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Abstract

Our objective is to efficiently and accurately estimate human upper body pose in ges-
ture videos. To this end, we build on the recent successful applications of random forests
(RF) classifiers and regressors, and develop a pose estimation model with the following
novelties: (i) the joints are estimated sequentially, taking account of the human kinematic
chain. This means that we don’t have to make the simplifying assumption of most pre-
vious RF methods – that the joints are estimated independently; (ii) by combining both
classifiers (as a mixture of experts) and regressors, we show that the learning problem is
tractable and that more context can be taken into account; and (iii) dense optical flow is
used to align multiple expert joint position proposals from nearby frames, and thereby
improve the robustness of the estimates.

The resulting method is computationally efficient and can overcome a number of
the errors (e.g. confusing left/right hands) made by RF pose estimators that infer their
locations independently. We show that we improve over the state of the art on upper body
pose estimation for two public datasets: the BBC TV Signing dataset and the ChaLearn
Gesture Recognition dataset.

1 Introduction
The goal of this paper is to recover the 2D layout of human upper body pose over long video
sequences. The focus here is on producing pose estimates for use in gesture analysis and
recognition. As case studies, we show experiments in sign language and Italian gestures.
In these domains we encounter gestures which can be performed continuously over up to
an hour of video and with high degrees of variation in pose and person body shape. Fur-
thermore, foreground appearance is highly varied with people wearing different clothing and
standing in front of moving and cluttered background scenes.

c© 2014. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Figure 1: Process diagram of temporal sequential upper body pose estimation on RGB input frame t.
Sequential detection of body joints (Stage 1) and detection reinforcement with optical flow (Stage 2) for
a person’s right arm is shown running from left to right. (a) Given the head position, joints are detected
using a separate mixture of experts per joint, in order of shoulder, elbow then wrists. Knowledge of
previous experts’ output joint prediction (white arrows) is passed on when estimating the next joint in
sequence. Each expert is responsible for a region of the image relative to the previous joint in sequence.
Experts are positioned with fixed learnt offset vectors (positions shown as black dots with black arrows
indicating offsets). (b) Joint detections produce a body joint confidence map (different colour per joint)
shown superimposed on an edge image. (c) Confidences at frame t are reinforced by combining warped
confidences (using optical flow) from n frames either side of t. (d) Body joint estimates are chosen as
points of maximum confidence from the combined confidence map, with final pose output illustrated
with a skeleton on RGB frame t.

We build upon recent work within the area of upper body pose estimation. The generative
model by Buehler et al. [1] is capable of continuously tracking a person performing hours
of sign language, but requires manual annotation of some frames, and is computationally
expensive. This generative model was later used to train a much faster and more reliable
pose estimator [2, 3, 13] using a sliding window random forest (RF). However, these methods
only utilised context within a small sliding window per frame. They were unable to capture
any global structure of the upper body and ignored dependencies between body parts. This
resulted commonly in non-valid upper body poses, or confusions between left and right hand
predictions. In our method we mitigate these problems by implicitly encoding an upper body
kinematic chain using sequential forests. Furthermore, in the spirit of Zuffi et al. [20], we use
dense optical flow as an additional observation to reinforce pose estimates at a given frame
using neighbouring frames, thus leading to more constrained output, and improved accuracy.

RFs are a very powerful tool for pose estimation thanks to their comfortable scalability to
very large amounts of training data and their computational efficiency. However, efficiency
normally comes at the price of assuming independence for each output variable, and ignoring
output structure [6, 15]. Past solutions to this have been of two kinds: post-processing meth-
ods, and implicit methods. Post-processing methods take the output of the RF and fit models
to them, such as Markov or Conditional Random Fields [7, 11, 12], shape models to regu-
larise local detections [4], or simply filtering the output by checking global consistency of
local detections [18]. Usually post-processing methods are rather slow due to the additional
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overhead. In contrast, implicit methods build constraints between output variables into the
detection method directly during training [8, 9, 10, 16] by passing output from a sequence
of classifiers as input into another classifier. Recent developments in RF sequential classifi-
cation are that of entangled decision trees [9], which were later extended by Kontschieder et
al. [8] to use more context by including long-range features from geodesically filtering the
class posteriors, and Dantone et al. [5], who fitted a pictorial structure model onto the output
from two stacked RFs trained to approximate part dependencies.

