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Abstract. In this paper we introduce a new logical calculus of the Region Con-
nection Calculus (RCC) family, RCC*-9. Based on nine topological relations, 
RCC*-9 is an extension of RCC-8 and models topological relations between 
multi-type geometric features: therefore, it is a calculus that goes beyond the 
modeling of regions as in RCC-8, being able to deal with lower dimensional 
features embedded in a given space, such as linear features embedded in the 
plane. Secondly, the paper presents a modified version of the Calculus-Based 
Method (CBM), a calculus for representing topological relations between spa-
tial features. This modified version, called CBM*, is useful for defining a rea-
soning system, which was difficult to define for the original CBM. The two new 
calculi RCC*-9 and CBM* are introduced together because we can show that, 
even if with different formalisms, they can model the same topological configu-
rations between spatial features and the same reasoning strategies can be ap-
plied to them.    

1 Introduction 

The modeling of topological relations in Geographical Information Systems (GISs) 
and spatial databases has been a central topic of research since the early 90s. Three 
models have played a very important role, both in terms of theoretical developments 
and practical applications: the 9-intersection model (9IM) [14], RCC-8 [11], and 
CBM [5]. Regarding their modeling capabilities, RCC-8 is able to represent topologi-
cal relations between regions, while 9IM and CBM are able to represent topological 
relations between spatial features of any dimensionality. With respect to reasoning 
capabilities, composition tables were defined for RCC-8 and 9IM [12] (for regions 
only), while composition tables for the CBM were never developed. Having composi-
tion tables for all kinds of spatial data types is essential for several tasks, e.g. for spa-
tial query optimization [1]: applying the constraints of the tables, it is possible to dis-
cover contradictions in the query expression before the real processing of the query 
actually starts.  
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The RCC family of calculi [8] uses a logical approach for the representation of quali-
tative topological relations. The calculi were developed with regions as the primitive 
spatial entity and the connection relation as the primitive topologic relation between 
regions, from which other relations can be defined. RCC-8, the most representative 
calculus of the family, can model eight topological relations between regions of the 
plane: there is a one-to-one correspondence with the eight topological relations that 
are definable with the 9IM between 2D simple regions. As remarked in [18], there 
exist few attempts to express topological relations between features of lower dimen-
sions than the embedding space, such as lines in R2, due to the difficulties of dealing 
with different types. In [19], Galton introduced an axiomatic system for multidimen-
sional mereotopology, using primitives for ‘part’ (P) and ‘boundary’ (B).  Gott’s 
“INCH” calculus dealt with closed sets of points of uniform dimensionality [21] using 
a single primitive binary relation INCH (“includes a chunk of”). See further analysis 
in [9].  

CBM [5] is a model for expressing topological relations between regions, lines, 
and points. It was especially defined for expanding the querying capabilities of data-
base query languages towards spatial data. The operators of CBM have been adopted 
by the Open GeoSpatial Consortium (OGC) [23] and implemented in all spatial data-
base systems. CBM relations can find an equivalent expression in terms of Egenhofer 
matrix-based methods [15] and vice versa. In particular, as it was shown in [3], CBM 
is more expressive than 9IM and equivalent to the Dimensionally-Extended 9-
Intersection Model (DE+9IM) [3]. Despite its success in spatial databases and in the 
standardization process, CBM had little impact in the Qualitative Spatial Reasoning 
(QSR) community, due to the absence of a strong logical formulation and in particular 
its lack of composition tables. As pointed out in [16, 22], CBM is difficult to compare 
to logical calculi such as the RCC and no reasoning rules have been defined for it. 
The definitions of CBM were dependent on the dimension of the features participat-
ing in the relation. For example, a cross between a line and a region had a different 
definition from a cross between two lines. This meant it was not possible to find a 
single composition table for the calculus: at best, it would have been possible to find 
composition tables for each group of relations, that is, for region/region relations, for 
line/region relations, and so on, as proposed in [22]. 

In this paper, we aim at establishing a bridge between RCC and CBM, by defining 
an extension of RCC-8 that is capable of modeling topological relations between spa-
tial features of any dimensionality and an extension of CBM that is capable of reason-
ing. To achieve this goal, a new calculus of the RCC family is defined, called RCC*-
9, able to deal with features of various dimensions, not just regions1. A modification 
of CBM, called CBM*, is introduced that maps straightforwardly onto calculi of the 
RCC family and allows a composition table for reasoning to be found. Finally, it is 
shown that the two new calculi, RCC*-9 and CBM*, are able to model the same topo-

                                                           
1  The reason for the asterisk in the name is that it is not just a change in the number of rela-

tions. There is also a substantial change in the spatial primitives the new calculus is able to 
deal with. Further, we will also need in the paper to introduce a coarser calculus which we 
called RCC*-7, since an RCC-7 already exists [20]. 
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logical configurations, even though  they are defined in different ways, and they are 
compared with 9IM.    

