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[1] Surface roughness plays a key role in determining aerodynamic roughness length (zo)
and shear velocity, both of which are fundamental for determining wind erosion threshold
and potential. While zo can be quantified from wind measurements, large proportions of
wind erosion prone surfaces remain too remote for this to be a viable approach. Alternative
approaches therefore seek to relate zo to morphological roughness metrics. However,
dust-emitting landscapes typically consist of complex small-scale surface roughness
patterns and fewmetrics exist for these surfaces which can be used to predict zo for modeling
wind erosion potential. In this study terrestrial laser scanning was used to characterize the
roughness of typical dust-emitting surfaces (playa and sandar) where element protrusion
heights ranged from 1 to 199mm, over which vertical wind velocity profiles were collected
to enable estimation of zo. Our data suggest that, although a reasonable relationship
(R2> 0.79) is apparent between 3-D roughness density and zo, the spacing of morphological
elements is far less powerful in explaining variations in zo than metrics based on surface
roughness height (R2> 0.92). This finding is in juxtaposition to wind erosion models that
assume the spacing of larger-scale isolated roughness elements is most important in
determining zo. Rather, our data show that any metric based on element protrusion height
has a higher likelihood of successfully predicting zo. This finding has important implications
for the development of wind erosion and dust emission models that seek to predict the
efficiency of aeolian processes in remote terrestrial and planetary environments.

Citation: Nield, J. M., et al. (2014), Estimating aerodynamic roughness over complex surface terrain, J. Geophys. Res.
Atmos., 118, 12,948–12,961, doi:10.1002/2013JD020632.

1. Introduction

[2] The ability to quantify the momentum transfer between
fluid flow and small-scale roughness elements is important
in a myriad of environmental contexts including wind ero-
sion and sediment entrainment schemes [e.g. Lettau, 1969;
MacKinnon et al., 2004; Lancaster, 2004; Lancaster et al.,
2010], energy balance modeling [e.g. Brock et al., 2006;

Manes et al., 2008], and urban heat exchange [Oke, 1987].
This momentum transfer is parameterized by aerodynamic
roughness, zo, and is a function of surface roughness, k, and
the arrangement and size of roughness elements [Raupach
et al., 1991]. While vertical wind velocity profile or shear
stress measurements can be used to measure zo directly
[King et al., 2008], there are many instances where only
measurements of surface roughness (k) are available
[Greeley et al., 1997]. Relationships between k to zo are
therefore required [MacKinnon et al., 2004], particularly
for small-scale (sub-cm) roughness patterns, which to date
have been little studied [Manes et al., 2008] and present
additional challenges due to their continuous and complex
morphologies [Marticorena et al., 2006]. Aerodynamic
roughness over larger patterns is generally parameterized
through investigations of discrete roughness elements at a
wide range of spatial scales from small-scale wind tunnel
studies [Brown et al., 2008; Cheng et al., 2007; King et al.,
2008], medium-scale vegetation, and nebkha dune elements
[Gillies et al., 2007; King et al., 2006; Lancaster and Baas,
1998; Marticorena and Bergametti, 1995; Raupach, 1992;
Raupach et al., 1993; Wolfe and Nickling, 1993] to large-
scale building roughness elements of major cities [Castro
et al., 2006; Grimmond and Oke, 1999; Millward-Hopkins
et al., 2011; Rotach, 1995; Zaki et al., 2011] and remote sens-
ing investigations [Blumberg and Greeley, 1993; Laurent
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et al., 2005; Prigent et al., 2005]. In wind tunnel studies that
assessed element configuration Cheng et al. [2007] and
Brown et al. [2008] found that the roughness element den-
sity, rather than configuration, had the greatest influence on
shear stress partitioning. Most aeolian transport field studies
only consider discrete roughness elements such as vegeta-
tion, but the performance of sediment entrainment schemes
for surfaces with continuous microroughness is less well
quantified [MacKinnon et al., 2004] or parameterized using
grain size [Darmenova et al., 2009]. Playas (or salt pans
[Shaw and Bryant, 2011]) and small-scale rocky terrain
surfaces (e.g., desert stony surfaces [Bullard et al., 2011]
and sandar [Prospero et al., 2012]) typically comprise crusts
or rock patterns of connected roughness elements at different
scales. Although these elements are shorter than more
commonly studied vegetation elements [e.g., Eamer and
Walker, 2010; Brown and Hugenholtz, 2011; Weligepolage
et al., 2012; Paul-Limoges et al., 2013], they still have the
potential to significantly alter zo and the threshold wind stress
for sediment transport [Wiggs and Holmes, 2011]. These
complex, rough, continuous surfaces present additional
challenges for measurement and turbulence characterization,
such that field studies to date have generally only undertaken
transect measurements to characterize their roughness [e.g.,
Lettau, 1969; Lyles and Allison, 1979; Greeley et al., 1995;
Lancaster, 2004; Brock et al., 2006]. However, with the
development of new technologies such as terrestrial laser
scanning (TLS), the opportunity now exists to characterize
surface roughness metrics in high resolution (mm scale) and
in 3-D. These data sets can provide vital estimations of zo in
areas where measuring aerodynamic profiles are infeasible
but shear stress and erosion potential calculations are essential.
[3] TLS is a technique whereby spatial coordinates of a