The method presented in this paper (shown in Figure 1) addresses all of these issues by
combining the benefits of both types of approaches (post-processing and implicit). First,
unlike methods which aim to learn context, we take advantage of the kinematic constraints
of the human body and explicitly build in context which we know is of importance, such
as elbow location when detecting the wrist. A pose prior is implicitly built in by using a
sequence of locally trained RF experts for each body parts (incorporating both classification
and regression forests). This sequential detection method is capable of learning strong de-
pendencies between connected body parts while keeping the search window small and the
learning problem tractable. Second, our method removes the need for a sliding window part
detector. This allows many more trees to be used, boosting accuracy while still maintain-
ing efficiency. Third, our method’s locally trained RFs deal with less of the feature space
compared to its sliding window counterparts, which makes learning easier and, as we show,
leads to improved accuracy. Fourth, temporal context is used to boost performance by incor-
porating output from multiple expert opinions from neighbouring frames. This is done using
dense optical flow in a post-processing operation to warp output opinions to a single frame.

We evaluate our method on two datasets, the BBC TV signing sequences [2] and the
ChaLearn gesture recognition dataset [14]. In both cases, our method is trained without any
manual annotation of body poses. For the BBC TV dataset, ground truth poses are obtained
using a generative upper body pose estimator [1]. For the ChaLearn dataset, we use the
provided skeletal Kinect tracking output as training data. At test time we compare against
manual ground truth and pitch our system against Kinect skeletal output.

2 Temporal Sequential Pose Estimation
We cast the task of upper body pose estimation as a detection problem. For each frame in
the video, the configuration of the upper body parts is inferred by detecting body part joints:
left/right shoulder, left/right elbow, left/right wrist and head centre.

Poses are estimated separately in two stages as shown in Figure 1: Stage 1, where body
joints are detected sequentially; and Stage 2, where the detections are reinforced with tem-
poral information from optical flow. We next give an overview of these stages.
Stage 1 – Sequential body joint detection. In this stage, body joints are detected sequen-
tially in a single video frame. Each joint in the sequence depends on the location of the pre-
vious joint: the head is detected first, followed by shoulders, elbows, and wrists, separately
for left and right arms. Stage 1 in Figure 1(a) illustrates this sequential detection. Begin-
ning with an RGB frame, the frame is first encoded into a feature representation, shown in
Figure 1(a) as an image with pixels categorised as either skin (red), torso (green) or back-
ground (blue). For each joint, a separate mixture of experts (random forests) votes for the
next joint location (votes shown as white lines in figure). Each expert (shown as black dots
in figure) is responsible for a particular region of the image dependent upon the location of
the previous joint in the sequence (positioned according to fixed learnt offset vectors, shown
as black arrows). The output from this process consists of a confidence map over pixels for
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each joint, illustrated in Figure 1(b) with each joint in a different colour, with higher-intensity
colours indicating higher confidence.
Stage 2 – Detection reinforcement with optical flow. The joint detections in Stage 1 are
done independently for each frame. However, in reality, strong dependencies exist between
temporally close video frames. In this stage, confidences from Stage 1 produced at a frame
t are reinforced with temporal context from nearby frames. Additional confidence maps are
produced for neighbouring frames, and are then aligned with frame t by warping them back-
wards or forwards using tracks from dense optical flow. This is illustrated in Figure 1(c) for
confidences produced within n frames either side of frame t. These confidences represent a
strong set of expert opinions for frame t, from which joint positions can be more precisely
estimated than when only using one confidence map. Finally, body joint locations are es-
timated at frame t by choosing positions of maximum confidence from a composite map
produced by combining warped confidences (examples shown in Figure 1(d)).
Forest overview & comparison to prior art. Our sequential pose estimation method uses
two types of random forests, one of each type, for each expert: (1) classification forests,
which measure the likelihood an image region (determined by the learnt offset vector w.r.t.
the previous joint) contains useful context for predicting the joint of interest, termed the re-
gion’s ‘utility score’; and (2) regression forests, which identify the joint’s precise position
within the regions, weighted by the utility scores from the classification forest. In contrast
to the sliding window part detector RFs of [2, 5, 6, 15, 19], our expert joint detectors are
constrained to local image regions assigned by the sequential RF. This considerably simpli-
fies the learning task and yields a much more computationally efficient joint detector. In
contrast to auto-context methods [16] and entangled forests [8, 9] which try to learn output
dependencies, our offset vectors exploit prior knowledge about the human kinematic chain
to explicitly encode much stronger dependencies between connected body parts.