In Section 2, we recapitulate the definition of the geometric data model on which 
we base our work. In Section 3, we briefly recall the definitions of CBM. In Section 
4, we introduce CBM* and discuss the changes between CBM and CBM*. In Section 
5, we introduce the logical calculus RCC*-9. In Section 6, we define the spatial rea-
soning system of both RCC*-9 and CBM*. In Section 7, we discuss how to express 
CBM* relations and RCC*-9 relations in terms of 9IM. In Section 7, we make some 
concluding remarks.  

2 Definition of geometric features   

In this paper, we will adopt the same terminology of the OGC where various point-
sets of the plane R2 are called features, distinguishing between simple features and 
complex features [23]. The OGC simple feature model definitions were in turn taken 
from [4]. In the following, we briefly recall those definitions. First of all, features are 
classified with respect to their dimension: regions of dimension 2, lines of dimension 
1, and points of dimension 0.   

Let x be a two-dimensional point-set. 
Def. 1. The interior x° of x is defined as the union of all open sets contained in x. 
Def. 2. The closure x� of x is defined as the intersection of all closed sets containing 
x. 
Def. 3. The boundary ∂x of x is defined as the set difference between its closure 
and its interior, i.e.,  x� −  𝑥°.  
Def. 4. The exterior x− of x is defined as the set difference R2 \ x�.  
Def. 5. x is regular closed if x=x°� .  
Def. 6. A simple region is a regular closed (non-empty) two-dimensional point-set 
x with a connected interior and connected exterior. 
Def. 6 implies that a simple region is homeomorphic to the closed unit disk. A 

simple region does not have holes and is connected. If we remove the constraint of 
connected exterior from the definition, we obtain regions with holes [13]. In OGC 
simple feature specifications, regions with holes are implemented with the Polygon 
spatial data type. If we remove the constraint of connected interior, we obtain com-
plex regions, that is, regions with holes and separations. Complex regions are imple-
mented in OGC feature model with the MultiPolygon spatial data type.  

Def. 7. A simple line is a closed (non-empty) one-dimensional point-set x defined 
as the image of a continuous mapping f:[0,1] → R2, such that ∀𝑡𝑖,𝑡𝑗∈[0,1], 𝑡𝑖≠𝑡𝑗, 
f(𝑡𝑖)≠f(𝑡𝑗). 
In other words, a simple line is the mapping of the unit interval in the plane with no 

self-intersections. A simple line can be described as the trace of a pencil on a sheet of 
paper without detaching the pencil and by not passing twice on the same position. The 
initial and final point of the simple line, defined as f(0) and f(1), are called the end-
points of the line.    
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Topologically, a simple line embedded in R2, being a one-dimensional set, has an 
empty interior. As common practice in GIS [15] and in OGC standards as well, the 
boundary ∂x of a line x is considered to be the set of its endpoints and the interior of 
the line the difference, x°=x \ ∂x. In this paper, we will adopt these definitions of 
boundary and interior of a line feature. In OGC feature model, simple lines are im-
plemented with the Polyline spatial data type.  

From Def. 7, if we remove the constraint of no self-intersections, we obtain lines 
with self-intersections. A particular case of a line with self-intersections is the closed 
ring, where f(0)=f(1). If a one-dimensional point set can be obtained as the union of 
several mappings from the unit interval to the plane, then we obtain the concept of a 
complex line. A complex line can be made of several disjoint components. A complex 
line in OGC feature model is implemented with the MultiPolyline spatial data type.  

A simple point is a zero-dimensional element of the embedding space. A complex 
point is the union of a finite number of simple points. Following the OGC convention, 
we assume that point features have an empty boundary. Simple and complex point 
features are implemented in OGC standards with the Point and Multipoint spatial data 
types, respectively.  

3 CBM 

One of the basic ideas behind CBM [5] was to provide an easy spatial extension of 
the tuple relational calculus [7] to express queries such as: 

{x| ∃y [River(x) ∧ Region(y) ∧ cross(x,y) ∧ y= ‘Abruzzo’]} 
The above CBM expression corresponds to the query “Retrieve all the rivers that 

cross the Abruzzo region”. The topological relations of CBM can be applied not only 
to simple variables but to the boundaries of geometric features. Boundaries are ex-
tracted by the three operators b (boundary – the closed line representing the boundary 
of a simple region), f (from – the first endpoint of a line), t (to – the second endpoint 
of a line) 2. For example, the following queries can be expressed in CBM: 
 {x| ∃y∃z [River(x) ∧ Mountain(y) ∧ Sea(z) ∧ in(f(x),y) ∧ y= ‘Apennines’ ∧ 

touch(t(x),z) ∧ z= ‘Adriatic’]} 
{x| ∃y [Road(x) ∧ Region(y) ∧ cross(x,y) ∧ overlap(x,b(y)) ∧ y= ‘Abruzzo’]}  

The above expressions correspond to “Retrieve all the rivers that rise in the Apen-
nines mountains and flow into the Adriatic sea” and “Retrieve all the roads that cross 
the Abruzzo region and have a part of the road along the region’s boundary”.  

