Journal of **noteome** research

Elucidation of the Ebola Virus VP24 Cellular Interactome and Disruption of Virus Biology through Targeted Inhibition of Host-Cell **Protein Function**

Isabel García-Dorival,^{†,‡} Weining Wu,[†] Stuart Dowall,[§] Stuart Armstrong,^{†,‡} Olivier Touzelet,[†] Jonathan Wastling,^{†,‡} John N. Barr,^{||} David Matthews,[⊥] Miles Carroll,^{‡,§} Roger Hewson,^{*,‡,§} and Julian A. Hiscox*,^{†,‡}

[†]Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool L3 5RF, United Kingdom

*NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool L69 7BE, United Kingdom [§]Public Health England, Porton Down, Salisbury SP4 0JG, United Kingdom

School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds LS2 9JT, United Kingdom $^{\perp}$ School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, United Kingdom

ABSTRACT: Viral pathogenesis in the infected cell is a balance between antiviral responses and subversion of host-cell processes. Many viral proteins specifically interact with host-cell proteins to promote virus biology. Understanding these interactions can lead to knowledge gains about infection and provide potential targets for antiviral therapy. One such virus is Ebola, which has profound consequences for human health and causes viral hemorrhagic fever where case fatality rates can approach 90%. The Ebola virus VP24 protein plays a critical role in the evasion of the host immune response and is likely to interact with multiple cellular proteins. To map these interactions and better understand the potential functions of VP24, label-free quantitative proteomics was used to identify cellular proteins that had a high probability of forming the VP24 cellular interactome. Several known interactions were confirmed, thus placing confidence in the

technique, but new interactions were also discovered including one with ATP1A1, which is involved in osmoregulation and cell signaling. Disrupting the activity of ATP1A1 in Ebola-virus-infected cells with a small molecule inhibitor resulted in a decrease in progeny virus, thus illustrating how quantitative proteomics can be used to identify potential therapeutic targets. KEYWORDS: Ebola virus, VP24 protein, label free proteomics, proteomics, virus, antiviral, inhibitor, interactome

INTRODUCTION

Ebola virus causes severe hemorrhagic fever in humans and nonhumans primates. Because of the high mortality rate, potential transmission from person-to-person contact, and the lack of approved vaccines or antiviral therapies, Ebola viruses are classified as hazard group 4 pathogens by the Advisory Committee on Dangerous Pathogens (ACDP). The Ebolavirus genus is one of three genera of the family Filoviridae. Currently, this genus is composed of five alternative species of the Ebola virus, which are associated with different pathogenicity and case fatality rates. Zaire Ebola virus (EBOV) is the most pathogenic for humans and causes sporadic outbreaks with fatality rates reaching up to 90%, while Reston Ebola virus (RESTV) is not pathogenic for humans. However, RESTV can cause viral hemorrhagic fever in nonhuman primates and illustrates the potential zoonotic threat of Ebola virus.¹⁻³ Ebola virus outbreaks occur irregularly, with the most recent outbreak occurring in West Africa in 2014, with fatality rates currently over 60%.

Ebola virus is an enveloped nonsegmented negative singlestranded RNA virus with a genome of 19kb in length consisting of seven genes encoding eight proteins: nucleoprotein (NP), virion protein (VP) 35, VP40, glycoprotein (GP), VP30, VP24, and the RNA-dependent RNA polymerase (L). The combination and action of these gene products and their interactions with the host cell cause the severe hemorrhagic fever. One of the proteins thought to contribute to disease pathology is VP24 and may be a major factor in virulence.⁴ This protein is considered a secondary matrix protein as only a small amount of VP24 is incorporated into viral particles. However, VP24 has affinity for the plasma membrane and is associated with the envelope of the virion. VP24 has been shown to have several

Special Issue: Proteomics of Human Diseases: Pathogenesis, Diagnosis, Prognosis, and Treatment

Received: June 5, 2014 Published: August 26, 2014

functions, including an involvement in viral nucleocapsid formation and the regulation of replication.^{5,6}

Critically, VP24 is also involved in modulation of the host response to infection through evasion of the host immune response. VP24 may disrupt interferon signaling by binding to karyopherin- α (KNP- α),⁷ which blocks the nuclear accumulation of tyrosine-phosphorylated STAT1 (PY-STAT).8 STAT1 is a major signaling molecule involved in initiating the antiviral response.9 Nuclear translocation of STAT1 is essential for transcriptional activation of numerous interferon responsive genes. VP24 can also inhibit IFN- α/β - and IFN- γ -induced gene expression.¹⁰ The mechanism of action through which VP24 modulates the immune response is unknown. However, other work suggested that VP24 may be structurally similar to importin- α/β and exportin.¹¹ Thus, VP24 may be involved in the mimicry of host transporter/cargo interactions.^{11,12} Mutations in VP24 have been linked to the adaptation of Zaire Ebola virus in mice and guinea pigs to produce lethal disease.13-15

Therefore, VP24 may form critical protein—protein interactions with host-cell proteins to modulate host-cell pathways; this is the case of the interaction of VP24 with karyopherin, which is required for the inhibition of the interferon-signaling pathway. Elucidating these interactions in detail would provide a deeper understanding of Ebola virus infection and also potentially present antiviral chemo-therapeutic targets to disrupt virus biology.

To determine which cellular proteins or complexes interact with VP24 and to predict function, we have used high-affinity purification coupled to a label-free mass-spectrometry-based approach. Using conservative selection criteria, approximately 50 cellular proteins were identified that had a high probability of interacting with VP24. Some of the candidate proteins had been identified in previous analyses, confirming that our approach was able to identify known interactions, thus increasing confidence that the analysis was capable of identifying new cellular proteins in the same experiment. One of the novel hits identified was sodium/potassium-transporting ATPase subunit alpha-1 (ATP1A1). This enzyme can be inhibited by the small-molecule inhibitor ouabain, which is used in the treatment of heart failure. We used this drug in experiments to inhibit the function of ATP1A1 in cells infected with Ebola virus. The data indicated that progeny virus decreased in treated infected cells compared with untreated infected cells.

EXPERIMENTAL PROCEDURES

EGFP-VP24 and VP24-EGFP Construction

Codon-optimized (for expression in human cells) cDNA sequence encoding Zaire EBOV Mayinga Strain 1976 VP24 protein (NCBI reference sequence number: NP_066250.1) was cloned into the pEGFP-C1 and pEGFP-N1 vectors to generate Zaire EBOV VP24 with C-terminal EGFP tag and N-terminal EGFP tag; the plasmid sequences were confirmed by sequencing.

Cell Culture and Transfections

HEK 293T cells were grown in Dulbecco's modified Eagle's medium (DMEM; Sigma-Aldrich) supplemented with 10% fetal bovine serum (FBS; Sigma-Aldrich) and 1% penicillinstreptomycin (Sigma-Aldrich) at 37 °C with 5% CO₂. To transfect 293T cells, two 145 cm² dishes were seeded with 4 × 10^{6} cells 24 h prior to calcium phosphate transfection with 25.6 μ g of plasmid DNA encoding EGFP, EGFP-VP24, and VP24-EGFP, respectively. After 24 h post-transfection the cells were harvested, lysed, and immunoprecipitated using a GFP-Trap (Chromotek).

EGFP Coimmunoprecipitations

EGFP-VP24, VP24-EGFP, and EGFP immunoprecipitations were performed using a GFP-Trap A (Chromotek), and cell pellet was resuspended in 200 μ L of lysis buffer (10 mM Tris/ Cl pH 7.5; 150 mM NaCl; 0.5 mM EDTA; 0.5%NP40) supplemented with Halt Protease Inhibitor Cocktail EDTA-Free (Thermo Scientific) and incubated for 30 min on ice. The lysate was clarified by centrifugation at 14 000g and diluted fivefold with dilution buffer (10 mM Tris/Cl pH 7.5; 150 mM NaCl; 0.5 mM EDTA) supplemented with Halt Protease Inhibitor Cocktail EDTA-Free (Thermo Scientific). The GFP-Trap agarose beads were equilibrated with ice-cold dilution buffer supplemented with Halt Protease Inhibitor Cocktail EDTA-Free (Thermo Scientific) and then incubated with diluted cell lysate overnight at 4 °C on a rotator, followed by centrifugation at 2700g for 2 min. The bead pellet was washed two times with wash buffer (10 mM Tris/Cl pH 7.5; 150 mM NaCl; 0.5 mM EDTA) supplemented with Halt Protease Inhibitor Cocktail EDTA-Free (Thermo Scientific). After the removal of wash buffer the beads were resuspended with 25 μ L of elution buffer (200 mM Glycine pH 2.5) and incubated for 10 min at room temperature in a thermal shaker to elute bound proteins; the beads were then collected by centrifugation, and the eluted proteins were transferred to a 1.5 mL centrifuge tube. This step was repeated four times to ensure the maximum elution and all of the eluates were combined; 10 μ L of Tris-base buffer (pH 10.4) was added to neutralize the eluate. Immunoprecipitated samples were then analyzed using labelfree mass spectrometry.

Reverse Coimmunoprecipitation

Immunoprecipitations for Karyopherin $\alpha 6$ and Lamin B1 were performed using the immobilized recombinant protein G resin (Generon) and specific antibodies against karyopherin $\alpha 6$ (E-11) (Santa Cruz Biotechnology; sc-390055) and Lamin B1 (ZL-5) (Santa Cruz Biotechnology; sc-56145). cell pellets were incubated for 30 min on ice with 200 μ L of lysis buffer; the lysate was clarified by centrifugation and diluted five-fold with dilution buffer prior to adding 2 μg of the primary antibody and then incubated at 4 °C on a rotator for 2 h. The protein G resin (Generon) was equilibrated with ice-cold dilution buffer and then incubated at 4 °C on a rotator with diluted cell lysate containing the antibody overnight at 4 °C on a rotator, followed by centrifugation at 2700g for 2 min to remove nonbounds. The wash and elution steps were preformed as previously described in GFP coimmunoprecipitation.