3 Implementation Details
In this section we give further details about the two stages of our method.

3.1 Stage 1 – Sequential body joint detection
The sequential forest consists of five main components: (i) a global cost function, (ii) fea-
ture representation for input images, (iii) offset learning (between connected body parts),
(iv) classification forests (for computing region utility scores), and (v) regression forests
(voting for joint positions in the regions, weighed by their region utility scores). We describe
each of these in detail.
Global cost function. The sequential detection model is encoded as two separate ‘chains’
of detections, one for each arm. Each detection chain maximises the output from a mixture
of ‘experts’ (random forest regressors), each of which votes separately for the most likely
position of a joint within a region. These experts’ votes are weighted according to the re-
gion’s ‘utility score’, provided by the random forest classifier. Given an input image I, upper
body joint detection reduces to optimising the cost function:

li = argmax
li

K

∑
k=1

wik p(li|Wik), (1)

where {l1, ..., l4} are 2D joint locations for head, shoulder, elbow and wrist for one of the
arms; K is the number of experts (different for each body joint; we use 1 expert for shoulders,
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3 for elbows and 5 for wrists); Wik is the region for the kth expert for joint i; wik are the region
utility scores from the RF classifier, measuring how useful the context in image region Wik
is for predicting the position of the joint; and p(li|Wik) is the likelihood of joint i being
located at position li (obtained from the RF regressor). The locations of region centres are
determined by previously detected joints and a learnt offset vector δik (see below for how
these are obtained) as li−1 +δik.
Image representation. Both classification and regression RFs extract two types of features
for each pixel. The first feature is a label which states whether the pixel belongs to a skin,
torso or background region, obtained by maximising over a colour posterior image from
our method from [2]. The second feature (inspired by Kontschieder et al. [8]) incorporates
additional long-range context by measuring, for each pixel, the smallest Euclidean distance
to a skin region (this is computed using a distance transform).
Learning expert offset vectors. The human kinematic chain sets clear physical constraints
for where one joint (e.g. the elbow) can be located given another joint (e.g. the shoulder).
These ‘offsets’ essentially represent the most usual positions of a joint relative to the previous
joint in the sequence. We learn them from training data by clustering the relative offset of
joint i from joint (i− 1) into K clusters using k-means (where K is defined above). The
centroid of the clusters are used as the offsets δik, and the variances are later used to add
robustness to detections.
Classification forests. The offset vectors determine regions of the image that normally
contain useful context for predicting the position of a given joint. However, for a given pose,
not all pre-learnt regions are equally useful. We therefore employ a classification forest to
obtain a ‘utility score’ for each of the regions. This utility score is used in the global cost
function to weight the output from the expert body joint regressor (the regression forest). A
separate classification forests, for each joint and expert, classifies an image region centred
at Wik as either contained or not-contained (indicating whether joint i is contained in the
region or not). The average of all class probabilities across all trees is used to form the utility
score wik. Parameters of test functions are learnt by minimising a measure of Gini impurity.
Regression forests. Given all pre-learnt regions and the position of the previous joint in
the sequence, the task of the regression forests is to predict where in each region the joint
is most likely to be. A separate regression forest, for each joint and expert, votes for pixel
locations of joint i based on boolean tests performed on an image region centred at Wik.
All votes across all trees and all forests have equal weight. Parameters of test functions are
learnt by recursively splitting a random selection of training regions (all of which contain the
joint i) into two sets, based on minimising the sum of joint position variance within the two
regions. The average joint position across regions falling at a leaf node is used as our voting
vector. The aggregated voting vectors form the likelihood function p(li|Wik).

In both forests: (1) robustness is added by classifying multiple regions shifted slightly
by Gaussian noise, using variances from offset vector clustering, and taking the average over
all regions; and (2) very efficient boolean test functions [2] are used.

3.2 Stage 2 – Detection reinforcement with optical flow.
The joint detections in Stage 1 are produced independently for each frame. However, in
reality there exists very strong dependencies between poses in nearby frames. Therefore, to
reinforce the joint confidences, we integrate confidences produced from the frame’s neigh-
bourhood. This is done in three steps: (1) the confidences from nearby frames are aligned
to the current frame using dense optical flow; (2) these confidences are then integrated into
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Left Wrist (Wrong)

Right Wrist (Wrong) Left Wrist (Correct)

Right Wrist (Correct)

(a) Frame t (b) Confidence at t (c) Warping (d) Composite at t

Figure 2: Warping neighbouring confidence maps for improving pose estimates. (a) RGB input at
frame t. (b) Confidence map at frame t for left (blue) and right (green) hands (crosses show incorrect
modes of confidence). (c) Confidence maps from frames (t− n) and (t + n) warped to frame t using
tracks from optical flow (green & blue lines). (d) Composite map with corrected modes.

a composite confidence map; and (3) the final upper body pose estimate for a frame is then
simply the positions of maximum confidence from the composite map. Below we discuss
the details of the first two steps.