surface are measured remotely in a short time (minutes) over
a moderate area (tens of square meters), thus enabling quan-
tification of surface roughness at sub-cm scale [Buckley et al.,
2008]. TLS has been used in a range of environments to spe-
cifically measure small-scale surface roughness including (i)
sand and soils [Eitel et al., 2011;Haubrock et al., 2009;Nield
et al., 2011; Nield and Wiggs, 2011; Rodriguez-Caballero
et al., 2012; Sankey et al., 2010; Smith et al., 2011], (ii) veg-
etation [Anderson et al., 2010; Antonarakis et al., 2009;
Weligepolage et al., 2012], (iii) snow and ice [Kaasalainen
et al., 2011; Nield et al., 2013; Wirz et al., 2011], and (iv)
rocks [Fardin et al., 2004; Khoshelham et al., 2011] and
has shown promise in relating these patterns to aerodynamic
roughness [Hugenholtz et al., 2013]. Here we apply TLS to
elucidate pattern variability over a broad range of roughness
element sizes and pattern distributions associated with 20 typical
playa and sandar dust-emitting surfaces [Mahowald et al., 2003;
Prospero et al., 2012]. We relate the quantified morphological
characteristics (flat to cobble) to velocity profile-determined
aerodynamic roughness (zo) values and provide a continuum
of predictive measurements for relatively smooth, complex
patterns that are typically prone to wind erosion.

2. Background: Quantifying Surface Roughness

[4] The availability of accurate, high-resolution DEMs
derived from TLS surveys opens up the possibility of using
a myriad of different terrain analysis techniques to quantify
surface roughness magnitude and variation in one, two, or

three dimensions. Conceptually, these different methodolo-
gies define the magnitude of the surface elements’ height
and spacing, or the variability of the surface patterning, as
indicated in Table 1.

2.1. One-Dimensional Methods

[5] The simplest methods for characterizing surfaces con-
sider the height distribution of the surface, where the maxi-
mum and standard deviation of height are taken to indicate
element magnitude and roughness (surface variability),
respectively [Glenn et al., 2006]. These nonspatially explicit
metrics are commonly used as a measure of surface rough-
ness in the analysis of complex large-scale building city-
scapes or forested terrain [Nakayama et al., 2011].

2.2. Two-Dimensional Methods

[6] Two-dimensional (2-D) methods that characterize the
spatial aspects of surface roughness have traditionally been
undertaken using transects of varying length. For example,
in glacial research Munro [1989] adapted the Lettau [1969]
method (LM) to characterize complex ice roughness.
This LM method is calculated using equations (1–3) from
Munro [1989] and has been compared to aerodynamic mea-
surements made by a number of researchers (e.g., Brock
et al. [2006]). In the LM method transect lines are detrended
and centered over a zero mean. The zero-up-crossing method
[Goda, 2000] can then be used to calculate how many times
the zero line is crossed in an upward direction through the
transect line to give the frequency of continuous groups of
positive height deviations:

kLM ¼ 0:5h�
s

S

� �
(1)

s ¼ h�X
2f

(2)

S ¼ X

f

� �2

(3)

where kLM is the geometric roughness length equivalent
of measured aerodynamic roughness using the LM method,
h* is the average obstacle height (twice the standard devia-
tion of the detrended elevation in equation (2)), s is the sil-
houette area, S is the unit ground area, X is the length of the
transect, and f is the roughness element frequency (number
of continuous groups of positive height deviations above
the mean elevation—calculated using the zero-up-crossing
method in this instance).
[7] The zero-up-crossing method enables wavelength and

heights for each element to be calculated along a transect.
The converse zero-down-crossing method can be used to de-
termine when the zero line is crossed in a downward direc-
tion, and the difference between neighboring up and down
crossing pairs determines the ridge width and the distance
between down and up pairs defines the interridge spacing
(Sp). While discrete elements are generally assumed to be
cylindrical for roughness density calculations [MacKinnon
et al., 2004; Raupach et al., 1993], complex surfaces can
be simplified as intersecting patterns where one unit ends
when it joins a perpendicular element. Roughness density
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(λ2-D) can then be specified from equation (4), assuming a
rectangular element cross section.

λ2-D ¼ b1h1
L2L1

(4)

where b1 is the element width perpendicular to the wind di-
rection, h1 is the element height, L1 is the element wavelength
perpendicular to the wind direction, and L2 is the element
wavelength parallel to the wind direction.
[8] Similarly, a basal to frontal area ratio (RBF) can be

calculated using equation (5).