Label-Free Mass Spectrometry

Eluted samples were diluted two-fold with 25 mM ammonium bicarbonate. Rapigest (Waters) was added to a final concentration of 0.05% (w/v), and the sample was heated to 80 °C for 10 min. Proteins were reduced with 3 mM dithiothreitol (Sigma) at 60 °C for 10 min, then alkylated with 9 mM iodoacetimide (Sigma) at room temperature for 30 min in the dark. Proteomic grade trypsin (Sigma) was added (0.2 μ g), and samples were incubated at 37 °C overnight. The Rapigest was removed by adding TFA to a final concentration of 1% (v/v) and incubating at 37 °C for 2 h. Peptide samples were centrifuged at 12 000g for 60 min (4 °C) to remove

precipitated Rapigest. Each digest was concentrated and desalted using C18 Stage tips (Thermo Scientific), then dried down using a centrifugal vacuum concentrator (Jouan) and resuspended in a 0.1% (v/v) TFA, 3% (v/v) acetonitrile solution.

Peptide mixtures $(2 \ \mu L)$ were analyzed by online nano flow liquid chromatography using the nanoACQUITY-nLC system (Waters MS technologies, Manchester, U.K.) coupled to an LTQ-Orbitrap Velos (Thermo Fisher Scientific, Bremen, Germany) mass spectrometer equipped with the manufacturer's nanospray ion source. The analytical column (Nano ACQUITY UPLCTM BEH130 C18 15 cm \times 75 μ m, 1.7 μ m capillary column) was maintained at 35 °C and a flow-rate of 300nL/ min. The gradient consisted of 3-40% acetonitrile in 0.1% formic acid for 50 min then a ramp of 40-85% acetonitrile in 0.1% formic acid for 3 min. Full-scan MS spectra (m/z range 300–2000) were acquired by the Orbitrap at a resolution of 30 000. Analysis was performed in data-dependent mode. The top-20 most intense ions from MS1 scan (full MS) were selected for tandem MS by collision-induced dissociation (CID), and all product spectra were acquired in the LTQ ion trap.

Label-Free Analysis

Label-free quantitation was performed using MaxQuant (MQ) software (version 1.3.0.5.) with its internal search engine Andromeda. Precursor mass and fragment mass were searched with mass tolerance of 6 ppm and 0.5 Da, respectively. All other settings were default. The search included variable modifications of methionine oxidation and N-terminal acetylation and fixed modification of carbamidomethyl cysteine. Enzyme specificity was set to trypsin, minimal peptide length was set to seven amino acids, and a maximum of two mis-cleavages was allowed. The false discovery rate (FDR) was set to 0.01 for peptide and protein identifications. The Andromeda search engine was configured for a database containing human proteins (Uniprot release-2013 03) and VP24 GFP constructs (56601 entries). The MQ software further included a decoy database as well as containing common contaminants to determine the FDR and to exclude false-positive hits due to contamination by proteins from different species. For LFQ analysis, "multiplicity" was set to one. Feature matching between raw files was enabled using a retention time window of 2 min. "Discard unmodified counterpart peptides" was unchecked. Only unmodified and unique peptides were utilized. Averaged LFQ intensity values were used to calculate protein ratios.

Bioinformatics Analysis

Label-free mass spectrometry results were processed and analyzed using the Perseus software (MaxQuant); this software was used to perform the statistical analysis and to differentiate background proteins (those cellular proteins that interacted with EGFP alone) from interacting proteins (those cellular proteins that interacted with EGFP-VP24 or VP24-EGFP). LFQ intensity values were analyzed using a T-Test. A volcano plot graphic and a table were generated showing the statistical significant proteins, those proteins that had a high probability of interacting with VP24. The String 9.05. program was used to predict the protein–protein interactions of the statistically significant proteins and also to group proteins according function.

Western Blot Analysis

Beads were then resuspended and boiled in 100 μ L of 2× SDSsample buffer at 95° for 10 min to elute the bound proteins. The beads were then collected by centrifugation, and SDS-PAGE was preformed with the supernatant (elution faction). 10% SDS polyacrylamide gels were used to perform the SDS-PAGE; then, gels were transferred to PVDF membranes (Millipore) using a semidry transfer system. Transferred membranes were blocked in 5% skimmed milk powder dissolved in TBS-0.1% Tween (TBS-T) (50 mM Tris-HCl (pH8.3), 150 mM NaCl, and 0.5% (v/v) Tween-20) buffer for 60 min at room temperature. Primary antibody was diluted 1:1000 in blocking buffer and then incubated at 4 °C overnight; antibodies used against GFP (Santa Cruz Biotechnology; sc-8334), karyopherin $\alpha 6$ (E-11) (Santa Cruz Biotechnology; sc-390055), Lamin B1 (ZL-5) (Santa Cruz Biotechnology; sc-56145), and Na⁺/K⁺-ATPase α (H-3) (Santa Cruz Biotechnology; sc-48345) were from Santa Cruz, and anti-VDAC1/porin antibody was from Abcam (Abcam; ab14734). After three washes, blots were incubated with appropriate HRP secondary antibody diluted in blocking buffer at a 1:2000 for 1 h at room temperature. Blots were developed using enhanced chemiluminesence reagent (BioRad) and detected using a BioRad Imaging system.

Virus Infection and Treatment with Inhibitor

MRC-5 human fetal lung cells (European Collection of Cell Cultures; 05081101) were maintained in Leibovitz's L-15 media (Invitrogen; 31415-086) supplemented with 10% fetal bovine serum (Sigma; F9665). Media was removed from the cell monolayers, and the cells were infected with Ebola Zaire virus (strain ME718) at a multiplicity of infection of ~ 0.1 , with virus left to adsorb for 1 h at 37 °C. ME718 was isolated during an outbreak in October 1976 (WHO International Commission, 1978). It was sourced from an acute phase serum sample obtained from a 42-year-old Belgian nun (Sister M.E.) who became ill on September 23, 1976, in Yambuku, Equateur Province Zaire. This strain is equivalent to the Mayinga strain, as Sister M.E. nursed Sister Mayinga (who the strain is named after) and most likely contracted her infection. Leibovitz's L-15 media containing 2% fetal bovine serum was added, and the infected cells were incubated at 37 °C for 1 h. In triplicate flasks, Ouabbain Octahydrate (Sigma; O3125) was added to the media to a final concentration of 20 nM; a further three flasks were left as an untreated control. At 24 and 48 h postinfection, a sample of media from each flask was added to AVL inactivation buffer (Qiagen; 19073) prior to removal from the Containment Level 4 (CL4) laboratory for nucleic acid extraction. The QIAamp Viral RNA Mini Kit from Qiagen (cat. no. 52904) was used for nucleic acid extraction, as this facilitated transport of the nucleic acid samples from CL4 to CL2. Following the extraction of viral RNA, the cDNA was synthesized using specific primers against the gene encoding the nucleoprotein of Zaire Ebola virus. The cDNA was synthesized using the Thermo Script RT-PCR System from Invitrogen (cat. no. 11146-024) following the manufacturer's instructions. PCR was performed with Paq5000 DNA polymerase (Agilent Technologies) (data not shown). Finally, a qPCR was performed to compare the RNA levels in the infected cells treated and untreated with Ouabain experiment. This was performed with the iTaq Universal SYBR Green Supermix (BIO RAD).

RESULTS

Expression of VP24 in 293T Cells

To obtain a more complete picture of the interaction partners of VP24, we used quantitative proteomics coupled to an immunoprecipitation strategy based on expressing VP24 as an EGFP-fusion in human 293-T cells and utilizing a GFP-trap to selectively precipitate the fusion protein and interacting partners (Figure 1A). 293-T cells are derived from embryonic kidney cells and were chosen due to their ability to sustain Ebola virus replication, their high transfection efficiencies using calcium-phosphate, and the well-annotated human databases that aid with protein identification and function assignment. To identify interacting cellular partners specific for VP24, we used label-free LC-MS/MS to analyze binding partners from cells expressing either EGFP or the EGFP-VP24 or VP24-EGFP fusion proteins. Subsequent comparison of the immunoprecipitated interacting partners from these conditions allowed the identification of cellular components that specifically bound to the VP24 moiety within the EGFP/VP24 fusion protein. This general approach has been shown to improve sensitivity and allow discrimination of specific from nonspecific interactions with the target protein^{16,17} and can be readily applied to the analysis of the cellular interactomes of viral proteins.¹⁸⁻²⁰

To identify cellular proteins that interact with VP24, we cloned the gene encoding EGFP either 5' or 3' of a gene encoding codon-optimized VP24 from a virus similar to the Zaire EBOV, Mayinga Strain 1976, such that when the construct was transfected in cells the EGFP moiety was expressed as either an N- or C-terminal fusion of VP24, respectively. In this way, we mitigated against potential nonbinding to cellular targets caused by steric hindrance of the EGFP moiety. Proteins were precipitated using the anti-EGFP antibody, and both input (cell lysate) and eluted fraction were compared using immunofluoresence (Figure 1B) and Western blot (Figure 1C). The data indicated that both EGFP-VP24 and VP24-EGFP were expressed with high efficiency at the expected molecular weight (~55 kDa).