Warping confidence maps with optical flow. For a given frame t, pixel-wise tracks are
computed from neighbouring frames (t−n) to (t+n) to frame t using dense optical flow [17].
Tracks are used to warp confidence values within a neighbouring map to align them to frame t
by shifting confidences along the tracks. Confidence values are averaged together at points
where tracks merge. Example tracks and the warping of wrist confidence values are shown in
Figure 2(c). These aligned confidences (Figure 1(c)) represent a strong set of expert opinions
for frame t, from which joint positions can be more precisely estimated compared to using a
confidence map from a single frame.

Composite confidence map. Aligned neighbouring confidence maps are integrated into a
composite confidence map by taking the pixel-wise average (Figure 1(d) and Figure 2(d)).
The composite map alleviates misdetections caused by failures in our feature representation.
For example, Figure 3(a-d) shows examples where the image representation (b) loses relevant
information w.r.t. the wrist location, with no hope of recovery using the confidences (c) from
Stage 1. However, the composite confidence map (d) contains confidence in the correct
regions even in these extreme circumstances. Figure 2(a-d) demonstrate the advantages of
this method under the challenging scenario where the arms cross.

4 Datasets
Upper body pose estimation is evaluated on two video datasets: sign-interpreted BBC TV
broadcasts, and an Italian gesture recognition dataset (see Figure 5(c) and Figure 4(e) for
example frames). Both datasets contain large variations in poses, people, clothing and back-
grounds, with the BBC TV dataset also containing moving backgrounds.

BBC TV sign-language broadcasts. This dataset consist of 20 TV broadcast videos over-
laid with a person interpreting what is being spoken into British Sign Language (BSL) (see
Figure 4(e)). The videos contain sign-interpreted content from a variety of TV programmes,
each between 0.5h–1.5h in length. All frames of the videos have been automatically assigned
joint locations (which we use as ground truth for training) using a slow but reliable tracker
by Buehler et al. [1]. The full set of 20 videos are split into three disjoint sets: 10 videos
for training, 5 for validation, 5 for testing. The test set videos contain different people and
clothing from those in the training and validation sets. 200 annotated frames per video (1000
frames in total) of the test set have been manually annotated for evaluation purposes.
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Figure 3: The improvement from using optical flow. (a) Example input images and (b) corresponding
colour features, with the top row showing an error in segmentation (right arm missed), and bottom row
showing a left hand in front of the face. (c) shows sequential forest (SF) confidences (superimposed
on an edge image) for the left and right wrists for the two rows, with the first two modes of confidence
(shown as crosses) both in wrong wrist locations. (d) demonstrates improved confidence output when
combining SF output with optical flow (SF+flow): in the top row the 2nd best mode of confidence now
correctly locates the right wrist, and in the bottom row the 1st mode of confidence locates the left wrist.
Graphs in (e) and (f) show the accuracy for average wrist and elbow estimates (averaged over left and
right body parts), where the accuracy measure reports the percentage of testing frames where at least
one estimate out of L, chosen from top L modes of confidence, is within 5 pixels from ground truth.

ChaLearn gesture dataset. The ChaLearn 2013 Multi-modal gesture dataset [14] contains
23 hours of Kinect data of 27 persons performing 20 Italian gestures. The data includes RGB,
depth, foreground segmentations and full body skeletons, and is split into training, validation
and testing videos, each lasting 1-2min and containing 8-20 gestures. Example frames from
the dataset are shown in Figure 5(c). The large variation in clothing across videos poses a
challenging task for pose estimation methods.
Data pre-processing. For the BBC TV dataset, background subtractions and colour pos-
terior images are produced for all video frames using the RGB frames and our method
from [2]. From this we produce our feature representation. The same method is applied
to the ChaLearn dataset, except we use the provided background subtracted images.

5 Evaluation
Four experiments are conducted using the BBC TV dataset. Experiments (1) and (2) evaluate
the quality of the structured output of the sequential detection system, and experiments (3)
and (4) evaluate the accuracy of pose estimates. Each experiment evaluates the two com-
ponents our our system: (i) the sequential detection forests from Stage 1 (SF), and (ii) the
detections reinforced using optical flow from Stage 2 (SF+flow). Experiment (5) evalu-
ates our method on the ChaLearn gesture dataset using RGB frames, and compares against
Kinect skeletal output. All experiments include comparisons to our state of the art upper
body tracker from [2].