The five topological relations of CBM are named disjoint, touch, in, cross, overlap. 
The definition of these relations are (the ‘dim’ operator evaluates to 0, 1, 2 depending 
whether the argument is a 0-, 1-, or 2-dimensional point set): 

Def. 8. disjoint(x,y) =def  x∩y=∅ 

                                                           
2  These boundary extraction operators were specifically defined to extract the first and last 

endpoint of a directed line. More generally, when the direction is not known or there are 
more than two endpoints (such as in the case of complex lines) or no endpoints (such as in 
the case of closed rings), a generic boundary operator b is used that extracts the boundary of 
the feature. 
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Def. 9. touch(x,y) =def  x°∩y°=∅  ∧  x∩y≠∅ 
Def. 10. in(x,y) =def  x∩y=x  ∧  x°∩y°≠∅ 
Def. 11. cross(x,y) =def  dim(x°∩y°) < max(dim(x°),dim(y°))  ∧  x∩y≠x  ∧  x∩y≠y 
Def. 12. overlap(x,y) =def  dim(x°∩y°) = dim(x°) = dim(y°)  ∧  x∩y≠x  ∧  x∩y≠y 
The relations can be applied to all geometric types, either simple or complex [4]. 

They were implemented by the OGC feature model as a set of functions with names 
Disjoint, Touches, Within, Crosses, Overlaps. Additionally, the con-
verse function of Within was called Contains and the function Equals was defined 
as Within and Contains at the same time [23]. An expression of the relational tuple 
calculus extended with the five topological relations and the three boundary operators 
can be expressed by the Egenhofer matrix-based methods. Conversely, any instance 
of the DE+9IM can be expressed by an expression of CBM [3].  

4 CBM* 

In this section, we introduce a modification of CBM, called CBM*, for which it is 
easier to find an equivalence in terms of calculi of the RCC family and to find a com-
position table for reasoning. The basic relations of CBM* have a slightly different 
meaning from the corresponding relations of CBM. We assume the following defini-
tions (we adopt the same names followed by a *) accompanied by a qualitative expla-
nation of the meaning: 

Def. 13. disjoint*(x,y), the two features are disjoint: 
disjoint*(x,y)  =def  x∩y=∅ 

Def. 14. touch*(x,y),  the two features intersect, but their interiors are disjoint (and 
it excludes containment): 

touch*(x,y)  =def  x°∩y°=∅  ∧  x∩y≠∅  ∧  x∩y≠x  ∧  x∩y≠y   
Def. 15. in*(x,y), feature x is part of feature y (it excludes equality): 

in*(x,y)  =def  x∩y=x  ∧ x≠y 
in*−1(x,y) =def  x∩y=y  ∧ x≠y 
equal*(x,y) =def  x=y 

Def. 16. cross*(x,y), the interiors of the two features intersect, but at least one fea-
ture’s boundary does not intersect the other feature: 

cross*(x,y)  =def   x°∩y°≠∅  ∧  (∂x∩y=∅  ∨  x∩∂y=∅) 
Def. 17.  overlap*(x,y):  the interiors of the two features intersect and also each 
feature’s boundary intersects the other feature (and it excludes containment).   

overlap*(x,y) =def  x°∩y°≠∅  ∧  ∂x∩y≠∅  ∧  x∩∂y≠∅  ∧  x∩y≠y   ∧ x∩y≠x   
The proof that the relations of CBM* make a jointly exhaustive and pairwise dis-

joint (JEPD) set is readily obtained from the decision tree (see Fig. 1). Let us com-
ment in more detail upon the differences between CBM and CBM* definitions. The 
disjoint and disjoint* relations are the same. The touch* relation is more restrictive 
than the touch relation, since cases where one feature is entirely contained inside the 
boundary of another one are excluded and are instead classified as in* (see Fig. 2). 
The in* relation takes over the cases ruled out by touch* and excludes the case of 
equality between the two features: therefore, an explicit equal* relation is needed in 
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CBM*. The cross* and overlap* relations take into account the remaining cases with 
a different criterion for partitioning the cases with respect to the original cross and 
overlap relations. In Fig. 2, we can see the differences with some representative con-
figurations. The overlap relation between a region and a line was not possible in 
CBM, while the relation overlap* between a region and a line corresponds to a real 
case.   

 

Fig. 1. Decision tree for the relations of CBM*.   

 

Fig. 2. Some differences between CBM and CBM* relations.   