Identification of the Potential Cellular Interacting Partners of VP24

EGFP-VP24, VP24-EGFP, and EGFP were then overexpressed in 293T cells, and the cellular binding partners were immunoprecipitated using the GFP-trap. These proteins were identified by mass spectrometry. To differentiate those cellular proteins that formed specific interactions with VP24 versus those proteins that interacted with EGFP or formed nonspecific interactions with the binding matrix, we repeated the immune precipitations and mass spectrometry five times. Approximately 600 cellular proteins were initially identified and quantified, which represented both the specific and nonspecific interactions. To differentiate between these possibilities, we took several conservative processing steps. The 15 data sets were analyzed by the Perseus software algorithm. Proteins identified by a single peptide were removed, and a p value was set at <0.01 for the *t*-test analysis, where theoretically only 1:100 proteins were misidentified. The data were then organized in the form of volcano plots for EGFP-VP24 and VP24-EGFP (Figure 2A,B, respectively). These show P values $(-\log_{10})$ for confidence in peptide identification versus fold difference in binding of a protein between the VP24 fusion protein and EGFP only. Dots represent individual proteins. Those dots inside the volcano plots represent proteins that did not associate with VP24 with statistical significance. Proteins that

Figure 1. Expression of VP24 in 293T cells. (A) Schematic representation of the methodology used in this study. HEK 293T cells were grown in DMEM supplemented with 10% FBD and 1% penicillin-streptomycin at 37 °C with 5% CO2. Two 145 cm² dishes were seeded with 4×10^6 cells 24 h prior to calcium phosphate transfection with 25.6 µg of plasmid DNA encoding EGFP, EGFP-VP24, and VP24-EGFP, respectively. 24 h post-transfection the cells were harvested, lysed, and immunoprecipitated using a GFP-Trap (Chromotek). Label-free mass spectrometry analysis on the eluted samples was then carried out. (B) Expression of VP24-EGFP, EGFP-VP24, and EGFP in 293T cells was confirmed by immunofluorescence using confocal microscopy and DAPI (blue) to counterstain the nucleus; the panels show that expression of two constructs were similar (however, EGFP-VP24 shows a higher expression than VP24-EGFP) and that approximately 50% of cells were transfected. (C) Analysis of the pull-down products using a Western blot confirm the presence of EGFP-VP24, VP24-EGFP, and EGFP with the expected molecular weight, confirming the expression of these proteins in 293T cells.

had a binding ratio greater than 2 and were statistically significant are shown in the right-hand quadrant. For EGFP-VP24 and VP24-EGFP, 48 and 51 proteins (Table 1),

Article

Log 2 Ratio (EGFP vs. VP24-EGFP)

Figure 2. Volcano plot representing results of the label-free pull-down of EGFP-VP24 (A) or VP24-EGFP (B) versus the control EGFP performed in triplicate. For any potential protein interaction partner with VP24, the value of its abundance coimmunoprecipitated with EGFP-VP24 or VP24-EGFP was compared with the value of coimmunoprecipitated with EGFP alone. The logarithmic ratio of protein intensities is plotted against the negative logarithmic *p* values of the *t* test. The dashed curve indicates the region of significant interactions with a false discovery rate of 1%, and the red dots in the upper right corners are the proteins that have the highest probability of interacting with VP24.

respectively, were identified as interacting with statistical significance. Both fusion proteins had 40 proteins identified in common; 8 proteins were unique for EGFP-VP24 and 11 proteins were unique for VP24-EGFP. A map of these protein—protein interactions was performed using the String Algorithm (version 9.05) and is presented in Figure 3.

Cellular proteins that had a higher statistical likelihood of associating with VP24 included importin subunit alpha 1 and 6 (karyopherin- α 1 and karyopherin- α 6), lamin B1, VDAC-1, and ATP1A1. Importin α 1 has been previously shown to interact with VP24⁸ and therefore indicated that our approach identified

known interactions and increased confidence in the analysis of cellular proteins found in the same experiment. Comparison of proteins identified as interacting with VP24 and their abundance in an average human cell (data taken from PaxDb: Protein Abundance Across Organisms database) (Table 1) indicated that the likelihood of binding was not proportional to their abundance in a cell, thus increasing confidence that the amount of binding was not merely a reflection of overall protein abundance.

	subcelullar loca- tion	ucleus, cytoske- leton	tosol, nucleus	⁄toplasm, nu- cleus	ell membrane, endosome	ell membrane, endosome, ER	R, nucleus, cyto- plasm	ell membrane, ER	utochondrion, cell membrane	ell membrane	R	ucleus	utochondrion	ж	utochondrion	2	⁄toplasm
	function	Lamins are components of the nuclear n lamina, a fibrous layer on the nucleo- plasmic side of the inner nuclear membrane.	Functions in nuclear protein import as an c adapter protein for nuclear receptor KPNB1.	Functions in nuclear protein import as an c adapter protein for nuclear receptor KPNB1.	Member RAS oncogene family; Modulates co endosomal trafficking	This is the catalytic component of the c- active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane.	Implicated in a number of cellular E processes, including proliferation, differentiation and caspasa dependent/independent apoptosis.	TPase, Ca++ transporting, cardiac musde. c	Forms a channel through the mitochon- n drial outer membrane and also the plasma membrane.	Plays pivotal roles in spermatogenesis, co embryo implantation, neural network formation and tumor progression.	EF-hand calcium binding domain; Not E known. Binds calcium	Retinoblastoma binding protein 4 n	Forms a channel through the mitochon- n drial outer membrane that allows diffusion of small hydrophilic molecules.	Signal sequence receptor, delta (trans- locon-associated protein delta);	This is a component of the ubiquinol- cytochrome c reductase complex.	Receptor for progesterone (By similarity) E	RNA binding, constituent component of c the ribosome.
	abundance (ppm)	105 ppm (top 5%)	4.51 ppm	5.90 ppm	42.0 ppm (top 25%)	46.8 ppm (top 25%)	305 ppm (top 5%)	30.1 ppm (top 25%)	370 ppm (top 5%)	126 ppm (top 10%)	2.74 ppm	67.4 (top 25%)	341 ppm (top 5%)	37.5 ppm (top 25%)	200 ppm (top 10%)	78.5 ppm (top 25%)	126 ppm (top 25%)
	SC (%)	61.3	40.5	29.2	22.9	28	27.7	20.2	44.2	21.8	26.3	22.8	54.4	41	29.7	19	28.2
h EGFP-VP24	PEP	0	4.89×10^{-243}	7.9×10^{-159}	1.44×10^{-86}	0	1.72×10^{-67}	4.61×10^{-133}	2.03×10^{-168}	1.81×10^{-124}	2.98×10^{-83}	4.44×10^{-82}	1.2×10^{-78}	6×10^{-63}	2.96×10^{-73}	2.33×10^{-60}	6.92×10^{-35}
That Interact wit	fold change	6.7	6.1	6.0	5.8	5.6	5.6	5.1	4.9	4.9	4.5	4.3	4.2	4.0	3.84	3.8	3.73
pnificant Proteins	–Log <i>P</i> value	7.01	6.5	6.7	7.1	7.7	5.8	5.3	2.9	5.4	7.1	3.3	3.6	5.9	4.1	5.3	2.9
(A) Sig	unique peptides	36	12	10	9	21	Ś	15	10	7	4	s	6	7	б	7	4
	peptides	40	16	13	9	23	9	15	10	7	4	œ	6	7	б	×	4
	gene names	LMNB1	KPNA6	KPNAI	RAB11B;RAB11A	ATP1A1	ANP32A	ATP2A2	VDAC1	BSG	RCN2	RBBP4	VDAC2	SSR4	UQCRH	PGRMC1	RPS20
	protein names	lamin-B1	importin subunit alpha-7	importin subunit alpha-5	Ras-related protein Rab-11B	sodium/potassium-transport- ing ATPase subunit alpha-1	acidic leucine-rich nuclear phosphoprotein 32 family member A	sarcoplasmic/endoplasmic reticulum calcium ATPase 2	voltage-dependent anion-se- lective channel protein 1	basigin	reticulocalbin-2	histone-binding protein RBBP4	voltage-dependent anion-se- lective channel protein 2	translocon-associated protein subunit delta	cytochrome <i>b-c</i> 1 complex subunit 6, mitochondrial	membrane-associated pro- gesterone receptor component 1	40S ribosomal protein S20
	protein identifier	P20700; E9PBF6	O60684; F5GYL8	PS2294; C9JY14	Q15907; P62491	FSH3A1; P0S023	P39687; F2Z3H3	P16615; Q93084	P21796; C9J187	P35613; A6NJW1	F8WCY5; Q14257	Q09028; B4DRT0	P45880; B4DKM5	P51571; A6NLM8	P07919	000264; B7Z1L3	B4DW28; P60866
		-	7	3	4	S	Q	7	×	6	10	11	12	13	14	15	16

Table 1. Cellular Proteins That Have a Higher Probability of Forming Protein–Protein Interactions with $VP24^a$