5.1 BBC TV experiments
Training. Each tree in both the classification and regression forests sample 500 diverse
frames per training video (in total 5,000 frames for initial training, and 7,500 frames when
using training and validation videos combined). Diverse frames are found by clustering
frames with k-means (k = 200) according to pose, and sampling from clusters.
Testing. Pose estimates are evaluated against the 1,000 frames with manual ground truth.
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Parameter optimisation. Optimal parameters for the sequential detection forests are found
on validation videos and set as follows. Classification forests: 8 trees per forest grown to
a depth of 20 and using a square window size of 51. Regression forests: 8 trees per forest
grown to a different depth per joint type, 20 for wrists, 10 for elbows and 20 for shoulders;
a square window size of 31 pixels is used for all joint types. After fixing the parameters, the
forests are retrained on a pooled set of all training and validation videos. For SF+flow we
use a neighbourhood of n = 15 frames to compute composite confidence maps.
Baselines. We compare to our method from [2] using our new image features. Addition-
ally, we test against another structured output method by implementing an auto-context [16]
upper body detector. This auto-context method trains the forest of [2] using our image rep-
resentation, and uses the output body joint confidences (together with the original image
representation) as features to train a second forest. We also compare against the upper body
pose estimator by Yang and Ramanan [19] (using code provided on authors website). For
fairness we tune all baselines on the validation set and train with the same training material,
except for estimator of Yang and Ramanan for which the INRIA dataset is additionally used
to provide negative data.
Experiment 1: Constrained pose output. In this experiment we measure the proportion
of output poses that are ‘constrained’ (essentially the proportion that is ‘nearly correct’). A
pose estimate is considered correctly constrained if the distance between connected joints
(head to shoulder, shoulder to elbow and elbow to wrist) is less than the maximum ground
truth projected limb length plus a threshold distance. Figure 4(b) shows the percentage of
constrained pose outputs against a constraint threshold (in pixels). Notably, 20% of pose
estimates from [2] have invalid limb lengths (at constraint threshold zero), whereas SF and
SF+flow only have 7%, with SF completely eradicating unconstrained pose outputs at a
constraint threshold of 13 pixels. A slight drop in constrained poses is seen when using
SF+flow due to optical flow errors.
Experiment 2: Hand confusions. This experiment measures the proportion of frames in
which the two hands of the humans are confused (i.e., right hand is detected as left, and
vice versa) – a very common error in previous methods. Hand confusions are detected by
subjectively analysing output on the test set for frames where a wrist estimate is further than
5 pixels from ground truth. Manual labelling of hand confusion is used as automatic pro-
cedures are not reliable where the frames contain background segmentation errors or errors
in the colour labelled image feature. As shown in Figure 4(a), SF reduces hand confusion
errors by 61%, which is a considerable improvement over state of the art. SF+flow makes
further improvements, reducing hand swap errors by 66%.
Experiment 3: Pose estimation accuracy. This experiment measures pose estimation ac-
curacy as a function of distance from ground truth (a joint position is deemed correct if it
lies within the set distance from ground truth). Figure 4(c) and (d) show estimated accuracy
against allowed distance from ground truth for wrists and elbows. Improved accuracy is
observed using SF over [2] for both wrists and elbows, with a particularly marked increase
in accuracy for the wrists. Results at 5 pixels from ground truth for all applied methods
are shown in the first two columns of Table 1(a). Using SF gives an improvement of 13%
over [2]. SF+flow gives an additional boost of 15% for the wrists. Auto-context forests per-
form slightly better than [2], with worst performance from the pose estimator of Yang and
Ramanan [19]. Due to the challenging nature of the dataset, we view the 15% improvement
at wrist joints as a very significant improvement. It will be of great benefit to gesture recogni-
tion systems, where the location of hands is of utmost importance. SF without flow does not
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Figure 4: Results on BBC TV dataset. (a) Bar chart showing percentage of hand confusions (lower
is better) – SF+flow does best; (b) number of constrained (near-correct) poses across all values of the
constraint threshold (higher is better); (c) & (d) accuracy of average wrist and elbows joints respectively
(averaged of left and right arms) against allowed pixel distance from ground truth (higher is better) –
SF+flow increases accuracy by 15% for wrists compared to [2] (at 5 pixels); (e) shows SF+flow (bottom
row) correcting incorrect pose estimates from [2] (top row).