5 Definition of RCC*-9 

In Cohn and his coauthors’ work, the spatial primitive entities of the calculus are 
regions [8, 11]. The primitive spatial entities of the proposed calculus RCC*-9 are 
instead generic spatial features, without forcing an interpretation in terms of regions, 
lines, or points. As discussed in Section 2, in topology a feature of co-dimension big-
ger than zero (such as a line or a point in R2) does not have an interior. One conse-
quence is that a line in R2 cannot have a non-tangential proper part (see also Galton’s 
work [18]). The RCC definitions work when the universe of discourse contains re-
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gions of dimension Rn, for any n>0. But the definitions do not work for points or for 
universes of discourse containing regions of mixed dimensionality3. 

 The boundary of an interval is made up of its two endpoints. A non-tangential 
proper part of an interval is another interval that is inside the first one and that does 
not connect with the endpoints of the first one. Adopting the “usual” GIS definitions 
[4, 15], non-tangential proper parts of lines embedded in R2 can be defined as a map-
ping from one-dimensional intervals to the plane. In this way, we can find RCC*-9 
definitions of topological relations that apply to all kinds of spatial features.  

Analogously to RCC-8, we consider a primitive connected relation between two 
features C(x,y). There are several models for RCC in the literature; here, for con-
sistency with CBM*, we take our universe of discourse to be closed regions (possibly 
disconnected), closed lines (also possibly disconnected), and sets of isolated points. 
C(x,y) is interpreted as being true when x  and y have at least one point in common. 
The connected relation enjoys two axioms: 

C(x,x), 
C(x,y)→C(y,x).  
From the primitive connected relation, other relations are consequently defined. 

These are as in RCC8 except as noted. The disconnected relation is defined as: 
Def. 18. DC(x,y) =def   ¬C(x,y) 
The part relation between x and y is defined by saying that the feature x cannot be 

connected to features disconnected from y: 
Def. 19. P(x,y) =def  ∀z [C(z,x)→C(z,y)] 
The proper part relation excludes the case of equality between the two features: 
Def. 20. PP(x,y) =def  P(x,y) ∧ ¬P(y,x) 
The equal relation is defined as: 
Def. 21. EQ(x,y) =def  P(x,y) ∧ P(y,x) 
In the original RCC, the overlap relation was defined as: O(x,y) = ∃z [P(z,x) ∧ 

P(z,y)]. Such a definition sufficed to refine the connected relation and make a distinc-
tion between the overlap and the externally connected relation. In RCC*-9, when we 
remove the limitation that features are regions only, the fact that there is a common 
part belonging to the two features x and y would not suffice to identify a new relation. 
In essence, the O(x,y) relation would coincide with the C(x,y) relation, since the 
common part could be a line or a point. Therefore, we need to find another definition 
for the overlap relation. The externally connected relation in RCC-8 was defined as 
EC(x,y) = C(x,y) ∧ ¬O(x,y). This means that the EC relation cannot be defined simp-
ly by negating O. Further, in RCC-8, the non-tangential proper part relation needed 
the EC relation for its definition, which was NTPP(x,y) = PP(x,y) ∧ ¬∃z[EC(z,x) ∧ 
EC(z,y)].  

To overcome the above issues, we need to introduce a new topological primitive 
and we choose the boundary relation B(x,y), expressing the fact that feature x is the 

                                                           
3 Different mereotopologies (such as RCC) take a different semantic stance as to what kinds 

of spatial entities are allowed. See Cohn and Varzi [10] for an extended discussion and analysis 
on this issues and a comparison of the different approaches, as well as axiomatisations of mer-
otopologies allowing boundaries (though the cross relation considered in this paper is not de-
fined there). 
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boundary of feature y. The type of x must be of different type to that of y. For a line y, 
x is the set of its endpoints4. If y is a simple region, then x is the closed line represent-
ing y’s boundary; if y is a complex region (holed or multipiece), then x is a set of 

lines. This effectively also introduces several kinds of spatial entities, so that our in-
tended universe of discourse now consists of regions (2D entities), 1D  lines (such as 
boundaries of regions), and sets of isolated points (boundaries of lines). The bounda-

ry relation obeys the following axiom: 
B(x,y)→PP(x,y).  
Hence, we give a new definition of the non-tangential proper part relation: 

Def. 22.  NTPP(x,y) =def PP(x,y) ∧ ∀𝑦1 [B(𝑦1, y) → DC(x, 𝑦1)] 
The definition is illustrated in Fig. 3. The feature x is a proper part of y and does 

not touch the boundary of y. Such a definition of NTPP, though it is different, has 
exactly the same semantics as the original RCC definition in the case of regions.  

 

 

Fig. 3. Illustrations of the NTPP definition of RCC*-9. (Note that in the middle illustration, x 
actually is part of y, but it is drawn alongside it for clarity of illustration; we use the same con-
vention in later figures as well). 