RBF ¼ L2b1
h1b1

(5)

[9] Variograms are used in a range of continuous surface
roughness studies to assess pattern scaling, including in gravel
river beds [Hodge et al., 2009; Huang and Wang, 2012], soil

[Croft et al., 2012, 2013; Sankey et al., 2012], and snow sur-
faces [Schirmer and Lehning, 2011]. Commonly derived
values include the sill, which is the value of semi-variance
(y) at which convergence occurs and indicates roughness
within the data, and the range, which is the corresponding
lag distance (x) at convergence and indicates the point at which
surface structures are no longer related.

2.3. Three-Dimensional Methods

[10] Three-dimensional (3-D) methods capture the full spatial
variability of the surface either locally via moving windows, or
globally via complete surface analysis. Similar to the 2-D
method, the standard deviation of elevations can be measured
spatially by quantifying the convergent standard deviation value
within moving windows of increasing size [Frankel and Dolan,
2007], as has been used in a variety of applications including bi-
ological crust roughness [Rodriguez-Caballero et al., 2012].

Figure 1. Examples of (a) irregular salt pan, (b) regular, polygonal salt pan, and (c) sandur surface
patterns measured using the TLS.

Table 1. Classification of Different Physical Surface Roughness Metrics in Terms of Pattern Variability, Shape, and Magnitude

Analysis
dimension Metric

Surface Roughness Characterization

Magnitude

Variability ShapeVertical Horizontal

1-D Standard deviation of elevation distribution x

2-D Zero-up-crossing transects Height (mean) x
Height (max) x
Height (standard deviation) x
Ridge width x
Ridge wavelength x
Interridge spacing x
RBF x
λ2-D x
kLM x

Semivariogram Sill x
Range x

3-D Moving window analysis Mean of elevation standard deviations Interface width x
Saturation length x

Standard deviation of elevation
standard deviations

Peak value x

Range x

Root-mean-squared height (RMSH) Interface width x
Saturation length x

Maximum height Interface width x
Saturation length x

Fourier transform magnitude relative to flat surface x
dominant wavelength x

Wavelet magnitude relative to flat surface x
dominant wavelength x

RSA x
λvol x
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Taking the average of any descriptive statistic at each moving
window size enables us to specify an interface width (the max-
imum roughness value) and saturation length (window size at
which values converge) of that statistic [Barabasi and
Stanley, 1995]. The interface width identifies dominant rough-
ness and the saturation length is a measure of the range of
wavelength populations. The standard deviation within each
moving window can also be calculated for the same surfaces
where the peak value identifies the maximum roughness vari-
ability for each surface. Moving window analyses can be used
to identify convergent values of standard deviation of eleva-
tions, maximum height (within each moving window), and
root-mean-squared height, RMSH (equation (6)), which are

commonly calculated metrics in soil surface roughness studies
[Eitel et al., 2011; Haubrock et al., 2009; Nield et al., 2011;
Sankey et al., 2011].

RMSH ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
zi � μð Þ2

n� 1

vuut
(6)

where zi is the height within each grid cell included in the moving
window, μ is the mean elevation within the moving window, and
n is the number of grid cells within the moving window.
[11] Fourier transform and wavelet analyses can be used to

determine dominant wavelengths of surface topography
[Harrison and Lo, 1996] and, following the methods of
Perron et al. [2008] and Booth et al. [2009], have been used
to identify landscape roughness variation (e.g., sea floor rip-
ples [Lyons et al., 2002] and glacial ice [Nield et al., 2013]).
Fourier transforms are advantageous over single transect
methods as they identify the strength of spatial relationships
for different spacing and can determine multiple wavelength
dominance. Wavelet analysis is similar to Fourier transform
analysis, but it calculates spectra locally and so it is able to
identify trends on spatially heterogeneous surfaces. Mexican
Hat wavelets are typically used as they replicate the roughness
element shape [Booth et al., 2009]. Pattern variations can be
identified by normalizing both Fourier transform and wavelet
spectra using spectra from measurements of a smooth surface.
[12] The actual area of a continuous spatial surface can be

calculated following the methods of Jenness [2004], thereby
enabling an areal roughness density to be calculated (equa-
tion (7)). It is also possible to quantify the roughness density
volumetrically (λvol) within a unit volume (equation (8)) in a
similar way to the volumetric porosity methods of Grant and
Nickling [1998].