5125

Tab	le 1. contin	ned			(A) Si	gnificant Proteins	That Interact wit	h EGFP-VP24				
	protein identifier	protein names	gene names	peptides	unique peptides	–Log <i>P</i> value	fold change	PEP	SC (%)	abundance (ppm)	function	subcelullar loca- tion
17	PS0402; QSHYS7	emerin	EMD	S	S	7.3	3.7	4.75×10^{-24}	24.4	8.00 ppm	Stabilizes and promotes the formation of a nuclear actin cortical network.	nucleus, ER
18	P12004	proliferating cell nuclear antigen	PCNA	4	4	3.6	3.7	5.42×10^{-51}	34.5	182 ppm (top 10%)	This protein is an auxiliary protein of DNA polymerase delta and is involved in the control of eukaryotic DNA replication.	nucleus, citoskele- ton
19	P05141; P12235	ADP/ATP translocase 2	SLC25A5	13	×	2.7	3.5	1.18×10^{-175}	29.2	213 ppm (top 5%)	Catalyzes the exchange of ADP and ATP across the mitochondrial inner mem- brane.	membrane
20	P04843; FSH6IS	dolichyl-diphosphooligosac- charide-protein glycosyl- transferase subunit 1	RPN1	~	4	4.S	3.4	1.16×10^{-66}	13.5	57.7 ppm (top 10%)	Auxiliary protein of DNA polymerase delta and is involved in the control of eukaryotic DNA replication.	ER
21	P51149; C9J8S3	Ras-related protein Rab-7a	RAB7A	9	9	2.840040609	3.370713043	6.14×10^{-126}	30.4	51.6 ppm (top 10%)	Involved in late endocytic transport. Contributes to the maturation of phag- osomes (acidification)	endosome
22	P04844; Q5JYR6	dolichyl-diphosphooligosac- charide-protein glycosyl- transferase subunit 2/ribophorin II	RPN2	Ś	Ś	4.5	3.4	1.88×10^{-60}	11.9	97.7 ppm (top 10%)	Essential subunit of N-oligosaccharyl transferase enzyme.	ER
23	043175; Q5SZU1	D-3-phosphoglycerate dehy- drogenase	HGDH	15	15	2.4	3.1	8.01×10^{-223}	36.4	84.6 (top 10%)	Phosphatase deshydrogenase activity	cytoplasm
24	P31689; F5GZ88	DnaJ homologue subfamily A member 1	DNAJA1	9	6	3.6	3.0	9.26×10^{-57}	24.2	54.2 ppm (top 25%)	Co-chaperone of Hsc70. Seems to play a role in protein import into mitochondria	membrane
25	P23396; E9PL09	40S ribosomal protein S3	RPS3	×	×	2.4	2.8	1.45×10^{-104}	30	136 ppm (top 5%)	Structural component of the ribosome	cytoplasm
26	Q13263	transcription intermediary factor 1-beta	TRIM28	Q	9	3.9	2.8	3.89×10^{-43}	10.4	56.5 ppm (top 10%)	Nuclear corepressor for KRAB domain- containing zinc finger proteins (KRAB- ZFPs). Mediates gene silencing by recruiting CHD3,)	nucleus
27	B4E2P2; Q9UNL2	translocon-associated protein subunit gamma	SSR3	б	б	1.9	2.7	1.14×10^{-62}	14.6	10.1 ppm	TRAP proteins are part of a complex whose function is to bind calcium to the ER membrane.	Er, membrane
28	P10606	cytochrome c oxidase subunit 5B, mitochondrial	COX5B	4	4	3.8	2.7	2.63×10^{-08}	30.2	14.4 ppm	This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase.	mitochondrion
29	F8VVM2; F8VWQ0	phosphate carrier protein, mitochondrial	SLC25A3	4	7	1.9	2.6	1.48×10^{-44}	14.2	40.8 ppm (top 25%)	Transport of phosphate groups from the cytosol to the mitochondrial matrix.	mitochondrion
30	FSH4J7; P08195	4F2 cell-surface antigen heavy chain	SLC3A2	4	4	3.7	2.6	6.55×10^{-52}	9.8	45.3 (top 25%)	Required for the function of light chain amino-acid transporters.	membrane
31	P49755	transmembrane emp24 do- main-containing protein 10	TMED10	S	S	2.4	2.5	6.21×10^{-45}	22.4	37.2 ppm (top 25%)	Involved in vesicular protein trafficking	ER, membrane
32	P27708; F8VPD4	CAD protein; glutamine-de- pendent carbamoyl-phos- phate synthase	CAD	ø	9	3.8	2.S	4.72×10^{-47}	3.2	10.7 ppm	This protein is a "fusion" protein encoding four enzymatic activities of the pyrimi- dine pathway (GATase, CPSase, AT- Case and DHOase)	cytoplasm, nu- cleus
33	Q14839; FSGWX5	chromodomain-helicase- DNA-binding protein 4	CHD4	×	×	2.4	2.4	1.09×10^{-56}	6.7	7.83 ppm	Component of the histone deacetylase NuRD complex.	cytoplasm, nu- cleus

5126

dx.doi.org/10.1021/pr500556d | J. Proteome Res. 2014, 13, 5120-5135

	function	This protein promotes the GTP-depend- ent binding of aminoacyl-tRNA to the A- site of ribosomes during protein bio- synthesis	Serine/threonine-protein kinase that acts as a molecular sensor for DNA damage. I	Involved with pre-mRNA processing.	Required for DNA repair. B	Molecular chaperone	Molecular chaperone. Has ATPase activity (By similarity)	Binds directly to 26S rRNA (By similarity)	Act as a cell surface receptor for feline endogenous virus RD114, baboon M7 endogenous virus and type D simian retroviruses	Putative ATP-dependent protease which plays a role in mitochondrial protein metabolism.	Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems.	The heterodimer formed with SPTLC2 or SPTLC3 constitutes the catalytic core.	Tubulin is the major constituent of microtubules.	Inhibits SIRT1 deacetylase activity leading to increasing levels of p53/TP53 acety- lation and p53-mediated apoptosis.	Molecular chaperone; assist the folding of proteins upon ATP hydrolysis.	One of the major pre-mRNA-binding proteins.
	abundance (ppm)	45.3 ppm (top 10%)	34.9 ppm (top 25)	347 ppm (top 5%)	22.7 ppm (top 25%)	334 ppm (top 5%)	713 ppm (top 5%)	425 (top 5%)	21.6 ppm (top 25%)	14.6 ppm (top 25%)	121 ppm (Top 5%)	83.1 ppm (top 10%)	223 ppm (top 5%)	150 ppm (top 5%)	116 ppm (top 5%)	511 ppm (top 5%)
	SC (%)	28.3	3.8	22.9	8.9	34.9	18.1	49.7	8.3	10.1	11.2	14.8	<i>5</i> 7.4	10.4	8.1	21.2
th EGFP-VP24	PEP	2.62×10^{-114}	1.83×10^{-101}	4.16×10^{-27}	3.02×10^{-107}	7.32×10^{-171}	2.46×10^{-115}	1.62×10^{-81}	6.72×10^{-34}	2.44×10^{-50}	9.24×10^{-17}	3.87×10^{-91}	0	6.22×10^{-92}	6.95×10^{-14}	1.48×10^{-60}
s That Interact wi	fold change	2.3	2.3	2.2	2.2	2.1	2.1	2.1	2.1	2.1	1.9	1.9	1.8	1.8	1.7	1.7
ignificant Protein	–Log <i>P</i> value	1.8	3.41	3.5	2.8	4.7	2.5	1.9	4.1	3.5	3.0	3.8	3.8	3.1	2.3	3.9
(A) S	unique peptides	11	10	6	9	13	6	S	ŝ	4	б	S	4	9	ю	~
	peptides	11	10	6	9	13	14	S	ω	4	ω	S	21	Q	3	2
	gene names	TUFM	PRKDC	HNRNPA2B1	DDB1	TCP1	HSP90AB1	RPL12	SLCIAS	YMEILI	GNB2	SPTLC1	TUBB	KIAA1967	CCT7	HNRNPK
	protein names	elongation factor Tu, mito- chondrial	DNA-dependent protein kinase catalytic subunit	heterogeneous nuclear ribonucleoproteins A2/B1	DNA damage-binding protein 1	T-complex protein 1 subunit alpha	heat shock protein HSP 90-beta	60S ribosomal protein L12	neutral amino acid transporter B(0)	ATP-dependent zinc metal- loprotease YMEIL1	guanine nucleotide-binding protein G(1)/G(S)/G(T) subunit beta-2	serine palmitoyltransferase 1	tubulin beta chain	cell cycle and apoptosis regulator protein 2, DBIRD complex subunit KIAA1967	T-complex protein 1 subunit eta	heterogeneous nuclear ribonucleoprotein K
	protein identifier	P49411	P78527; E7EUY0	P22626	Q16531; E7EPB0	P17987; E7ERF2	P08238; Q58FF7	P30050	Q15758; E9PC01	Q96TA2; B4DNM1	P62879; C9JXA5	015269; Q96IX6	P07437; F8VW92	Q8N163; ESRHJ4	Q99832; B8ZZC9	P61978; Q5T6W5
		34	35	36	37	38	39	40	41	42	43	4	45	46	47	48

mitochondrion

cytoplasm, nu-cleus

nucleus

nucleus

cytoplasm cytoplasm cytoplasm

subcelullar loca-tion

cytoplasm, nu-cleus

Functions in nuclear protein import as an adapter protein for nuclear receptor KDNB1.

nucleus, cytoske-leton

Lamins are components of the nuclear lamina, a fibrous layer on the nucleoplasmic side of the inner nuclear membrane.