 

Fig. 4. Illustration of the O relation. 

The new definition for the tangential proper part relation is: 
Def. 23. TPP(x,y) =def  PP(x,y) ∧ ¬ NTPP(x,y) 
We can now give a new definition of the overlap relation, which is more restrictive 
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Def. 24.  O(x,y) =def  ∃z[NTPP(z,x) ∧ NTPP(z,y)] ∧ ∃t[TPP(t,x) ∧ TPP(t,y)]   
The above definition of overlap expresses the fact that there is a common non-

tangential proper part belonging to the two features and a common tangential proper 
part as well. The second part of the rule would not be necessary for regions, but it is 
necessary for lines (see Fig. 4), otherwise also cases of cross (see later on) would be 
regarded as overlap.  

                                                           
4 Since B is a relation rather than a functor in RCC*-9, if y is a closed ring and its boundary 

is empty, it means that there is no value x for which B(x,y) is true. Similarly B(x,y) is never true 
when y is a point. 
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As in RCC-8, as a refinement of O(x,y), the partially overlap relation corresponds 
to excluding the inclusion of one feature into the other one:  

Def. 25. PO(x,y) =def  O(x,y) ∧ ¬P(x,y) ∧ ¬P(y,x) 
Considering the new domain of spatial features instead of only regions, there are 

two other kinds of connection that are not included in the overlap definition, namely, 
the externally connected and the cross relations. We use the following definition for 
the externally connected relation (which differs from the RCC8 one): 

Def. 26.  EC(x,y) =def  C(x,y) ∧ ¬O(x,y) ∧ ∀z [[P(z,x) ∧ P(z,y)] → 
[TPP(z,x)∨TPP(z,y)]]  

Fig. 5 depicts the EC definition in case of two regions, a region and a line, and two 
lines. The whole common part z needs to be a tangential proper part of x or y (this is 
ensured through the universal quantifier ∀z). In the case of a line x and a region y in 
Fig. 5, the common part z is a tangential proper part of y. Also in the case of the two 
lines, the common part z is a tangential proper part of y. The EC relation maintains 
the same semantics as RCC-8 for (2D) regions.  

 

 

Fig. 5. Illustrations of the EC relation.  

Finally, we add the definition of cross, which corresponds to the remaining kind of 
connection and is not included in the previous ones (see Fig. 6)5: 

Def. 27. CR(x,y) =def  C(x,y) ∧ ¬O(x,y) ∧ ¬EC(x,y) 
 

 

Fig. 6. Cases of the CR relation. 

The inverse relations of the asymmetric part relation and its specializations are de-
fined as:   

Def. 28. Pi(x,y) =def  P(y,x) 
Def. 29. PPi(x,y) =def  PP(y,x) 
Def. 30.  NTPPi(x,y) =def  NTPP(y,x) 
Def. 31. TPPi(x,y) =def  TPP(y,x) 

                                                           
5 Note that the cross relation is between a region and a line or a pair of lines; one could also 

imagine a scenario where two regions “cross” each other (so that they form a kind of “fat 
cross”; this is not an instance of the cross relation, but just of the PO relation – but see Galton 
[17] for definitions of relations specialising PO in this way.  
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For completeness with respect to the original RCC family of calculi, a DR relation 
(discrete) is defined as: 

Def. 32. DR(x,y) =def  EC(x,y) ∨ DC(x,y) 
 The 9 relations DC, EC, PO, TPP, NTPP, TPPi, NTPPi, EQ, and CR form a 

provably JEPD set of relations and are the base relations of RCC*-9. A hierarchical 
implication structure of all the relations defined above is given in Figure 7. To show 
that Figure 7 correctly reflects the implication hierarchy of the relations is mostly 
straightforward from the definitions. The only cases which are not trivial are the sub-
sumption of O by C, and of P and Pi by O. We also define the JEPD set DC, EC, 
PO, PP, PPi, EQ, and CR, which we name RCC*-7 and, as we shall see below, 
corresponds to CBM*.    

It is important to stress the fact that the changes we have made to some definitions 
of RCC-8 to obtain RCC*-9 are alternative definitions of RCC-8 relations to accom-
modate multi-type features. There is no change of meaning for these relations if we 
apply them to (2D) regions. RCC*-9 introduces the new CR relation, which can only 
hold when one of the entities is a 1D entity. 

  

 

Fig. 7. The subsumption hierarchy of RCC*-9 relations. The lines indicate semantic inclusion – 
i.e., whenever two relations are linked, the lower one implies the upper one. 

6 Spatial reasoning  
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and TPP, which can be expressed by a logical formula involving boundaries of fea-
tures.  

Table 1. Correspondence between CBM* and RCC*-9.  