RSA ¼ SAridge

SAbox
(7)

λvol ¼ V ridge

V box
(8)

Table 2. Surface Description for Each Sitea

Site Name Surface Type Pattern Description

A1/H1 salt pan polygonal ridges
A2/H1 salt pan polygonal ridges
A3/H1 salt pan polygonal ridges
A4/H2 salt pan mixed continuous with domed ridges
A5/H2 salt pan mixed polygonal ridges and degraded surfaces
A6/H1 salt pan mixed domed ridges and degraded surfaces
A7/H2 salt pan degraded surface
A8/H4 salt pan continuous surface with microdomes
A9/H2 salt pan polygonal ridges
A10/H4 salt pan flat, continuous surface
A11/H2 salt pan low polygonal ridges
A12/H2 salt pan mixed degraded with occasional ridges
B1/H1 salt pan polygonal ridges
B2/H1 salt pan mixed polygonal ridges and degraded surfaces
B3/H3 sandur stabilized terrace with rounded volcanic

fluvial sediments
B4/H6 sandur active braided river with volcanic fluvial

sediments
C1/H5 salt pan polygonal ridges
C2/H1 salt pan polygonal ridges
D1/H2 salt pan mixed continuous with occasional polygonal

ridges
D2/H2 salt pan mixed continuous with occasional domed

ridges

aSite names are based on cluster analysis (Figures 4 and 5). Refer to
Figures 1 and 6 for photos and TLS planform DEMs of each site.

Table 3. Wind Data for Each Site Ordered by zo Magnitude

Variability
Clusters

Height
Clusters

Rank
(zo)

Mean Values Confidence Limits Standard Deviations
Number of
Observationszo (m) u

*
(m/s) R2 zo u

*
zo (m) u

*
(m/s)

A10 H4 1 0.00007 0.248 0.996 0.00017 0.026 0.00006 0.081 5934
A11 H2 2 0.00046 0.218 0.990 0.00154 0.039 0.00030 0.031 195
A8 H4 3 0.00059 0.297 0.997 0.00113 0.030 0.00049 0.086 6745
D1 H2 4 0.00062 0.317 0.995 0.00141 0.038 0.00036 0.097 2124
A4 H2 5 0.00065 0.262 0.992 0.00199 0.043 0.00042 0.052 1416
A12 H2 6 0.00071 0.274 0.992 0.00213 0.045 0.00051 0.053 894
D2 H2 7 0.00126 0.296 0.991 0.00349 0.049 0.00070 0.059 1090
A5 H2 8 0.00237 0.345 0.996 0.00386 0.037 0.00119 0.099 2534
A9 H2 9 0.00250 0.351 0.996 0.00439 0.039 0.00128 0.110 2968
A6 H1 11 0.00263 0.379 0.996 0.00462 0.043 0.00118 0.104 2093
A7 H2 12 0.00263 0.344 0.996 0.00424 0.036 0.00158 0.080 2650
A2 H1 10 0.00270 0.374 0.993 0.00559 0.052 0.00110 0.078 3292
B2 H1 13 0.00297 0.375 0.994 0.00587 0.049 0.00124 0.073 2934
C2 H1 14 0.00327 0.389 0.995 0.00597 0.047 0.00131 0.086 3469
A3 H1 15 0.00357 0.311 0.995 0.00671 0.040 0.00184 0.057 638
A1 H1 16 0.00500 0.432 0.991 0.01109 0.075 0.00598 0.141 1104
B1 H1 17 0.00598 0.389 0.992 0.01199 0.059 0.00186 0.059 671
C1 H5 18 0.00723 0.407 0.993 0.01420 0.062 0.00279 0.067 782
B3 H3 19 0.00793 0.193 0.988 0.00757 0.038 0.00333 0.050 54
B4 H6 20 0.00963 0.346 0.987 0.00980 0.072 0.00376 0.038 22
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Figure 2. (a–j) Relationships between key surface morphology metrics. Data points represent each of the
20 surfaces and are colored by assigned variability cluster groups (see Figure 4 for membership), and sym-
bols indicate height cluster groups (see Figure 5 for membership), as indicated by the legend labels where
A–D indicate variability membership and H1–H6 indicate height membership.
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where RSA is the areal roughness density based on surface
area, SAridge is the actual surface area of each site, SAbox is
the planform area of the site, Vridge is the element volume
above a plane intersecting the lowest surface point, and
Vbox is the volume of air within which the elements reside,
1m above the lowest surface point.
[13] We assimilate all of the above methods to classify

TLS-measured surface element configurations both in mag-
nitude, shape, and variability using cluster analysis and then
determine multiple linear regression relationships between
surface metrics and zo to identify which of these key surface
characteristics (magnitude, shape, or variability) has a greater
influence on estimating zo.