105 ppm (top 5%)

4.51 ppm

40.5

 4.89×10^{-243}

6.2

8.6

12

16

KPNA6

importin subunit alpha-7; im-portin subunit alpha

O60684; FSGYL8

2

abundance

(B) Significant Proteins That Interact with VP24-EGFP

(mqq)

SC% 61.3

PEP

fold change 6.8

> -Log P value 5.9

unique peptides 36

> peptides 6

gene names LMNB1

protein names

protein identifier

lamin-B1

P20700; E9PBF6

_

0

function

subcelullar loca-

tion

cytoplasm, cytos-keleton

nucleus

cytoplasm, peri-nuclear region

ER

mitochondrion

membrane

cytoplasm, cytos-keleton

cytoplasm, nu-cleus

dx.doi.org/10.1021/pr500556d | J. Proteome Res. 2014, 13, 5120-5135

5127

Table 1. continued

	subcelullar loca- tion	cytoplasm, nu- cleus	cell membrane, endosome	cell membrane	cell membrane, endosome, ER	nucleus	ER, nucleus, cyto- plasm	ER	cytoplasm	membrane	ER	mitochondrion	nucleus, citoskele- ton	mitochondrion	nucleus, ER	mitochondrion, cell membrane	cell membrane, ER	mitochondrion	cytoplasm	ER, membrane	mitochondrion
	function	Functions in nuclear protein import as an adapter protein for nuclear receptor KPNB1.	Member RAS oncogene family; Modulates endosomal trafficking	Plays pivotal roles in spermatogenesis, embryo implantation, neural network formation, and tumor progression	This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled to the exchange of sodium and potassium ions across the plasma membrane.	Retinoblastoma binding protein 4; Core histone- binding subunit that may target chromatin assembly factors.	Implicated in a number of cellular processes, including proliferation, differentiation, and caspasa demend- ent/independent apoptosis.	EF-hand calcium binding domain; Not known. Binds calcium	RNA binding constituent componet of the ribosome.	Catalyzes the exchange of ADP and ATP across the mitochondrial inner membrane.	Signal sequence receptor, delta (translocon-associated protein delta).	This is a component of the ubiquinol-cytochrome c reductase complex	This protein is an auxiliary protein of DNA polymer- ase delta and is involved in the control of eukaryotic DNA replication.	This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.	Stabilizes and promotes the formation of a nuclear actin cortical network.	Forms a channel through the mitochondrial outer membrane and also the plasma membrane.	TPase, Ca++ transporting, cardiac muscle	Forms a channel through the mitochondrial outer membrane that allows diffusion of small hydrophilic molecules.	Phosphatase deshydrogenase activity	TRAP proteins are part of a complex whose function is to bind calcium to the ER membrane and thereby regulate the retention of ER resident proteins.	This protein promotes the GTP-dependent binding of aminoacyl-tRNA to the A-site of ribosomes during protein biosynthesis
	abundance (ppm)	5.90 ppm	42.0 ppm (top 25%)	126 ppm (top 10%)	46.8 ppm (top 25%)	67.4 (top 25%)	305 ppm (top 5%)	2.74 ppm	126 ppm (top 25%)	213 ppm (top 5%)	37.5 ppm (top 25%)	200 ppm (top 10%)	182 ppm (top 10%)	14.4 ppm	8.00 ppm	370 ppm (top 5%)	30.1 ppm (top 25%)	341 ppm (top 5%)	84.6 (top 10%)	10.1 ppm	45.3 ppm (top 10%)
24-EGFP	SC%	29.2	22.9	21.8	28	22.8	27.7	26.3	28.2	29.2	41	29.7	34.5	30.2	24.4	44.2	20.2	54.4	36.4	14.6	28.3
t Interact with VP2	PEP	7.90×10^{-159}	1.44×10^{-86}	1.81×10^{-124}	0	4.44×10^{-82}	1.72×10^{-67}	2.98×10^{-83}	6.92×10^{-35}	1.18×10^{-175}	6.00×10^{-63}	2.96×10^{-73}	5.42×10^{-51}	2.63×10^{-08}	4.75×10^{-24}	2.03×10^{-168}	4.61×10^{-133}	1.20×10^{-78}	$8.01 \times 10^{-2.3}$	1.14×10^{-62}	2.62×10^{-114}
teins Tha	fold change	5.97	5.4	5.3	5.3	4.8	4.2	4.1	3.9	3.9	3.8	3.8	3.8	3.7	3.6	3.5	3.5	3.3	3.2	3.2	3.2
Significant Prot	–Log <i>P</i> value	6.3	6.7	5.2	6.6	3.2	2.4	7.9	3.3	2.6	8.6	3.9	3.4	4.0	5.9	3.5	5.5	3.5	2.9	4.2	2.9
(B)	unique peptides	10	6	~	21	s	S	~	4	×	1	б	7	4	S	10	15	6	15	ω	11
	peptides	13	6	~	23	×	6	~	4	13	2	б	~	4	S	10	15	6	15	ς	11
	gene names	KPNA1	RAB11B; RAB11A	BSG	ATPIAI	RBBP4	ANP32A	RCN2	RPS20	SLC25A5	SSR4	UQCRH	PCNA	COX5B	EMD	VDAC1	ATP2A2	VDAC2	рндDH	SSR3	TUFM
	protein names	importin subunit alpha-1	Ras-related protein Rab-11B	basigin	sodium/potassium-transporting ATPase subunit alpha-1	histone-binding protein RBBP4	acidic leucine-rich nuclear phosphoprotein 32 family member A	reticulocalbin-2	40S ribosomal protein S20	ADP/ATP translocase 2	translocon-associated protein subunit delta	cytochrome <i>b-c</i> 1 complex subunit 6, mitochondrial	proliferating cell nuclear antigen	cytochrome <i>c</i> oxidase subunit 5B, mitochondrial	emerin	voltage-dependent anion-selec- tive channel protein 1	sarcoplasmic/endoplasmic re- ticulum calcium ATPase 2	voltage-dependent anion-selec- tive channel protein 2	D-3-phosphoglycerate dehydro- genase	translocon-associated protein subunit gamma	elongation factor Tu, mito- chondrial
	protein identifier	PS2294; C9JY14	Q15907; P62491	P35613; A6NJW1;	FSH3A1; P05023;	Q09028; B4DRT0	P39687; F2Z3H3	F8WCY5; Q14257	B4DW28; P60866;	P05141; P12235	PS1S71; A6NLM8	P07919	P12004	P10606	P50402; Q5HY57	P21796; C9J187	P16615; Q93084	P45880; B4DKM5	043175; Q5SZU1	B4E2P2; Q9UNL2	P49411
		б	4	s	ę	7	×	6	10	11	12	13	14	15	16	17	18	19	20	21	22

Table 1. continued

dx.doi.org/10.1021/pr500556d | J. Proteome Res. 2014, 13, 5120-5135

5128

continued	
Ι.	
Table	

	ular loca- on		в			ne	nbrane	Je		m, cytos- n	в	m, nu-	cyto-		в	nbrane	plasm	ne, mito- rion	m, nu-	ne
	subcelu ti	ER	cytoplası	ER	ER	membra.	ER, mer	endoson	nucleus	cytoplas. keletoi	cytoplası	cytoplas: cleus	nucleus, plasm	nucleus	cytoplası	ER, mer	ER, cytc	membra chondi	cytoplası cleus	membra
	function	Auxiliary protein of DNA polymerase delta and is involved in the control of eukaryotic DNA replication.	Structural component of the ribosome	Essential subunit of N-oligosaccharyl transferase enzymes	Receptor for progesterone (by similarity)	Co-chaperone of Hsc70. Seems to play a role in protein import into mitochondria	Involved in vesicular protein trafficking	Involved in late endocytic transport. Contributes to the maturation of phagosomes (acidification)	Inhibits SIRT1 deacetylase activity leading to increas- ing levels of p53/TP53 acetylation and p53- mediated apoptosis.	Tubulin is the major constituent of microtubules.	Molecular chaperone; assists the folding of proteins upon ATP hydrolysis.	Component of the histone deacetylase NuRD complex which participates in the remodeling of chromatin.	Required for completion of mitosis and cytokinesis.	Nuclear corepressor for KRAB domain-containing zinc finger proteins (KRAB-ZFPs). Mediates gene silencing.	Binds to Epstein–Barr virus small RNAs and to heparin.	Component of the SRP (signal recognition particle) receptor.	May play a role in the translocation of terminally misfolded proteins from the endoplasmic reticulum lumen to the cytoplasm and their degradation by the proteasome.	Prohibitin inhibits DNA synthesis. It has a role in regulating proliferation.	This protein is a "fusion" protein encoding four enzymatic activities of the pyrimidine pathway (GATase, CPSase, ATCase, and DHOase)	Acts as a cell surface receptor for feline endogenous virus RD114, baboon M7 endogenous virus, and
	abundance (ppm)	57.7 ppm (top 10%)	136 ppm (top 5%)	97.7 ppm (top 10%)	78.5 ppm (top 25%)	54.2 ppm (top 25%)	37.2 ppm (top 25%)	51.6 ppm (top 10%)	150 ppm (top 5%)	223 ppm (top 5%)	334 ppm (top 5%)	7.83 ppm	67.00 ppm (top 10%)	56.5 ppm (top 10%)	659 ppm (top 5%)	21 ppm (top 25%)	16.8 ppm (top 25%)	213 ppm (top 5%)	10.7 ppm	22.8 ppm (top 25%)
74-5011	SC%	13.5	30	9.11.9	19	24.2	22.4	30.4	10.4	<i>57.</i> 4	34.9	6.7	15.9	10.4	30.5	26.2	18.2	30.9	3.2	8.3
Interact with VF.	PEP	1.16×10^{-66}	1.45×10^{-104}	1.88×10^{-60}	2.33×10^{-60}	9.26×10^{-57}	6.21×10^{-45}	6.14×10^{-126}	6.22×10^{-92}	0	7.32×10^{-171}	1.09×10^{-56}	9.96×10^{-36}	3.89×10^{-43}	1.22×10^{-20}	6.04×10^{-40}	1.14×10^{-93}	5.73×10^{-82}	4.72×10^{-47}	6.72×10^{-34}
ceins I hat Intera	fold change	3.2	3.1	3.4	2.9	2.8	2.7	2.6	2.6	2.5	2.4	2.3	2.3	2.2	2.2	2.2	2.2	2.2	2.2	2.2
orgumenter riot	–Log P value	5.7	3.2	4.5	6.4	1.9	3.7	4.8	4.4	5.5	4.9	3.4	1.8	1.4	2.3	1.6	2.2	2.9	4.1	5.4
(m)	unique peptides	7	8	s	~	6	S	6	9	4	13	×	6	6	2	S	s	~	9	ŝ
	peptides	7	œ	S	×	6	S	6	9	21	13	×	6	9	2	S	s	~	9	3
	gene names	RPNI	RPS3	RPN2	PGRMC1	DNAJA1	TMED10	RAB7A	KLAA1 967	TUBB	TCP1	CHD4	RCC2	TRIM28	RPL22	SRPRB	FAF2	PHB	CAD	SLCIAS
	protein names	dolichyl-diphosphooligosacchar- ide-protein glycosyltransfer- ase subunit 1	40S ribosomal protein S3	dolichyl-diphosphooligosacchar- ide-protein glycosyltransfer- ase subunit 2/ribophorin II	membrane-associated proges- terone receptor component 1	DnaJ homologue subfamily A member 1	transmembrane emp24 domain- containing protein 10	Ras-related protein Rab-7a	DBIRD complex subunit KIAA1967	tubulin beta chain	T-complex protein 1 subunit alpha	chromodomain-helicase-DNA- binding protein 4	protein RCC2	transcription intermediary factor 1-beta	60S ribosomal protein L22	signal recognition particle re- ceptor subunit beta	FAS-associated factor 2	prohibitin	CAD protein; glutamine-de- pendent carbamoyl-phos- phate synthase; carbamoyl- transferase; dihydroorotase	neutral amino acid transporter B(0)
	protein identifier	P04843; FSH6IS	P23396; E9PL09	P04844; Q5JYR6	O00264; B7Z1L3	P31689; F5GZ88	P49755	P51149; C9J8S3	Q8N163; ESRHJ4	P07437; F8VW92	P17987; E7ERF2	Q14839; FSGWXS	Q9P258	Q13263	P35268	Q9Y5M8	Q96CS3; B4E2M8	P35232; C9JW96	P27708; F8VPD4	Q15758; E9PC01
		23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41