RCC*-9 CBM* 

DC(x,y) disjoint*(x,y) 

EC(x,y) touch*(x,y) 
PP(x,y) in*(x,y) 
CR(x,y) cross*(x,y) 

PO(x,y) overlap*(x,y) 
PPi(x,y) in*−1(x,y) 

EQ(x,y) equal*(x,y) 

NTPP(x,y) in*(x,y) ∧ disjoint*(x,b(y)) 
TPP(x,y) in*(x,y) ∧ ¬disjoint*(x,b(y)) 

NTPPi(x,y) in*−1(x,y) ∧ disjoint*(b(x),y) 
TPPi(x,y) in*−1(x,y) ∧ ¬disjoint*(b(x),y) 

C(x,y) ¬disjoint*(x,y) 
P(x,y) in*(x,y) ∨ equal*(x,y) 

Pi(x,y) in*−1(x,y) ∨ equal*(x,y) 
O(x,y) overlap*(x,y) ∨ in*(x,y) ∨ 

in*−1(x,y) ∨ equal*(x,y) 

DR(x,y) disjoint*(x,y) ∨ touch*(x,y) 
 

 

Fig. 8. Some new cases of composition involving the CR relation. 

Given the correspondence between the CBM* and RCC*-9, we proceed to find the 
composition tables for these calculi. The composition tables contain the basic rules to 
perform qualitative spatial reasoning with such calculi (see, for example, [9]). Given 
the relation r1(x,y) and the relation r2(y,z), the composition is the relation r3(x,z). The 
composition table gives all the possible results of composition for each combination 
of relations. Such results are expressed as disjunctions of the basic relations. For 
RCC*-9, the results of compositions are those reported in Table 2. Such a table is a 
direct extension of the composition table of RCC-8 [11], that is, if we restricted Table 

TPP(x,y) 
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y 
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NTPP(x,z) 

x
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z 
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2 to regions, we would re-obtain the composition table of RCC-8: the CR relation 
cannot hold between two regions.  

In general, the proof of composition tables is difficult, especially when the seman-
tics of the calculus depends on higher-order constructs such as sets [24]. There are 
two aspects to proving that a composition table is correct: (1) showing that each dis-
junct in each cell is necessary; (2) showing that there are no missing disjunctions. The 
former is usually achieved by demonstrating (i.e. providing a model such as a figure) 
of each combination of r1, r2 and a disjunct from r3

6. Showing that there are no miss-
ing disjuncts, given an axiomatic theory of the calculus, can be achieved by proving a 
theorem that r1 and r2 imply r3 for each cell7. If we consider that the RCC*-9 compo-
sition table is an extension of the RCC-8 table, one way of finding a proof is ‘by dif-
ference’, that is, limiting the analysis to the new cases involving the CR relation only. 
We found in total 89 new compositions that can be instantiated in R2 involving the 
CR relation: see Fig. 8 for a sample of them. The fact that no other cases with CR are 
possible can be proved with a theorem for each entry, but by using redundancy elimi-
nation techniques as in [2], the actual number of entries that need to be proved can be 
reduced significantly. Alternatively, a proof could be developed with a semi-
automatic reasoner as proposed in [24]. Besides formal proofs, in future work we also 
plan to apply heuristics such as in [6], where composition tables can be filled up by 
running tests on random data sets made up of points, polygons, and polylines.   

Table 2. Composition table for RCC*-9.  

     r2 

r1 
DC EC PO TPP NTPP TPPi NTPPi EQ CR 

DC no info DR, PO, 
PP, CR 

DR, PO, 
PP, CR 

DR, PO, 
PP, CR 

DR, PO, 
PP, CR 

DC DC DC DR, PO, 
PP, CR 

EC DR, 
PO, 
PPi, CR 

DR, PO, 
TPP, EQ, 
TPPi, CR 

DR, PO, 
PP, CR 

EC, PO, 
PP, CR 

PO, PP, 
CR 

DR DC DC DR, PO, 
PP, CR 

PO DR, 
PO, 
PPi, CR 

DR, PO, 
PPi, CR 

no info PO, PP, 
CR 

PO, PP, 
CR 

DR, PO, 
PPi, CR 

DR, PO, 
PPi, CR 

PO DR, PO, 
PP, PPi, 
CR 

TPP DC DR DR, PO, 
PP, CR 

PP NTPP DR, PO, 
TPP, EQ, 
TPPi, CR 

DR, PO, 
PPi, CR 

TPP DR, PP, 
PO, CR 

NTPP DC DC DR, PO, 
PP, CR 

NTPP NTPP DR, PO, 
PP, CR 

no info NTPP DR, PP, 
PO, CR 

TPPi DR, 
PO, 
PPi, CR 

EC, PO, 
PPi, CR 

PO, PPi, 
CR 

PO, 
TPP, 
EQ, 
TPPi 

PO, PP, 
CR 

PPi NTPPi TPPi PO, PPi, 
CR 

NTPPi DR, 
PO, 
PPi, CR 

PO, PPi, 
CR 

PO, PPi, 
CR 

PO, PPi, 
CR 

O, CR NTPPi NTPPi NTPPi PO, PPi, 
CR 

EQ DC EC PO TPP NTPP TPPi NTPPi EQ CR 

CR DR, 
PO, 
PPi, CR 

DR, PO, 
PPi, CR 

DR, PO, 
PP, PPi, 
CR 

PP, PO, 
CR 

PP, PO, 
CR 

DR, PPi, 
PO, CR 

DR, PPi, 
PO, CR 

CR no info 

 

