(a) 3 ms

(b) 8 ms

(c) 13 ms

Figure 10: Mid-level compression (CR = 22.22%) case showing liquid permeation as a function of time from
3 inlets through the fibrous GDL and emerging as a droplet in the channel.
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(a) 0.5 ms

(b) 1.5 ms

(c) 3.9 ms

Figure 11: Most compressed case (CR = 44.44%) showing liquid permeation as a function of time from 3
inlets through the fibrous GDL and emerging as 3 separate droplets in the channel with no lateral spreading
of the paths.

allowed to flow through the pore throat and it expands quite quickly to fill the pore space. Simultaneously,

the other interfaces connected by the bulk recede owing to the drop in liquid phase pressure. This effect

is most obvious when the liquid reaches the GDL surface and expands rapidly to form a droplet, but does

occur throughout the entire process. As the inlet velocity is maintained constant a periodic oscillation in

the pressure at the inlets can be observed corresponding to mini-breakthroughs of the liquid front through

the restricting pore throats.

Once a droplet is formed at the GDL surface a preferential pathway is established through the connected

bulk fluid. The force required to expand the surface of the droplet is less than that required to penetrate

through a constricting pore throat and so all other interfaces remain static until the droplet is removed.
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3.3. Multiphase Study - High Compression

The most compressed case, shown in Figure 11, differs greatly from the other multiphase cases invest-

igated with the differences solely due to the change in minimum fibre spacing. All other flow parameters

and wall contact angles remain the same. High compression of the medium creates anisotropy in the min-

imum fibre spacing normal to flow and this influences the evolution of the liquid path significantly. No

lateral spreading is observed in the high compression case and permeation occurs in a fraction of the time,

indicating much higher relative permeability. As paths do not converge, multiple droplets form at the GDL

surface.

For the lesser compressed cases, the minimum fibre spacing is the diagonal between successive displaced

rows of fibres termed Dp,xy in Figure 3 but for the most compressed case it is the vertical space between

columns of fibres termed Dp,y. As flow in both the x and y directions must pass through Dp,xy, both are

subject to the same resistive forces and the flow is approximately uniform in both directions for the first

two cases. However, because Dp,y only restricts the flow in the direction normal to it, flow parallel to Dp,y

progresses and the liquid follows the path of least resistance. Due to the regularity of the geometry, the effect

is perhaps accentuated as the liquid front is always presented with a wider throat to flow through in the same

direction. The characteristic of the medium, which should reflect the anisotropy in the fibre spacing normal

to flow, is the permeability; a GDL which has higher through-plane permeability than in-plane permeability

should give a preferentially directed liquid flow (and correspondingly a higher relative permeability) in

the through-plane direction. Typically GDLs have higher in-plane permeability but compressed sections

may experience a switch due to a smaller reduction in the average fibre spacing normal to the direction of

compression (which is always through-plane).

Ramos-Alvarado et al. have experimentally determined the effect of compression on the absolute and

relative permeability of Toray 090 carbon paper [10]. It was observed that whilst absolute permeability

decreased with compression relative permeability increased, which can now be explained by the relative

change in fibre spacing.

3.4. Influence of contact angle

When the contact angle is 90◦, Equation (14) shows that the capillary pressure is zero at the mid-point

of the throat where the filling angle β = 0, this is also the point at which maximum curvature occurs

(βmax). After the invading fluid passes through the mid-point, the sign of the capillary pressure becomes

negative, indicating a switch in preferential wettability for the phases. For greater contact angles Equation
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(a) Contact angle = 130◦

(b) Contact angle = 110◦

(c) Contact angle = 90◦

Figure 12: Three snapshots at 3.5 ms for the most compressed case (E) with different contact angles.

(15) shows that the maximum curvature occurs after the point of maximum constriction with increasing

β. This phenomenon explains why we observe interfaces that have penetrated past the mid-point but are

unable to progress any further when the surface contact angle is greater than 90◦. Once capillary pressure

is great enough to push the interface past the point of maximum curvature the fluid flows uninhibited as

surface tension decreases with expanding pore diameter.