5129

_
· •
- d)
.=
- 12
_
<u> </u>
0
l.
l. c
è 1. c
e 1. c
le 1. c
ble 1. c
ble 1. c
able 1. c
able 1. c
Table 1. c

	subcelullar loca- tion	mitochondrion, cytoplasm, nu- cleus	cytoplasm	nucleus	cytoplasm, nu- cleus	cytoplasm, cytos- keleton	cytoplasm	cytoplasm	nucleus	cytoplasm	cytoplasm	name, and gene
	function	Functions both as NADH oxidoreductase and as regulator of apoptosis. Apoptosis-inducing factor.	Molecular chaperone; assists the folding of proteins upon ATP hydrolysis.	Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber.	Required for DNA repair. Binds to DDB2 to form the UV-damaged DNA-binding protein complex (the UV-DDB complex).	Molecular chaperone; assists the folding of proteins upon ATP hydrolysis. plays a role, in vitro, in the folding of actin and tubulin	Molecular chaperone. Has ATPase activity (By similarity)	Structural component of ribosome	Serine/threonine-protein kinase that acts as a molecular sensor for DNA damage.	Acts as a repressor of transcriptional activation.	In cooperation with other chaperones, Hsp70s stabilize preexistent proteins against aggregation.	antitative proteomics. Protein identifier, protein
	abundance (ppm)	43.3 ppm (top 10%)	116 ppm (top 5%)	534 ppm (top 5%)	22.7 ppm (top 25%)	278 ppm (top 5%)	713 ppm (top 5%)	443 ppm (top 5%)	52.9 ppm (top 10%)	1362 ppm (top 5%)	113 ppm (top 5%)	z label-free qι
24-EGFF	SC%	20.4	8.1	21.5	8.9	9.1	18.1	37.8	3.8	35.3	39.8	ed using
t Interact with VP	PEP	2.87×10^{-34}	6.95×10^{-14}	4.48×10^{-43}	3.02×10^{-107}	3.45×10^{-20}	2.46×10^{-115}	5.71×10^{-42}	1.83×10^{-101}	0	0	sins and identifie
teins Tha	fold change	2.1	2.1	2.1	1.9	1.9	1.9	1.8	1.8	1.7	1.4	on prote
Significant Prot	–Log <i>P</i> value	3.4	2.0	2.2	2.6	2.9	2.9	2.6	3.7	5.5	5.5	GFP (B) fusio
(B)	unique peptides	1	б	ω	6	4	6	ю	10	23	13	I VP24-E
	peptides	~	ŝ	S	6	4	14	3	10	27	25	24 (A) and
	gene names	AIFM1; PDCD8	CCT7	HISTIHIE	DDB1	CCT5	HSP90AB1	RPS17; RPS17L	PRKDC	HSPA8	HSPA1A; HSPA1B	the EGFP-VP.
	protein names	apoptosis-inducing factor 1, mitochondrial	T-complex protein 1 subunit eta	histone H1.4	DNA damage-binding protein 1	T-complex protein 1 subunit epsilon	heat shock protein HSP 90-beta	40S ribosomal protein S17	DNA-dependent protein kinase catalytic subunit	heat shock cognate 71 kDa protein	heat shock 70 kDa protein 1A/1B	date proteins identified using
	protein identifier	O95831	Q99832; B8ZZC9	P10412	Q16531; E7EPB0	P48643; E9PCA1	P08238; Q58FF7	P08708; P0CW22	P78527; E7EUY0	P11142; E9PKE3	P08107; FSGZ62	vn are candi
		42	43	4	45	46	47	48	49	50	51	^a Shov

versus the EGFP alone is indicated. PEP is the posterior error probability, and percentage of sequence coverage of the protein identified using the peptides is indicated as SC%. The abundance (ppm) of the protein in an average human cell is listed; data are taken from the PaxDb: Protein Abundance Across Organisms database. Indicated is a brief summary of the function and the subcellular localization of each possible interactor partner. names are indicated. Total and unique peptides used to identify the protein are indicated. The -Log *P* value is a comparison of the cellular protein between the VP24 pull down and EGFP, where the higher the number means the higher probability of interacting, and a threshold above 2.0 has been selected. The fold-change or fold-difference between the two conditions the VP24-EGFP or EGFP-VP24

Journal of Proteome Research

Figure 3. Map showing the group of proteins that interact with VP24: (A) EGFP-VP24 and (B) VP24-EGFP using String 9.1 software. Most of the proteins detected were located in the membranes and in the perinuclear region, as is VP24. In the protein analysis, three main proteins groups were detected: ribosome proteins, mitochondrial proteins, and proteins related to the nucleus.

Validation of VP24-EGFP and EGFP-VP24 Interactions

Selected cellular targets identified in the immune-precipitations to VP24 were then investigated using Western blot as an alternative means of identification (Figure 4A). These targets included karyopherin $\alpha 6$ (as a positive control), ATP1A1, lamin B1, and VDAC-1. The presence of STAT1 was also investigated; even though it had not been identified in the immunoprecipitation, as purified truncated STAT1 and purified truncated VP24 had previously been shown to associate in vitro.²¹ Whole cell lysate (input) and eluate (elution) from

Figure 4. Validation of VP24-EGFP and EGFP-VP24 interactions by Western blot analysis. (A) Confirmation of proteins detected in the label free mass spectrometry analysis by Western blot analysis was done in the whole cell lysate or input sample (I) and in the eluate sample (E) for the three different expression constructs. Specific monoclonal antibodies against karyopherin- α 6, laminB-1, ATP1A1, VDAC-1, and STAT-1 were used to the detection of the example proteins. The antibody anti-EGFP was used as a control to show the presence of the constructs EGFP-VP24 and VP24-EGFP in the input and in the elution samples. (B) Validation of VP24-EGFP and EGFP-VP4 interactions by reverse immunoprecipitations. To further validate the mass spectrometry results, we performed reverse immunoprecipitations against selected cellular proteins identified by the label-free mass spectrometry analysis. The selected proteins for the validation of the label-free mass spectrometry by using reverse immunoprecipitations were karyopherin $\alpha 6$ and lamin B1; the presence of the protein complex EGFP-VP24 and VP24-EGFP was confirmed using a Western blot analysis and using a specific antibody against EGFP.

separate immunoprecipitations were separated by 1D SDS-PAGE; proteins were then transferred in Western blot and detected using a primary antibody against each selected protein. The data indicated that karyopherin $\alpha 6$, lamin B1, and ATP1A1 associated with both the EGFP-VP24 and VP24-EGFP moieties. By Western blot, VDAC1 appeared to have a greater association for EGFP-VP24 than VP24-EGFP. Although STAT1 could be detected in the input fractions, it was not detected in the immunoprecipitations (Figure 4A).