3. Study Sites and Field Methods

[14] Twenty surfaces spanning a range of element magni-
tudes (flat to cobbles) and pattern configurations (regular to ir-
regular) typical of dust-emitting landscapes (Figure 1; Table 2)
were measured using a Leica ScanStation TLS in July, August
2011, and August 2012. Eighteen surfaces were located on
Sua Pan, part of the Makgadikgadi Salt Pan complex in central
Botswana (20.5754°S, 25.959°E). Sua experiences ephemeral
surface flooding [Eckardt et al., 2008] and is one of southern
Africa’s most important aeolian dust source areas [Bryant
et al., 2007; Prospero et al., 2002; Washington et al., 2003;
Zender and Kwon, 2005]. The pan surface comprises a
polygon crust (Figures 1a and 1b) of varying morphology
and in various states of formation and degradation. The
measured surfaces ranged from newly formed, flat crust, to
well-formed polygons (Figure 1b). A number of surfaces were
degraded with broken and deflated ridges, and some surfaces
contained a mix of flat, newly formed crust and extruding
and broken crust ridges. Two further surfaces with larger

element heights were measured at Kotarjökull and Falljökull
sandar in Southeast Iceland (63.925°N, 16.792°W and
63.950°N, 16.832°W, respectively) which are a major source
of high-latitude dust [Prospero et al., 2012]. At Kotarjökull
we sampled an inactive, stabilized terrace surface with
rounded volcanic fluvial deposits. At Falljökull sandur we
sampled the active surface, with braided river channels sur-
rounding the measurement site and volcanic fluvial sediments
(Figure 1c). Both sandar are flat and exposed to the dominant
wind fetch from the south east for several kilometers.
[15] High-resolution surface topography was measured

with a specified resolution of 0.005m at 30m for the salt
crust and 0.01m at 50m and 70m for the Kotarjökull sandur
and Falljökull sandur sites, respectively. Upwind of each in-
strument setup for data analysis, 144m2 sections of data were
extracted. Data were reduced to a digital elevation model
(DEM) of 0.01m grid resolution, by assigning the average
elevation value in each cell to that grid. Mixed pixels were
not noticeably influential in point cloud measurements due
to the relatively flat surfaces and high incident angle.
Replicate scans of the same surface area at two salt pan sites
(flat and ridged) during the day indicated mean surface differ-
ences less than 0.003m, which is below the mean error
values of 0.0032 to 0.0034m recorded from modeled and
measured Leica TLS data by Hodge [2010]. Empty cells
were interpolated in Matlab (Mathworks Inc.) using the nat-
ural neighbor (continuous convex hull triangulation) method.
Occluded areas were limited to the ridge and rock sides fac-
ing away from the TLS on the surfaces with taller elements.
Analysis undertaken on independent 5 � 5m squares pro-
duced similar metric results, suggesting interpolation of
away facing elements did not adversely influence analysis
of the larger surface areas. Larger-scale surface gradients
on the sandar were removed by subtracting the underlying
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surface calculated using a 0.26m2 moving window average.
Manual measurements of surface bumps using the raw TLS
point data along six transects for each sandur following the
Gaussian bump fitting methods of Kean and Smith [2006a,
2006b] produced similar mean height (difference< 0.001m)
and wavelength (difference< 0.05m) values as the automated
transects on the detrended surfaces.
[16] Wind speeds on Sua Pan were measured at four heights

above the surface (at 0.25m, 0.47m, 0.89m, and 1.68m) with
Vector Instruments rotating cup anemometers (A-100R).
Analysis was restricted to easterly wind measurements
(45° to 135° from north; the dominant storm direction) within
a 2-week period centered on the same day as the TLSmeasure-
ments were collected at each site. At the sandur sites, wind
speeds were measured at five heights above the surface
(at 0.08m, 0.48m, 1.02m, 1.69m, and 2.4m) with RM
Young cup anemometers and wind measurements over 4 h
periods were analyzed. All wind speed measurements from
each site and location were averaged over 1 min to calculate
shear velocity (u*) and aerodynamic roughness values (zo) fol-
lowing standard law of the wall profile methods [Oke, 1987].
Measurements were filtered to minimize any buoyancy effects
with a threshold for wind speed at the lowest anemometer
height of 3ms�1 and 1ms�1 for the salt pan and sandar, re-
spectively. All instances where the R2 values for the log-linear
regression of height against wind speed to calculate u* and zo
that were below 0.98 were also discarded [Bauer et al.,
1992; Namikas et al., 2003]. Table 3 indicates the number of
measurements used for each calculation.