                                                           
6 This is what we actually did to find the RCC*-9 composition table, that is, finding config-

urations like those in Fig.8 satisfying each result of the table.   
7 An automatic proof of RCC-8 composition table based on encoding RCC-8 in an intui-

tionistic propositional calculus has been proposed in [2].   
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From the composition table of RCC*-9, we can infer the composition table of 
CBM*. First, we need to find an intermediate result: the composition table of RCC*-
7. This is just a reduced version of the composition table of RCC*-9 that is obtained 
by making the union of relations TPP and NTPP and of relations TPPI and NTPPi. 
From the composition table of RCC*-7 and from the correspondences between CBM* 
and RCC-7 (Table 1), we can obtain as an almost immediate result the composition 
table for CBM* (Table 3) by simple renaming of the relations. 

Table 3. Composition table for CBM*. Adopted abbreviations: di=disjoint, to=touch, 
ov=overlap, eq=equal, cr=cross.  

     r2  

r1 

di* to* ov* in* in*−1 eq* cr* 

di* no info di*, to*, 

ov*, in*, 

cr* 

di*, to*, 

ov*, in*, 

cr* 

di*, to*, 

ov*, in*, 

cr* 

di* di* di*, to*, 

ov*, in*, 

cr* 

to* di*, to*, 

ov*, in*−1, 

cr* 

no info di*, to*, 

ov*, in*, 

cr* 

to*, ov*, 

in*, cr* 

di*, to* di* di*, to*, 

ov*, in*, 

cr* 

ov* di*, to*, 

ov*, in*−1, 

cr* 

di*, to*, 

ov*, in*−1, 

cr* 

no info ov*, in*, 

cr* 

di*, to*, 

ov*, 

in*−1, cr* 

ov* di*, to*, 

ov*, in*, 

in*−1, cr* 

in* di* di*, to* di*, to*, 

ov*, in*, 

cr* 

in* no info in* di*, to*, 

in*, ov*, 

cr* 

in*−1 di*, to*, 

ov*, in*−1, 

cr* 

to*, ov*, 

in*−1, cr* 

ov*, in*−1, 

cr* 

ov*, in*, 

in*−1, 

eq*, cr* 

in*−1 in*−1 ov*, 

in*−1, cr* 

eq* di* to* ov* in* in*−1 eq* cr* 

cr* di*, to*, 

ov*, in*−1, 

cr* 

di*, to*, 

ov*, in*−1, 

cr* 

di*, to*, 

ov*, in*, 

in*−1, cr* 

in*, ov*, 

cr* 

di*, to*, 

in*−1, 

ov*, cr* 

cr* no info 

7 Comparison with 9-intersection 

In this section, we compare the calculi CBM* and RCC*-9 with 9IM [15] and 
DE+9IM [3]. This is useful for practical reasons to easily implement the relations of 
the proposed calculi in OGC-compliant systems. We use the Relate function defined 
in the OGC Simple Features Specification [23]. The function returns true if the two 
features satisfy the topological relation corresponding to the string parameter. Such a 
string represents a set of values for 9IM matrix by rows: characters allowed in the 
string are ‘F’ for an empty intersection, ‘T’ for a non-empty intersection, and ‘*’ for 
‘don’t care’. The value ‘T’ in the string of the Relate function can be specialized to 
the values 0, 1, 2 to express the dimension of the intersection set: this corresponds to 
the DE+9IM matrix introduced in [3]. Table 4 summarizes the correspondence be-
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tween CBM* and 9IM. The equivalent expressions of 9IM can be easily inferred from 
CBM* definitions.   

Table 4. Correspondence between CBM* relations and 9IM relations.  

CBM* 9IM 

disjoint*(x,y) Relate(x,y,"FF*FF****") 

touch*(x,y) Relate(x,y,"FTT***T**") ∨       

Relate(x,y,"F*TT**T**") ∨   
Relate(x,y,"F*T*T*T**") 

in*(x,y) Relate(x,y,"**F**F***") ∧ 

¬ Relate(x,y,"TFFFTFFFT") 

cross*(x,y) Relate(x,y,"T**FF****") ∨       
Relate(x,y,"TF**F****")  

overlap*(x,y) Relate(x,y,"TTTT**T**") ∨       
Relate(x,y,"T*T*T*T**") 

in*−1(x,y) Relate(x,y,"******FF*") ∧ 

¬ Relate(x,y,"TFFFTFFFT") 

equal*(x,y) Relate(x,y,"TFFFTFFFT") 

Table 5. Correspondence between RCC*-9 and 9IM.  