To further validate the mass spectrometry results and potential interactions between VP24 and cellular proteins, we performed reverse immunoprecipitations against selected cellular targets where antibody combinations allowed. These targets were karyopherin $\alpha 6$ (as a positive control) and lamin B1. VP24-EGFP, EGFP-VP24, or EGFP were expressed in 293T cells and cell lysates were prepared. Immunoprecipitations were performed using specific monoclonal antibodies against karyopherin $\alpha 6$ and lamin B1. Analysis of the pull-down products using a Western blot confirmed the presence of EGFP-VP24, VP24-EGFP, and EGFP in the input and elution fraction. The presence of EGFP-VP24 and VP24-EGFP was

5131

Article

Article

Figure 5. Determining the effect of the ATP1A1 inhibitor ouabain on Ebola virus infected cells. (A) An MTT assay was used to determine cell viability in the absence of drug, the vehicle only control (DMSO), and various concentrations of ouabain and two controls using known small molecule inhibitors that affect the function of target cellular proteins (17-AAG and W-7). The data indicated that 10 and 20 nM ouabain and no apparent effect on cell viability compared with the untreated or vehicle only controls. (B) Stability of EGFP-VP24 and VP24-EGFP compared with the EGFP control were assessed by Western blot in the absence and presence of various concentrations of ouabain. The abundance of GAPDH was also determined. (C) qRT-PCR was used to compare the abundance of viral RNA in RNA purified from supernatant taken from cells infected with Ebola virus at either 24 or 48 h postinfection in the absence (0 nM) or presence of ouabain (20 nM). The data were normalized to viral RNA levels present in infected but untreated cells at 24 and 48 h postinfection.

confirmed using a specific antibody against EGFP (Figure 4B), again validating the forward immunoprecipitations. Inhibition of ATP1A1 in Ebola Virus Infected Cells

To investigate whether ATP1A1 played a functional role in Ebola virus infected cells, we used the small molecule inhibitor

to ATP1A1, ouabain, to treat human MRC-5 cells infected with EBOV strain ME718 (MOI = 0.1). This fibroblast lung culture was established from a 14-week gestation human male and is a normal diploid cell line that supports the growth of Ebola virus and has been used in antiviral drug screening studies.²² Cell viability assays were used to determine the affect of different

concentrations of ouabain on cell biology and included two other small-molecule inhibitors (17-AAG and W-7) as positive controls (Figure 5A). The data indicated that both 10 and 20 nM ouabain had no significant effect on cell viability compared with either untreated or cells treated with the vehicle (DMSO) only control. The 20 nM concentration of ouabain also had no apparent effect on the abundance of EGFP-VP24 in treated cells expressing this construct (Figure 5B). Cells were either infected and untreated or infected and treated with 20 nM ouabain to determine the potential effect of this drug on Ebola virus infection. The experiment was repeated in triplicate, and the use of a consistent volume of cell culture supernatant permitted the comparison of the relative abundance of the Ebola virus genome in the supernatant as a proxy measurement for virus particles.^{23,24} Therefore, equal volumes of supernatant containing progeny virus were taken at 24 and 48 h postinfection. Viral RNA was then isolated and RNA levels were compared in triplicate using qRT-PCR between each treatment at 24 and 48 h post infection; data were normalized to the level of viral RNA in infected but untreated cells (Figure 5C). Results indicated that infected cells treated with 20 nM ouabain produced less viral RNA compared with infected but untreated cells.

DISCUSSION

The genomes of RNA viruses have limited encoding capacity, and therefore viral proteins usually possess multiple functions in the cell and virus life cycle. The elucidation of these interactions provides a better understanding of viral pathogenesis and delivers more options for effective antiviral strategies. Ebola virus VP24 has been shown to have multiple functions in the virus life cycle and therefore would be predicted to interact with a variety of different cellular proteins. Several studies have investigated this with data suggesting that VP24 can interact with karyopherin α , STAT1, and Sec61 α .^{10,21,25} In this study, affinity tagging coupled to labelfree quantitative mass spectrometry was used to identify potential interacting partners of VP24 and reduce or eliminate false-positive interactions. Approximately 50 cellular proteins were identified that had a high probability of interacting with VP24. The majority of proteins identified associated with either EGFP-VP24 or VP24-EGFP. However, some of the cellular proteins identified were unique to the different fusion proteins. This may have been due some of the interactions with the cellular proteins being sterically hindered by the EGFP moiety and emphasized the advantage of using both the N- and Cterminal tagged fusion proteins.

VP24 has affinity for the plasma membrane and has also been observed in the cytoplasm where the protein formed cytoplasmic inclusions.²⁶ These are the cellular locations of a number of the proteins identified as associating with VP24 (Table 1). The reliability of this mass spectrometry data was confirmed using Western blot analysis and reverse immuno-precipitations against selected cellular proteins. Furthermore, the precipitations and mass spectrometry analysis were repeated five times with independent samples to ensure the reproducibility of the technique and also for the statistical analysis. The immunoprecipitation technique was also optimized for identifying low-affinity and transient interactions by modulating the salt concentration in the washing step.

Karypherin α subunit 6 (KPNA6) and 1 (KPNA1), identified in this study with an average binding ratio of 8 to both EGFP-VP24 and VP24-EGFP, reflected previous work demonstrating an interaction between EBOV-VP24 and karypherin α subunit 6.^{8,10} In addition, as part of a larger viral/host protein study, the interactome of VP24 was determined using tandem affinity purification, and KPNA6 and other karypherins were identified as part of 48 cellular proteins that potentially interacted with VP24.²⁷ Proteins in common with this previous work and recorded in our analysis as having a greater than two-fold abundance with either EGFP-VP24 or VP24-EGFP were ANP32A, ANP32B, CCAR2 (KIAA1967), CGGBP1, HNRNPL, HNRNPU, KPNA1, KPNA6, MYO5A, POM121C, PRKCSH, RPS27, RPS27L, SLC25A3, TUB1C, and TUBB, 28 proteins were not detected in our study, and three proteins (EEF1A1, EEF1A2, and SPOP) were identified as proteins that formed background/nonspecific interactions.

In the present study, no interaction was detected between VP24 and STAT1 using the mass spectrometry approach, and this was confirmed by Western blot. Likewise, no interaction between VP24 and STAT1 was described in the tandem affinity approach.²⁷ This differs from previously published work that described an interaction between VP24 and STAT1.²¹ However, the difference in these results may be due to different systems employed. In the previously published work, the interaction between EBOV VP24 and STAT1 was determined by ELISA using purified truncated forms of VP24 and STAT1.²¹ In the present study, the EGFP moiety may have prevented interaction with STAT1, likewise with the tandem affinity approach described previously,²⁷ although the tag did not prevent interaction with the karyopherins and other cellular proteins.

Sec61 α was not listed in the final data set, but proteins that form a complex with Sec61 α were identified, including SSR4 and Sec61B. Notably, Sec61B has been formally demonstrated to be significant using biological approaches.²⁵ Indeed, Sec61B protein was found in one of the trial runs of this study but excluded after the statistical analysis of the five independent mass spectrometry analyses of EGFP-VP24 and VP24-EGFP. This suggests that in the case of Sec61B our selection criteria was too conservative or affected by the EGFP moiety or the interaction with Sec61 α may be a weaker or more transient interaction than those listed in Table 1. Although, we note that the interaction between VP24 and Sec61 α was identified using a tandem tagging approach of VP24²⁵ but was not identified in a more recent study.²⁷

One cellular protein with a high binding ratio was ATP1A1, a Na+/K+-ATPase. The function of this protein is in establishing and maintaining Na⁺ and K⁺ electrochemical gradients across the plasma membrane and in cell signaling. Inhibiting the function of ATP1A1 with ouabain resulted in a decrease in progeny virus. Ouabain is used in treating atrial fibrillation and heart failure and has been demonstrated to have antiviral effect with other viruses including herpes simplex virus²⁸ and porcine reproductive and respiratory syndrome virus.²⁹ The effect of ouabain on ATP1A1 may not have had a direct effect on the relationship between ATP1A1 and VP24. For example, treatment of cells infected with human cytomegalovirus with ouabain prevented enlargement of cells that is associated with progeny virus production.³⁰ Nevertheless, the use of this small molecule to reduce progeny virus in Ebola-virus-infected cells illustrates how existing therapeutics can be repurposed for antiviral therapy. In the case of a natural infection in humans, even a modest reduction in viral progeny production in vivo may slow the virus sufficiently for the host immune response to mount a life-saving response.

To our knowledge, this is the first detailed interactome analysis of VP24 using quantitative proteomics to identify cellular proteins that have a high probability of interacting with VP24 and to eliminate or identify cellular proteins that potentially associate with a binding matrix used in immunoprecipitations. The current study complements previous work that used small molecules to inhibit the function of cellular proteins to disrupt Ebola virus biology. For example, Sadenosylhomocysteine hydrolase inhibitors were evaluated both in vitro and in vivo and were detrimental to Ebola virus infection.²² Inhibition of heat shock protein 90 using 17-AAG disrupted Ebola biology in vitro³¹ At the time of publication of this manuscript, the largest EBOV outbreak so far known is occurring in West Africa and has proved difficult to control; the "repurposing" of therapeutics to reduce virus infection may tip the balance between recovery and death.

Overall, the proteomic approach demonstrated how determining the interactome of viral proteins can be used to identify cellular proteins that play important roles in the virus lifecycle and therefore increase the repertoire of potential drugable targets. Resistance is a constant problem in developing antiviral therapy to target the function of viral proteins. Transiently targeting the function of host cell proteins crucial to virus biology offers an exciting new therapeutic avenue, with the potential to solve the problem of resistance, as pro-viral cellular proteins are evolutionarily static on the time scale of lytic virus replication as well as separated from the genome that would benefit from resistance.

AUTHOR INFORMATION

Corresponding Authors

*R.H.: E-mail: Roger.Hewson@phe.gov.uk. Tel: 01980 612100. *J.A.H.: E-mail: julian.hiscox@liverpool.ac.uk. Tel: 0151 795 0222.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

J.W., R.H., M.C., and J.A.H. are in part supported by NIHR Health Protection Research Unit in Emerging and Zoonotic Infections.

REFERENCES

(1) Feldmann, F.; Feldmann, H. Ebola: facing a new transboundary animal disease? *Dev. Biol.* **2013**, *135*, 201–209.

(2) Weingartl, H. M.; Nfon, C.; Kobinger, G. Review of Ebola virus infections in domestic animals. *Dev. Biol.* **2013**, *135*, 211–218.