Radhakrishnan and Haridoss have shown that compression can decrease the contact angle or rather

increase the wettability of GDLs and with cyclic compression these changes may become permanent [43].

The most likely cause for this change in wettability is the damage and breakup of the PTFE coating.

Equation (14) shows that for neutrally wettable media the capillary pressure is zero when the filling angle

β is zero regardless of the width of the pore. Therefore, one would expect the effects of fibre spacing on

multiphase flow to become less pronounced for neutrally wettable media. Two further simulations for the

most compressed case with contact angle θ = 90◦ and 110◦ are presented in Figure 12 and do indeed show
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CR θ Saturation
0.00% 130 0.34
22.22% 130 0.51
44.44% 130 0.25

Table 3: Saturation levels in the GDL for the multiphase simulations at breakthrough.

lesser directional flow and greater saturation with lesser contact angle. It is therefore important to increase

the through-plane permeability and retain the hydrophobic nature of the GDL in order to direct flow. In

other words, smaller hydrophobic throats are more effective at stopping liquid flow than neutrally wettable

ones.

3.5. Saturation

The saturation is an important parameter when considering multiphase transport and is linked to ca-

pillary pressure and relative permeability by empirical relationships throughout fuel cell literature. The

capillary pressure in these cases is that required for the liquid to penetrate the narrowest throat or constric-

tion and overcome the greatest surface tension force. Saturation levels at breakthrough (i.e. when droplets

begin to form at the surface of the GDL) for each case are presented in Table 3. At low compression, where

the minimum fibre spacing is isotropic, the saturation is high and the variation between results is reflective

of the non-linear nature of the governing equations. For high compression, where the minimum fibre spacing

is anisotropic, the liquid is directed effectively in one direction towards the channel and the saturation is

much lower. When the contact angle is decreased this lessens the effect of anisotropic surface tension forces

and the lateral spreading increases. This leads to a greater saturation but breakthrough is not achieved in

the same time-scale for the lesser contact angles so they are not shown in Table 3.

The results agree with the observations of Bazylak et al. [6] who observe preferential liquid pathways

under compressed sections of a GDL and also explain the results of Gao et al. [8] who observe a reduced

saturation under compressed sections of a GDL before and after liquid breakthrough. The method of

observation and experimental set-up is different in both of these experiments with the key difference being

the location of liquid water injection. Bazylak et al. allow water to absorb across the whole section of

GDL (both compressed and uncompressed) whereas Gao et al. inject water only into the channel section.

As there will be a negative porosity gradient from the uncompressed GDL adjacent to the channel to the

compressed GDL in contact with the rib one would expect there to be limited lateral spreading and thus

lower saturation under the rib. Bazylak et al. have also shown that GDLs can be fabricated to give biased
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directional transport to liquid water by altering the average throat spacing [44], which is the same mechanism

observed in the present study.

Porosity gradients may in-fact play an important role in determining the liquid water distribution and

overall saturation as shown by Zhan et al. [45] and more recently Wang and Chen [16] and Garcia-Salaberri

et al. [46]. As porosity is directly linked to the local fibre spacing the results presented in this study would

also indicate that porosity grading plays an important role in directing liquid transport. However, it may

be better to base relationships on fibre spacing directly as porosity is a volume averaged parameter and may

smooth out the local anisotropy introduced by compression.

Chi et al. have studied the effect of compression on the fuel cell performance using a continuum model of

a single PEMFC with a serpentine flow channel [47]. They find that saturation increases downstream when

compression effects on the absolute permeability are accounted for. However, the effect of compression on

the relative permeability or the capillary pressure is not mentioned. Further detailed investigation of how

compression alters these key relationships is required for modelling purposes to understand the whole effect

of compression on PEMFC performance and flooding.

4. Conclusions

The effect of compression on a representative PEMFC gas diffusion layer has been modelled using com-

putational fluid dynamics. Five geometries were meshed utilising a structured tessellation technique and a

single-phase study revealed that a switch in permeability occurs at high compression where the through-

plane permeability becomes greater than the in-plane permeability. A simplified Kozeny-Carman relation

using an effective capillary tube diameter is found to agree very well with the numerical data and reproduces

the permeability switch at the correct level of compression.