perform as well when (1) background subtraction fails (e.g. arms are cut off), or (2) hands
are in front of the face or clothing contains skin-coloured regions. SF+flow alleviates these
issues for the wrists, but less so for the elbows (due to frequent self-occlusions by the arms).
Experiment 4: Sampling joints. The pose estimator in this work produces a confidence
map for possible joint positions in a frame (see Figure 3(d)). This experiment measures how
accurate the joint predictions are if the correct sample out of the top N samples (instead of
the maximum) from the confidence map is selected. Here we sample L locations from the top
L modes of the confidence map as shown in Figure 3. A joint is deemed correctly estimated
if any one of the L samples is within 5 pixels from ground truth. Figure 3(e) and (f) show
plots of the accuracy for wrist and elbow joints vs different sample sizes. Using SF+flow
introduces more modes of confidence and hence yields better results over using SF. The last
two columns of Table 1(a) give results of SF and SF+flow when using 5 samples. A very
significant improvement is observed over using just one sample (first two columns), with
85% wrist accuracy using SF+flow. This provides strong motivation for future research into
producing a method for returning the best sample out of L.

5.2 ChaLearn experiments
Training & testing data. Each tree in both the sequential and classification forests sample
7,220 diverse frames from the training and validation videos combined. Diverse training
frames are found by clustering poses and sampling uniformly from clusters. Testing data is
formed by sampling 3,200 diverse frames from all testing videos. Kinect skeletal output is
used as ground truth.
Parameter optimisation. We rescale the Chalearn videos to be of same size as those in
the BBC TV dataset, and use the parameters found optimal in the BBC TV experiments.
Baselines. The upper body tracker from our previous work [2] is used as a baseline (trained
using the same parameters as for the BBC TV dataset). We train with the same training
frames used by our method.
Experiment 5: Pose estimation accuracy. Figure 5(a) and (b) show a comparison of
the method of [2] and our sequential detection method (SF) without using optical flow. A
significant improvement is seen in the wrists, with a stellar improvement for the elbows
when using SF. Average accuracy at 5 pixels from ground truth is shown in Table 1(b). The
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Method Wrists Elbows Wrists - Top5 Elbows - Top5
Charles et al. [2] 60.5 67.6 - -
Auto-context 62.1 68.7 - -
Y & R [19] 42.9 41.7 - -
SF 73.3 70.1 79.7 72.2
SF+flow 75.3 64.6 85.0 76.9

Method Wrists Elbows
Charles et al. [2] 44.7 33.6
SF 50.8 62.6

(a) (b)
Table 1: Average accuracy for wrists and elbows at 5 pixels from ground truth. (a) Results for BBC TV
(also showing accuracy of best estimates when sampling from top 5 modes). (b) Results for ChaLearn.
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Figure 5: Joint detection results for Chalearn. (a) & (b) Average accuracy for wrists and elbows
(against allowed distance from ground truth (Kinect provided skeleton) in pixels). Sequential detection
forests (SF) show a significant improvement for wrist detections over [2], and nearly double the accu-
racy for the elbows at 5 pixels from ground truth. (c) Example pose estimates on Chalearn for [2] (top
row) and SF (bottom row).

method of [2] does not generalise well to persons wearing trousers and sleeves of different
length (due to confusions caused by legs and arm skin regions). The constrained output of SF
helps overcome these problems. Finally, Figure 5(c) shows example pose estimate from [2]
and SF in top and bottom rows respectively.

Computation time. Using a 2.2GHz Intel Quad Core I7 CPU, computation time on a
320x202 pixel image is: 0.4s for the sequential forest (272 trees in total); 0.14s for back-
ground segmentation and computing the image representation and 1.2s for computing opti-
cal flow. The sequential forest is implemented in Matlab with each tree only taking 1.5ms
to evaluate the whole image due to the reduced search space. A classification tree takes 2.5
hours to train and a regression tree takes 4.5 hours.

6 Conclusion

A method has been proposed for tracking the upper body pose of people performing gestures
in video captured using a monocular colour camera. We have addressed the problems of
obtaining output dependences between body parts using a random forest pose estimator,
and also exploit temporal context in a novel way using dense optical flow to spatially align
sensory information through time. Significant increase in accuracy for wrist and elbow joints
is observed on two separate challenging datasets compared with the state of the art – these
joints are particularly important in gesture recognition. In future work we will investigate
methods of returning better joint estimates by sampling from output confidences.
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