(3) Marsh, G. A.; Haining, J.; Robinson, R.; Foord, A.; Yamada, M.; Barr, J. A.; Payne, J.; White, J.; Yu, M.; Bingham, J.; Rollin, P. E.; Nichol, S. T.; Wang, L. F.; Middleton, D. Ebola Reston virus infection of pigs: clinical significance and transmission potential. *J. Infect. Dis.* **2011**, 204 (Suppl 3), S804–S809.

(4) Mateo, M.; Carbonnelle, C.; Reynard, O.; Kolesnikova, L.; Nemirov, K.; Page, A.; Volchkova, V. A.; Volchkov, V. E. VP24 is a molecular determinant of Ebola virus virulence in guinea pigs. *J. Infect. Dis.* **2011**, 204 (Suppl 3), S1011–S1020.

(5) Mateo, M.; Carbonnelle, C.; Martinez, M. J.; Reynard, O.; Page, A.; Volchkova, V. A.; Volchkov, V. E. Knockdown of Ebola virus VP24 impairs viral nucleocapsid assembly and prevents virus replication. *J. Infect. Dis.* **2011**, *204* (Suppl 3), S892–S896.

(6) Watanabe, S.; Noda, T.; Halfmann, P.; Jasenosky, L.; Kawaoka, Y. Ebola virus (EBOV) VP24 inhibits transcription and replication of the EBOV genome. *J. Infect. Dis.* **2007**, *196* (Suppl 2), S284–S290.

(7) Reid, S. P.; Valmas, C.; Martinez, O.; Sanchez, F. M.; Basler, C. F. Ebola virus VP24 proteins inhibit the interaction of NPI-1 subfamily karyopherin alpha proteins with activated STAT1. *J. Virol.* **2007**, *81* (24), 13469–13477.

(8) Reid, S. P.; Leung, L. W.; Hartman, A. L.; Martinez, O.; Shaw, M. L.; Carbonnelle, C.; Volchkov, V. E.; Nichol, S. T.; Basler, C. F. Ebola virus VP24 binds karyopherin alpha1 and blocks STAT1 nuclear accumulation. *J. Virol.* **2006**, *80* (11), 5156–5167.

(9) Randall, R. E.; Goodbourn, S. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. *J. Gen. Virol.* **2008**, 89 (Pt 1), 1–47.

(10) Mateo, M.; Reid, S. P.; Leung, L. W.; Basler, C. F.; Volchkov, V. E. Ebolavirus VP24 binding to karyopherins is required for inhibition of interferon signaling. *J. Virol.* **2010**, *84* (2), 1169–1175.

(11) Lee, M. S.; Lebeda, F. J.; Olson, M. A. Fold prediction of VP24 protein of Ebola and Marburg viruses using de novo fragment assembly. *J. Struct. Biol.* **2009**, *167* (2), 136–144.

(12) Ramanan, P.; Shabman, R. S.; Brown, C. S.; Amarasinghe, G. K.; Basler, C. F.; Leung, D. W. Filoviral immune evasion mechanisms. *Viruses* **2011**, *3* (9), 1634–1649.

(13) Mateo, M.; Carbonnelle, C.; Reynard, O.; Kolesnikova, L.; Nemirov, K.; Page, A.; Volchkova, V. A.; Volchkov, V. E. VP24 is a molecular determinant of Ebola virus virulence in guinea pigs. *J. Infect. Dis.* **2011**, 204 (Suppl 3), S1011–S1020.

(14) Volchkov, V. E.; Chepurnov, A. A.; Volchkova, V. A.; Ternovoj, V. A.; Klenk, H. D. Molecular characterization of guinea pig-adapted variants of Ebola virus. *Virology* **2000**, *277* (1), 147–155.

(15) Ebihara, H.; Takada, A.; Kobasa, D.; Jones, S.; Neumann, G.; Theriault, S.; Bray, M.; Feldmann, H.; Kawaoka, Y. Molecular determinants of Ebola virus virulence in mice. *PLoS Pathog.* **2006**, 2 (7), e73.

(16) Boulon, S.; Ahmad, Y.; Trinkle-Mulcahy, L.; Verheggen, C.; Cobley, A.; Gregor, P.; Bertrand, E.; Whitehorn, M.; Lamond, A. I. Establishment of a protein frequency library and its application in the reliable identification of specific protein interaction partners. *Mol. Cell. Proteomics* **2010**, *9* (5), 861–879.

(17) Trinkle-Mulcahy, L.; Boulon, S.; Lam, Y. W.; Urcia, R.; Boisvert, F. M.; Vandermoere, F.; Morrice, N. A.; Swift, S.; Rothbauer, U.; Leonhardt, H.; Lamond, A. Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. *J. Cell Biol.* **2008**, *183* (2), 223–239.

(18) Wu, W.; Tran, K. C.; Teng, M. N.; Heesom, K. J.; Matthews, D. A.; Barr, J. N.; Hiscox, J. A. The interactome of the human respiratory syncytial virus NS1 protein highlights multiple effects on host cell biology. *J. Virol.* **2012**, *86* (15), 7777–7789.

(19) Emmott, E.; Munday, D.; Bickerton, E.; Britton, P.; Rodgers, M. A.; Whitehouse, A.; Zhou, E. M.; Hiscox, J. A. The cellular interactome of the coronavirus infectious bronchitis virus nucleocapsid protein and functional implications for virus biology. *J. Virol.* **2013**, *87* (17), 9486–9500.

(20) Jourdan, S. S.; Osorio, F.; Hiscox, J. A. An interactome map of the nucleocapsid protein from a highly pathogenic North American porcine reproductive and respiratory syndrome virus strain generated using SILAC-based quantitative proteomics. *Proteomics* **2012**, *12* (7), 1015–1023.

(21) Zhang, A. P.; Bornholdt, Z. A.; Liu, T.; Abelson, D. M.; Lee, D. E.; Li, S.; Woods, V. L., Jr.; Saphire, E. O. The ebola virus interferon antagonist VP24 directly binds STAT1 and has a novel, pyramidal fold. *PLoS Pathog.* **2012**, *8* (2), e1002550.

(22) Huggins, J.; Zhang, Z. X.; Bray, M. Antiviral drug therapy of filovirus infections: S-adenosylhomocysteine hydrolase inhibitors inhibit Ebola virus in vitro and in a lethal mouse model. *J. Infect. Dis.* **1999**, *179* (Suppl 1), S240–S247.

(23) Spurgers, K. B.; Alefantis, T.; Peyser, B. D.; Ruthel, G. T.; Bergeron, A. A.; Costantino, J. A.; Enterlein, S.; Kota, K. P.; Boltz, R. C.; Aman, M. J.; Delvecchio, V. G.; Bavari, S. Identification of essential filovirion-associated host factors by serial proteomic analysis and RNAi screen. *Mol. Cell. Proteomics* **2010**, *9* (12), 2690–2703.

(24) Trombley, A. R.; Wachter, L.; Garrison, J.; Buckley-Beason, V. A.; Jahrling, J.; Hensley, L. E.; Schoepp, R. J.; Norwood, D. A.; Goba, A.; Fair, J. N.; Kulesh, D. A. Comprehensive panel of real-time TaqMan polymerase chain reaction assays for detection and absolute quantification of filoviruses, arenaviruses, and New World hantaviruses. *Am. J. Trop. Med. Hyg.* **2010**, 82 (5), 954–960.

(25) Iwasa, A.; Halfmann, P.; Noda, T.; Oyama, M.; Kozuka-Hata, H.; Watanabe, S.; Shimojima, M.; Watanabe, T.; Kawaoka, Y. Contribution of Sec61alpha to the life cycle of Ebola virus. *J. Infect. Dis.* **2011**, 204 (Suppl 3), S919–926.

(26) Nanbo, A.; Watanabe, S.; Halfmann, P.; Kawaoka, Y. The spatiotemporal distribution dynamics of Ebola virus proteins and RNA in infected cells. *Sci. Rep.* **2013**, *3*, 1206.

(27) Pichlmair, A.; Kandasamy, K.; Alvisi, G.; Mulhern, O.; Sacco, R.; Habjan, M.; Binder, M.; Stefanovic, A.; Eberle, C. A.; Goncalves, A.; Burckstummer, T.; Muller, A. C.; Fauster, A.; Holze, C.; Lindsten, K.; Goodbourn, S.; Kochs, G.; Weber, F.; Bartenschlager, R.; Bowie, A. G.; Bennett, K. L.; Colinge, J.; Superti-Furga, G. Viral immune modulators perturb the human molecular network by common and unique strategies. *Nature* **2012**, *487* (7408), 486–490.

(28) Dodson, A. W.; Taylor, T. J.; Knipe, D. M.; Coen, D. M. Inhibitors of the sodium potassium ATPase that impair herpes simplex virus replication identified via a chemical screening approach. *Virology* **2007**, *366* (2), 340–348.

(29) Karuppannan, A. K.; Wu, K. X.; Qiang, J.; Chu, J. J.; Kwang, J. Natural compounds inhibiting the replication of Porcine reproductive and respiratory syndrome virus. *Antiviral Res.* **2012**, *94* (2), 188–194.

(30) Altamirano, A. A.; Fons, M. P.; Russell, J. M.; Cragoe, E. J., Jr.; Albrecht, T. Human cytomegalovirus infection increases the number of ouabain-binding sites in human fibroblasts. *Virology* **1994**, *199* (1), 151–159.

(31) Smith, D. R.; McCarthy, S.; Chrovian, A.; Olinger, G.; Stossel, A.; Geisbert, T. W.; Hensley, L. E.; Connor, J. H. Inhibition of heatshock protein 90 reduces Ebola virus replication. *Antiviral Res.* **2010**, 87 (2), 187–194.