Multiphase simulations using three of the geometries reveal that liquid transport is directed by com-

pression resulting in a lower saturation at breakthrough. The cases with mild or no compression display

high levels of lateral spreading owing to the bifurcations in liquid flow path and uniform surface tension

in both directions whereas the case with high compression exhibits preferential liquid pathways and fast

water ejection. When the contact angle is reduced to represent a neutrally wettable media the effect is also

reduced signifying both the importance of structure and surface energy in determining the liquid flow.

These findings help to explain some of the previous experimental observations in Table 1 but further

work is required to establish relations for the relative permeability as a function of compression ratio and

saturation due to the expensive nature of the computations. This work can help to form the basis of future
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investigations using PNMs or other techniques and highlights the need for further understanding on the

topic of transport under compression. Moreover, a critical assumption highlighted by this study is how

the fibre spacing changes in each direction under compression. The absolute in-plane and through-plane

permeability of the medium could be used to determine whether tensorial relative permeability exists. From

the findings it can also be concluded that increasing the through-plane permeability by other methods would

have a beneficial impact on the liquid water transfer.
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5. Nomenclature

Roman

A[m2] Cross-sectional area
Dp,i[m] Pore diameter in direction i

g[m2s−1] Gravitational constant
K0[m

2] Absolute permeability
L[m] Length
P [Pa] Pressure

Q[m3s−1] Volumetric flow rate
R[m] Fibre radius
r[m] Pore radius
s Saturation
t Tortuosity
V [m3] Volume

vi[s
−1] Velocity of phase i

Greek

α Volume fraction of phase q
ǫ Porosity
θ[deg] Contact angle

κ[m−1] Curvature of interface
µ[Pas] Dynamic viscosity
φ[deg] Interfacial Orientation

ρ[kgm−3] Density

σ[Pam−1] Surface tension coefficient
τ [Pa] Stress Tensor
Abbreviations

CFD Computational Fluid Dynamics
CR Compression Ratio
CSF Continuum Surface Force
GDL Gas Diffusion Layer
HPC High Performance Computng
MEA Membrane Electrode Assembly
PEMFC Polymer Electrolyte Membrane

Fuel Cell
PNM Pore Network Model
PTFE Polytetrafluoroethylene
VOF Volume of Fluid
Suffices

c Capillary
g Gas
l Liquid
p pore
v viscous
w water
x in-plane direction
y through-plane direction
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List of table and figure captions

Figure 1: Schematic illustration of PEMFC showing compression of GDL occurs up to the thickness of the

gasket.

Figure 2: Unit cell with characteristic lengths for the modelling domain.

Figure 3: Tessellated Structured Mesh.

Figure 4: Schematic of a meniscus in the converging-diverging orifice of a toroid ring. For a non-zero contact

angle, the position of the maximum meniscus curvature is below the constriction in the torus.[36]

Figure 5: Comparison of the through-plane velocity profiles: Uncompressed case has uniform flow whereas

most compressed case shows areas of low velocity and capillary tube like flow.

Figure 6: Comparison of key flow data for the uncompressed case (A) and most compressed case (E): (a)

effective capillary tube diameter, (b) tangential pressure gradient along stream-line (c) tangential velocity

along streamline.

Figure 7: Average effective capillary tube diameter (D̄eff ) for single-phase flow in the in-plane (x) and

through-plane (y) directions.

Figure 8: Absolute permeability as a function of compression ratio with simple Kozeny-Carman relationship.

Figure 9: Uncompressed geometry showing liquid permeation as a function of time from 3 inlets through the

fibrous GDL and emerging as a droplet in the channel.

Figure 10: Mid-level compression (CR = 22.22%) case showing liquid permeation as a function of time from

3 inlets through the fibrous GDL and emerging as a droplet in the channel.

Figure 11: Most compressed case (CR = 44.44%) showing liquid permeation as a function of time from 3

inlets through the fibrous GDL and emerging as 3 separate droplets in the channel with no lateral spreading

of the paths.

Figure 12: Three snapshots at 3.5 ms for the most compressed case (E) with different contact angles.
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