RCC*-9 9IM 

DC(x,y) Relate(x,y,"FF*FF****") 

EC(x,y) Relate(x,y,"FTT***T**") ∨       

Relate(x,y,"F*TT**T**") ∨   
Relate(x,y,"F*T*T*T**") 

NTPP(x,y) Relate(x,y,"*FF*FF***") 

TPP(x,y) Relate(x,y,"*TF**F***") ∨ 

Relate(x,y,"**F*TF***") ∧ 

¬ Relate(x,y,"TFFFTFFFT") 

CR(x,y) Relate(x,y,"T**FF****") ∨       
Relate(x,y,"TF**F****") 

PO(x,y) Relate(x,y,"TTTT**T**") ∨       
Relate(x,y,"T*T*T*T**") 

NTPPi(x,y) Relate(x,y,"***FF*FF*") 

TPPi(x,y) Relate(x,y,"***T**FF*") ∨  

Relate(x,y,"****T*FF*") ∧ 

¬ Relate(x,y,"TFFFTFFFT") 

EQ(x,y) Relate(x,y,"TFFFTFFFT") 

 
We can see in Table 4 that CBM* relations do not need the dimension of the inter-

section set to find equivalent expressions. Therefore, it is possible to find equivalent 
expressions of CBM* queries in terms of 9IM without the need to resort to the much 
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expressive DE+9IM. The CBM relations needed the dimension to find equivalent 
expressions in the DE+9IM matrices, being 9IM matrix alone not sufficient. In [3], it 
was proved that CBM is equivalent to DE+9IM in terms of the number of topological 
configurations that the models are able to distinguish. Though it is out of the scope of 
this paper, it is provable that CBM* is equivalent to 9IM in terms of number of topo-
logical configurations. In this sense, CBM* can be considered weaker than CBM 
because CBM* does not include the possibility of checking the dimension of intersec-
tions. Of course, this is not a real weakness of CBM* since an operator to check di-
mension could be easily added to the calculus to recuperate the ability of checking set 
dimension. Given the correspondence between CBM* and RCC*-9 (Table 1), we can 
express RCC*-9 relations in terms of 9IM matrices by using Table 4 to obtain Table 
5.  

8 Conclusions and further work 

An extension towards multidimensional mereotopology [18] has been advocated 
for a long time. RCC*-9 is our contribution to address this issue. We defined RCC*-9 
by modifying the definition of the basic relations of RCC-8 and adding two new rela-
tions, namely, a new primitive B(x,y) to express that x is boundary of y and CR(x,y) 

for the defined cross relation. The variables of RCC*-9 no longer range just over 
regions, but features (or sets of features) of dimension 2, 1, or 0, embedded in R2. 
These changes extend rather than change8 the semantics of RCC-8, since if we con-
sider only regions, then RCC*-9 collapses to RCC-8. The composition table of 
RCC*-9 with respect to the composition table of RCC-8 presents the relation CR as 
an additional possible result of composition, but it does not affect the already present 
results – i.e. each entry in the composition table for RCC*-9 is either the same, or a 
superset of the corresponding RCC-8 composition table entry (except for the rows and 
columns labelled by CR, which are new).  

In this paper, we also introduced the CBM*, a modified version of CBM where we 
lose the possibility of distinguishing the dimension of set intersections. CBM* defini-
tions do not depend on the type of features, e.g., a cross between two lines has the 
same definition of the cross between a line and a region. With the new definitions, it 
is possible to obtain a single composition table for all features.  

Finally, we provided the usual basis for a reasoning system for a qualitative calcu-
lus, i.e. a composition table, for the new calculi, extending the earlier composition 
tables from simple regions to the case of generic spatial features. Another interesting 
aspect that we discussed is how to find equivalent expressions of both calculi in terms 
of 9IM, which is essential to enabling a straightforward implementation in OGC-
compliant systems. 

Further work is needed to provide a formal proof of the correctness of the composi-
tion tables. Another issue that is not covered in this paper is the study of the cognitive 

                                                           
8 Strictly, it only extends RCC8 if we consider the 2D interpretation of RCC8: RCC8 can 

be interpreted in any dimension ≥ 2; in principle the definitions here may apply to regions of 
other dimensions but we have not investigated this yet. 
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adequacy of the group of relations inside CBM* and RCC*-9 models. It would be 
interesting to find out the differences in subjective perceptions especially of the pre-
vious CBM calculus versus the new CBM* calculus. Finally, an assessment of how 
the calculi behave for complex features and for higher dimensional spaces remains to 
be done.  
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