4. Spatial Variability in TLS-Measured
Surface Roughness

[17] The 20 measured surfaces covered a range of element
heights (0.001–0.036m mean height and 0.007–0.199m
maximum heights using the zero-up-crossing method), ridge

spacing (0.058–0.536m mean wavelength), and pattern
variability (Figure 2). kLM values calculated in wind perpen-
dicular and parallel direction indicate that there was no dom-
inant directional bias within the data (Figure 2a; correlation
coefficient = 0.99, p < 0.001). The mean wavelengths mea-
sured by the zero-up-crossing transect method strongly corre-
lated to the minimum wavelengths found using the Fourier
transforms (Figures 2b and 3a; coefficient = 0.82). Wavelet
peaks (Figure 3b) indicate the smallest wavelengths identi-
fied by the Fourier analysis, and the wavelet peak widths
span similar ranges, but the Fourier spectra are more advan-
tageous as they identify individual wavelengths within the
data set distribution and so are useful for identifying multiple
scales of patterning across the surface.
[18] The 20 surfaces were independently grouped using clus-

ter analysis into two sets to identify surfaces with similar pat-
tern variability (Figure 4) or height characteristics (Figure 5)
and to explore the relationships of these pattern types to aero-
dynamic roughness. The metric sets used for each of the vari-
ability and height clusters are defined a priori in Table 1, and
planform plots of each surface arranged by pattern variability
clusters are shown in Figure 6.
[19] The variability cluster analysis (Figures 4 and 6) identi-

fied four main groups (based on greatest dendrogram distance
gap). These groups (and subgroups) were qualitatively charac-
terized by independent analysis of the normalized Fourier
transform andwavelet spectra (Figure 3). The first dendrogram
arm separates regular (A, B and C) from irregular (D) surfaces.
Group A is predominantly composed of uniform elements,
Group B has occasional larger elements, and Group C consists
of dominant larger-scale wavelengths. Within Group A, A1 to
A3 have strong small-scale patterns, A5 to A9 have very weak
large scale patterns, and A10 to A12 have occasional larger el-
ements. A4 has a mix of patterns, indicated by multiple peaks
of similar magnitude on the normalized Fourier transform
spectra (Figure 3). Group B has larger elements and spacing
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Figure 6. Planform plot of each of the surfaces arranged by variability cluster groups. Colors indicate sur-
face elevation above (red) and below (blue) mean elevation of each surface. Border and symbol colors in-
dicate variability cluster groups (Figure 4), and symbol shapes adjacent to site labels indicate height cluster
groups (Figure 5).
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generally than Group A, but it also has a mix of larger and
smaller scale pattern types, organized in local patches, partic-
ularly in the cases of B2 and B3 that have less intense medium
scale Fourier transform peaks. Group C is dominated by large-
scale elements and wavelengths and has the longest wave-
length peaks within the Fourier and wavelet analyses. Group
D consists of irregular elements (Figure 1a) with weak rela-
tionships between both small and large wavelengths in both
the Fourier and wavelet spectra. Visually, Group D consists
of large elements in close proximity, isolated from other ele-
ment assemblages by flat areas, as indicated by the larger sat-
uration length for the RMSH moving window analysis
compared to the other surfaces (Figure 2g).
[20] Clustering the surfaces using the height magnitudemet-

rics from Table 1 produced six significant groups (Figure 5).
The greatest dendrogram distances separated medium-scale
groups (H1, H2, and H3) from small-scale (H4) and large-
scale groups (H5 and H6).
[21] A number of metrics are particularly good at

distinguishing the different height and variability clusters.
Maximum height within moving window separates the
variability groups by saturation length and height groups by
interface width (Figure 2h). Variability group D has a much
larger RMSH saturation length than the rest of the surfaces,

but the height of its members (interface width) matches the re-
lated height cluster groups (Figure 2g). Aside from the two
sandur surfaces (B3/H3 and B4/H6), λ2-D overpredicts rough-
ness density compared to λvol (Figure 2c). This is because the
sandur surfaces do not have the interconnected ridge pattern of
the salt pan. For small heights (height cluster group H4),
nonspatial and element height standard deviation are similar
values, but as pattern magnitude increases (pattern variability
group C), the standard deviation of element height increases
at a greater rate than the nonspatial value (Figure 2i).
Irrespective of pattern cluster group, the members of the larg-
est height clusters (H5 and H6) are end-members for both
mean and maximum element height (Figure 2j).

5. Aerodynamic Roughness Variability

[22] Mean and standard deviation values for wind profiles
measured at each site from the dominant wind direction are
shown in Table 3. Aerodynamic roughness measurements in
general followed the height cluster groups (Figure 5) and
ranged from 7 � 10�5m at the smoothest site (A10/H4) to
9.6 � 10�3m at the roughest site (B4/H6). H3 and H5 groups
produced larger zo values and group H2 generally produced
smaller zo values. Shear velocity measurements ranged from

Table 4. R2 Values for Least Square Linear Regression Relationships Between the Natural Logs of Aerodynamic Roughness and the
Surface Metrics; Asterisk Indicates p Value Below 0.002a

R2 Model Coefficients

Analysis
Dimension Metric

All
Values

Excluding
Smooth Intercept Gradient

1-D Standard deviation of elevation distribution 0.75 0.58 0.65 1.37*

2-D Zero-up-crossing transects Height (mean) 0.79 0.65 �0.28 1.33*
Height (max) 0.75 0.56 �2.02 1.50*
Height (std) 0.81 0.71 0.29 1.33*
Ridge width 0.50 0.25 �2.72 1.76*
Ridge wavelength 0.60 0.38 �3.43 1.89*
Interridge spacing 0.67 0.50 �1.82 1.89*
RBF 0.46 0.14 �0.07 �2.03*
λ2-D 0.51 0.19 0.73 2.10*
kLM 0.76 0.62 1.80 0.92*

Semivariogram Sill 0.79 0.67 0.60 0.67*
Range 0.07 0.08 �6.26 0.73

3-D Moving window analysis Mean of elevation standard deviations Interface width 0.75 0.59 0.47 1.31*
Saturation length 0.00 0.06 �6.25 �0.04

Standard deviation of elevation
standard deviations

Peak value 0.51 0.51 2.36 1.38*

Range 0.00 0.00 �5.94 0.05
Root-mean-squared height (RMSH) Interface width 0.75 0.59 0.47 1.31*

Saturation length 0.05 0.18 �6.13 �0.21
Maximum height Interface width 0.80 0.67 �1.43 1.66*

Saturation length 0.09 0.03 0.83 �2.51
Fourier transform magnitude relative to flat surface 0.58 0.58 �11.99 0.70*

dominant wavelength 0.15 0.15 �6.26 �0.35
Wavelet magnitude relative to flat surface 0.27 0.27 �8.89 1.49

dominant wavelength 0.03 0.03 �6.31 �0.21
RSA 0.53 0.39 �8.13 51.18*
λvol 0.79 0.66 �0.01 1.55*

Height group 0.92 0.87 *
Shape group 0.86 0.78 *
Wavelength group 0.81 0.81 *
Variability group 0.86 0.86 *

aGroups refer to sets of metrics identified in Table 1.
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0.19 to 0.43ms�1 and were not related to zo magnitude
(R2 =0.104). Confidence limits for shear velocities and zo ranged
from 10 to 21% and 95 to 333%of themean values, respectively.

6. Implications for Quantifying Aerodynamic
Roughness of Complex Surfaces

[23] The ability of different surface metrics to characterize
aerodynamic roughness is illustrated in Table 4 and Figure 7.
In general, variations in aerodynamic roughness (zo) are con-
trolled more strongly by parameters that include some aspect

of surface roughness height in their metrics rather than surface
roughness spacing. For example, metrics such as element
mean height and standard deviation using the zero-up-crossing
method, interface width of maximum height within a moving
window, semivariogram sill, and λvol all have R2 values greater
than 0.79 when regressed against zo (Figures 7a–7e). Surface
roughness descriptors kLM, RMSH interface width, and maxi-
mum element height also performwell (R2> 0.74; Figures 7f–
7h). Of these metrics, the standard deviation of element
heights, interface width of maximum height within a moving
window, and semivariogram sill are less sensitive to the
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exclusion of the smooth surface (R2> 0.66; Table 4). Multiple
linear regressions were performed on each of the groups from
Table 1 to determine the relationships between shape, height,
variability, and wavelength groups (Figures 7j–7l).

ln zoð Þ ¼ 0:45heightþ 0:37variabilityþ 0:20shape
þ 0:10wavelength

þ 0:72 R2 ¼ 0:90; p < 1� 10�6
� �

(9)

ln zoð Þ ¼ 0:58heightþ 0:50variability

þ 0:48 R2 ¼ 0:90; p < 1� 10�7
� �

(10)

[24] Coefficients and R2 values from the multiple linear re-
gressions confirm that height is the most significant of the
pattern descriptors with respect to aerodynamic roughness,
both for the combination of all metric descriptors (equation
(9)) and the combination of height and variability groups
only (equation (10)). When a surface consists of larger rough-
ness elements (B3/H3, C1/H5, and B4/H6), the best metric
predictors are the interface width of maximum height and
element maximum height (Figures 7b and 7h). This agrees
with wind tunnel studies that have foundmaximum height out-
performs mean height for nonuniform blocks [Cheng and
Castro, 2002; Hagishima et al., 2009]. However, these maxi-
mum height-based metrics underpredict or overpredict zo on
surfaces with moderate element heights but underlying, weak
large-scale pattern variability or irregularity (A4/H2, A11/
H2, A12/H2, D1/H2, and D2/H2). Modeling λvol (Figure 7e)
reduces the residual error for some of these surfaces, but has
outliers relating to the height groups (D1/H2 and A12/H2),
and is less able to predict zo on some larger surfaces (H5 and
H6). The other highly correlated metrics all perform similarly
in terms of ability to predict zo on a uniform surface with
small-scale patterns (A1 to A3, A6 to A9, and B1 to B2).
Moreover, our results suggest that if surfaces measured at high
resolution are quantified using the suite of metrics discussed in
this paper, over 90% of the variance can be explained for aero-
dynamic roughness estimation.
[25] The combination of RMSHand variogram sill (Figure 7i)

performs best at reducing pattern specific outliers, but these
metrics require detailed surface measurements. More common
metrics typically measured using field transects include

element height (mean, maximum, and standard deviation) and
element width or wavelength (spacing). If we consider only
pairs of these commonly measured metrics, where each pair
consists of one vertical and one horizontal metric, then
irrespective of the exact pairing, multiple linear regressions
generate larger coefficients for the height (vertical) component.

ln zoð Þ ¼ 1:66 ln Hmeanð Þ � 0:63 ln Wmeanð Þ
� 0:08 R2 ¼ 0:81; p < 1� 10�6

� �
(12)

ln zoð Þ ¼ 1:48 ln H maxð Þ � 0:04 ln Wmeanð Þ
� 2:0 R2 ¼ 0:75; p < 1� 10�5

� �
(13)

[26] where Hmean is the mean element height across all
transects; Hmax is the maximum element height for each tran-
sect, averaged across all transects, and Wmean is the mean
element width.
[27] The inclusion of ridge width or wavelength does not

improve the R2 value from regressions that include only a
single height metric by more than 4%. This suggests that in
environments where data are limited, an accurate measure-
ment of the mean or maximum element height may be suffi-
cient to explain most of the variance in the aerodynamic
roughness height.
[28] Roughness density (λ) is the most common shape de-

scriptor used to relate surface and aerodynamic roughness.
Figure 8 compares values of mean height, λ, and standard de-
viation of height from previous studies of unvegetated sur-
faces (filtered for appropriate methodologies), and our
study, resulting in R2 values of 0.54, 0.33, and 0.47, respec-
tively (n = 58, 41, 29). Some of the variation can be explained
by the differences in methodology.Greeley et al. [1995] used
a laser profiler, but the profile length was 1.2m along each
side of a triangle, so this method is likely to underpredict
the presence of large roughness elements, as is evident by
the larger residuals for higher zo values. Gillies [1994] used
a laser scanner to characterize the surface, but this study
was undertaken in a wind tunnel, which may explain the
overprediction for very small values of zo. MacKinnon et al.
[2004] assumed a cylindrical shape for roughness elements
that zo was measured over and, when this data set is excluded,
R2 values improve to 0.59, 0.69, and 0.74 for mean height, λ,
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Xue et al., 2002]. The TLS solid green circles are for λ calculated using the 3-D method, hollow circles in-
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and standard deviation of height, respectively (n=53, 36, 24).
Lancaster [2004] only examined elements with a diameter
greater than 10 cm, resulting in underprediction of mean ele-
ment height and λ for small surface roughness and is best
modeled using maximum (equation (13)) rather than mean el-
ement height (equation (12)). If these points are also excluded,
then the R2 value for mean height increases to 0.65 (n=37).
This suggests that if element heights are measured to high pre-
cision, mean height performs as well or better than λ2-D for
predicting zo. This agrees with studies of much larger rough-
ness elements that point to the need to include more weighting
of element height rather than only roughness density when
predicting sediment transport over complex surfaces [Gillies
and Lancaster, 2013]. While our study has highlighted the im-
portance of height characterization for zo estimation, further re-
search is needed into sedimentation patterns over these
surfaces, and TLS is a useful technique to map these patterns
at high resolution.

7. Conclusions

[29] Our findings show that when a surface is measured at
high (mm scale) spatial resolution, any metric combination
that includes a height-related component will be able to pre-
dict aerodynamic roughness (zo), but the optimal choice de-
pends on the pattern variability of the surface. For surfaces
with large elements, or that exhibit mixed homogenous
patches of large and small roughness elements, maximum
height is the best predictor of zo while for more uniform sur-
faces, mean element height or λvol should be used to predict
zo. Multiple linear regressions indicate that, in general, height
is the most significant descriptor, and wavelength is less im-
portant for continuous roughness elements found on crusted
or rocky surfaces. Where it is possible to measure a complete
DEM of surface elevations, a combination of variogram sill
and RMSH is the best combination for aerodynamic rough-
ness estimates as this combination is less sensitive to pattern
variability. However, our data also suggest that the height of
surface roughness provides a good explanation (R2> 0.79)
for most of the variance in aerodynamic roughness (zo) and
performs at least as well as the more complex roughness den-
sity metrics. Aerodynamic roughness (zo) is a fundamental
parameter in wind erosion and dust emission modeling, crit-
ical in the calculation of shear velocity (u*) and erosion
thresholds. This study is the first to recognize the significance
of height for estimating aerodynamic roughness when small-
scale complex surface roughness is accurately quantified,
irrespective of comparator metric choice. This has very sig-
nificant implications for the development of aerodynamic
roughness predictors which are fundamental to the efficiency
of wind erosion models, and, particularly, dust emission
schemes in climate models.
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